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abstract

O
n this thesis we will be dealing with three major axis, the �rst we will look

into it is the electric vehicles and how they have been evolved over time, also

we discover the features, the components, the possible topologies of EV.

Then on the second axis we will limp on the energy management strategies of electric

vehicle's power-train system, with almost the whole pack of strategies either Rule-

based EMSs or Optimization-based EMSs, and even the Learning-based EMSs...

and the third one is the control of the drive-train of our system that combines a

Lithium battery and supercapacitor as two power sources, using PI regulator to com-

mand the converters and control the system, by choosing the Frequency-decoupling

strategy, that relays on decoupling of the low- and high-frequency components of the

load demand signal, and applying low-frequency content to the high-energy source

in the system (the battery), whereas the high-frequency is compensated using an

auxiliary fast-responding source, which is in the studied case is the supercapacitor,

Afterward we the integrate the arti�cial intelligence presented by Neural Network

and visualizing and interpreting the results at and compare between them the end.

key words :

Electric Vehicle; Battery; Supercapacitor; Energy Manegment Strategy; Frequency-

decoupling strategy; convertors; PI regulators; Power source;Neural Network.



résumé

S
ur cette thése, nous allons traiter trois axes majeurs. Dans le premier nous

allons examiner les véhicules électriques et comment elles sont évolués avec

le temps, aussi nous découvrons les caractéristiques, les composants, les topologies

possibles de EV.

Ensuite, sur le deuxième axe, nous allons parler sur les stratégies de gestion de

l'énergie du véhicule électrique, présentant les plus connu stratégies soit : Rule-

based EMSs ou Optimization-based EMSs, et même the Learning-based EMSs...

Et le troisième est le contrôle du drive-train de notre système qui combine une

batterie au lithium et un super-condensateur comme deux sources d'énergie, en

utilisant le régulateur PI pour commander les convertisseurs (les hacheurs) et con-

trôler le système, en choisissant la stratégie de découplage de fréquence(séparation

de fréquence), qui relaie sur le découplage des composants à basse et haute fréquence

du signal de charge, et en appliquant le contenu á basse fréquence à la source de

haute énergie dans le système (la batterie), alors que la haute fréquence est compen-

sée à l'aide d'une source auxiliaire à réponse rapide, qui est dans le cas étudié est le

super-condensateur, Par la suite, nous intégrons l ' intelligence arti�cielle présenté

par Neural Network et visualisons et interprétons les résultats et comparons entre

eux á la �n

mots clés :

véhicule éléctrique; batterie; super-condensateur; stratégie de supération de fréquence;

gestionnaire d'énergie; régulateur PI; source de puissance;Neural Network.
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General Introduction

T
he world is facing enormous challenge of increasing consumption of fossil fuels,

as consequence of that the problem of climate change. The solution of this

challenge necessarily requires to design and use green technologies on a large scale.

In that sense, the transport sector, which is an important part of the world oil

consumption and one of the largest contributors of greenhouse gas, especially the

light-duty vehicles such as cars. For example in The United States of America,

the transport sector is the largest contributor of the greenhouse gas emissions with

28%, within 59% of this transportations are light-duty vehicles [2]. For these rea-

sons, the transport sector is witnessing increasing integration of Hybrid Electric

Vehicles(HEVs) and Electric Vehicles (EVs) in recent years as alternatives of the or-

dinary Internal Combustion (ICE) vehicles. EVs have the advantage of emitting few

or no atmospheric pollutants, however it has disadvantage on the autonomy side,

because of the batteries limitations. To improve the autonomy of the vehicle and

protect the battery, other sources such as the hydrogen fuel cell (FC) and/or the

supercapacitor (also called ultracapacitor) could be added, thus constituting hybrid

sources. In the case of electric vehicles, the hybridization of the energy source al-

lows to minimize the vehicles weight and to increase their driving ranges [3]. In this

thesis, we have worked on the hybridization of battery/supercapacitor as sources

of energy, and we chose the frequency-splitting technique for energy management

using a low pass �lter then using Neural Network as additional value to this thesis.

This work consists of a General Introduction, three chapters and a General Con-

clusion. The �rst chapter started with general ideas about electric vehicles, their

types and their di�erent topologies. In addition, it contains a general review of

all the energy management strategies (EMS) used within the EVs. The second
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chapter consists of the modelling of the di�erent parts of the chosen energy system

battery/supercapacitor. The third chapter is the simulation and its results of the

system using Matlab/Simulink software. and comparing results.
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Chapter 1

State of Art on EV & EMS

1.1 Introduction

E
nvironmental as well as economic issues provide a compelling impetus to

develop clean, e�cient, and sustainable vehicles for urban transportation. Au-

tomobiles constitute an integral part of our everyday life, yet the exhaust emissions

of conventional internal combustion (IC) engine vehicles are to blame for the ma-

jor source of urban pollution that causes the greenhouse e�ect leading to global

warming,[4]

The dependence on oil as the sole source of energy for passenger vehicles has eco-

nomic and politic implications, and the crisis will inevitably become acute as the oil

reserve of the world diminishes. The number of automobiles on our planet doubled

to about a billion or so in the last 10 years. The increasing number of automobiles

being introduced on the road every year is only adding to the pollution problem.

There is also an economic factor inherent in the poor energy conversion e�ciency

of combustion engines. Although the number for alternative electric vehicles is not

signi�cantly higher when e�ciency is evaluated on the basis of conversion from crude

oil to traction e�ort at the wheels, it makes a di�erence. Emission due to power

generation at localized plants is much easier to regulate than that emanating from

IC engine vehicles (ICEV) that are individually maintained and scattered. People

dwelling in cities are not exposed to power plant related emissions, because these

are mostly located outside urban areas. Electric vehicles (EV) enabled by high-
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e�ciency electric motors and controllers and powered by alternative energy sources

provide the means for a clean, e�cient, and environmentally friendly urban trans-

portation system. Electric vehicles have no emission, having the potential to curb

the pollution problem in an e�cient way. Consequently, EVs are the only zero-

emission vehicles possible. Electric vehicles paved their way into public use as early

as the middle of the 19th century, even before the introduction of gasoline-powered

vehicles[5].

However, The complexity of FCEVs, BEVs, PHEVs and HEVs as electro-mechanical-

chemical systems implies the use of Energy Management Strategies (EMSs).

The ultimate objective of an EMS is to share power through the components of the

powertrain e�ciently by selecting the appropriate operation modes simultaneously

with improving the fuel economy, reducing emissions (HEVs and PHEVs), ensuring

drivability, and maintaining the state of charge and lifetime of the energy storage

system by considering the limitations[6].

All of that without missing to maintain the requirements for individual mobility

(such as range, acceleration and speed) [7].

1.2 EV Sysstem

An EV has the following two features:

� The energy source is portable and chemical or electromechanical in nature.

� Traction e�ort is supplied only by an electric motor.[5]

The Figure bellow (1.1)shows an EV system driven by a portable energy source.

The electromechanical energy conversion linkage system between the vehicle energy

source and the wheels is the drivetrain of the vehicle. The drivetrain has electrical

as well as mechanical components.

1.2.1 EV History

The history of EVs is interesting. It includes the insurgence of EVs following

the discovery of electricity and the means of electromechanical energy conversion

4



Figure 1.1: Top-level perspective of an EV system , [5] .

and later being overtaken by gasoline-powered vehicles. People digressed from the

environmentally friendly mode of transportation due to lack of technology in the

early years, but they are again focused on the correct track today.

� THE EARLY YEARS

Prior to the 1830s, the means of transportation was only through steam power,

because the laws of electromagnetic induction, and consequently, electric mo-

tors and generators, were yet to be discovered. Faraday demonstrated the

principle of the electric motor as early as in 1820 through a wire rod carrying

electric current and a magnet, but in 1831 he discovered the laws of electro-

magnetic induction that enabled the development and demonstration of the

electric motors and generators essential for electric transportation. The his-

tory of EVs in those early years up to its peak period in the early 1900s is

summarized below:

* Pre-1830-team-powered transportation

* 1831-Faraday's law, and shortly thereafter, invention of DC motor

* 1834-Non rechargeable battery-powered electric car used on a short track

* 1851-Non rechargeable 19 mph electric car

* 1859-Development of lead storage battery

* 1874-Battery-powered carriage

*Early 1870s-Electricity produced by dynamo-generators

* 1885-Gasoline-powered tricycle car

5



The factors that led to the disappearance of EV after its short period of success

were as follows:

1) Invention of starter motor in 1911 made gas vehicles easier to start.

2) Improvements in mass production of Henry T (gas-powered car) vehicles

sold for 260 $ in 1925, compared to 850 $ in 1909. EVs were more expensive.

3) Rural areas had limited access to electricity to charge batteries, whereas

gasoline could be sold in those areas.

� 1960s

Electric vehicles started to resurge in the 1960s, primarily due to environ-

mental hazards being caused by the emissions of ICEVs. The major ICEV

manufacturers, General Motors (GM) and Ford, became involved in EV re-

search and development. General Motors started a $ 15 million program called

Electrovair and Electrovan. The components and speci�cations of two Elec-

trovair vehicles (Electrovair I (1964) and Electrovair II (1966) by GM) are

given below:

Systems and characteristics:

Motor:three-phase induction motor, 115 hp, 13,000 rev/m

Battery:silver-zinc (Ag-Zn), 512 V, 680 lb

Motor drive :DC-to-AC inverter using a silicon-controlled recti�er (SCR)

Top speed:80 mi/h

Range:40 to 80 miles

Acceleration:0-60 mi/h in 15.6 s

Vehicle weight:3400 lb

� 1970s:

The scenario turned in favor of EVs in the early 1970s, as gasoline prices in-

creased dramatically due to an energy crisis. The Arab oil embargo of 1973
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increased demands for alternate energy sources, which led to immense interest

in EVs. It became highly desirable to be less dependent on foreign oil as a

nation. The case study of a GM EV of the 1970s is as follows:

Motor:separately excited DC, 34 hp, 2400 rev/m

Battery pack:Ni-Zn, 120 V, 735 lb

Auxiliary battery :Ni-Zn, 14 V

Motor drive :armature DC chopper using SCRs; �eld DC chopper using

bipolar junction transistors (BJTs)

Top speed:60 mi/h

Range:60 to 80 miles

Acceleration:0-55 mi/h in 27 s.

� 1980s and 90s In the 1980s and the 1990s, there were tremendous develop-

ments of high-power, high-frequency semiconductor switches, along with the

microprocessor revolution, which led to improved power converter design to

drive the electric motors e�ciently.

The case studies of two GM EVs of the 1990s are given below:

Motor:one, three-phase induction motor; 137 hp; 12,000 rev/m

Battery pack:lead-acid (26), 12 V batteries connected in series (312 V),

869 lb

Motor drive DC-to-AC inverter using insulated gate bipolar transistors

(IGBTs)

Top speed:75 mi/h

Range:90 miles on highway

Acceleration:0-60 mi/h in 8.5 s.

� RECENT EVs AND HEVs:

All of the major automotive manufacturers have production EVs, many of

which are available for sale or lease to the general public. The status of these

7



vehicle programs changes rapidly, with manufacturers suspending production

frequently due to the small existing market demand of such vehicles. Exam-

ples of production EVs which are or until recently have been available are

GM EVl, Ford Think City, Toyota RAV4, Nissan Hypermini, and Peugeot

106 Electric. There are also many prototype and experimental EVs being de-

veloped by the major automotive manufacturers. Most of these vehicles use

AC induction motors or PM synchronous motors. Also, interestingly, almost

all of these vehicles use battery technology other than the lead-acid battery

pack. The list of EVs in production and under development is extensive, The

manufacturers of EVs in the 1990s realized that their signi�cant research and

development e�orts on ZEV technologies were hindered by unsuitable battery

technologies. A number of auto industries started developing hybrid electric

vehicles (HEVs) to overcome the battery and range problem of pure electric

vehicles. The Japanese auto industries lead this trend with Toyota, Honda,

and Nissan already marketing their Prius, Insight, and Tino model hybrids.

The hybrid vehicles use an electric motor and an internal combustion engine

and, thus, do not solve the pollution problem, although it does mitigate it. It

is perceived by many that the hybrids, with their multiple propulsion units

and control complexities, are not economically viable in the long run, although

currently a number of commercial, prototype, and experimental hybrid vehicle

models are available from almost all of the major automotive industries around

the world. Toyota, Honda, and Nissan are marketing the hybrid vehicles well

below the production cost, with signi�cant subsidy and incentive from the gov-

ernment. However, the cost of HEVs and EVs are expected to be high until

production volume increases signi�cantly. Fuel cell electric vehicles (FCEV)

can be a viable alternative to battery electric vehicles, serving as zero-emission

vehicles without the range problem. Toyota is leading the way with FCEV,

announcing the availability of its FCEV in 2003. The Toyota FCEV is based

on the Toyota RAV4 model.[5]
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1.2.2 Compenents Of an EV

The primary components of an EV system are the motor, controller, power

source, and transmission. The detailed structure of an EV system and the inter-

action among its various components are shown in Figure X. Figure X also shows

the choices available for each of the subsystem level components. Electrochemical

batteries have been the traditional source of energy in EVs. Lead-acid batteries have

been the primary choice, because of their well- developed technology and lower cost,

although promising new battery technologies are being tested in many prototype

vehicles. The batteries need a charger to restore the stored energy level once its

available energy is near depletion due to usage. Alternative energy sources are also

being developed for zero-emission vehicles. The limited range problem of battery-

driven EVs prompted the search for alternative energy sources, such as fuel cells

and �ywheels. Prototypes have been developed with fuel cells, while production

vehicles will emerge in the near future. The majority of electric vehicles devel-

oped so far are based on DC machines, induction machines, or permanent magnet

machines. The disadvantages of DC machines pushed EV developers to look into

various types of AC machines. The maintenance-free, low-cost induction machines

became an attractive alternative to many developers. However, high-speed operation

of induction machines is only possible with a penalty in size and weight. Excellent

performance together with high-power density features of permanent magnet ma-

chines make them an attractive solution for EV applications, although the cost of

permanent magnets can become prohibitive. High-power density and a potentially

low production cost of switched reluctance machines make them ideally suited for

EV applications. However, the acoustic noise problem has so far been a deterrent for

the use of switched reluctance machines in EVs. The electric motor design includes

not only electromagnetic aspects of the machine but also thermal and mechanical

considerations. The motor design tasks of today are supported by �nite element

studies and various computer-aided design tools, making the design process highly

e�cient. The electric motor is driven by a power-electronics-based power-processing

unit that converts the �xed DC voltage available from the source into a variable volt-

age, variable frequency source controlled to maintain the desired operating point of

9



the vehicle. The power electronics circuit comprised of power semiconductor devices

saw tremendous development over the past 3 decades. The enabling technology of

power electronics is a key driving force in developing e�cient and high-performance

power-train units for EVs. High-power devices in compact packaging are available

today, enabling the development of lightweight and e�cient power-processing units

known as power electronic motor drives. Advances in power solid state devices and

very large-scale integration (VLSI) technology are responsible for the development

of e�cient and compact power electronics circuits. The developments in high-speed

digital signal processors or microprocessors enable complex control algorithm im-

plementation with a high degree of accuracy. The controller includes algorithms for

the motor drive in the inner loop as well as system-level control in the outer loop[8]

Figure 1.2: Major electrical components and choices for an EV system [8] .
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1.2.3 Topologies of EV HEV

There are various con�gurations of EVs and according to their energy sources,

they are two global kinds: pure Electric vehicles and Hybrid vehicles.[6]

� A) Pure Electric vehicle:

Previously, the EV was mainly converted from the existing ICEV by replacing

the internal combustion engine and fuel tank with an electric motor drive and

battery pack while retaining all the other components, drawbacks such as its

heavy weight, lower �exibility, and performance degradation have caused the

use of this type of EV to fadeout. A modern electric drivetrain is concepted

usually of three major subsystems: electric motor propulsion, energy source,

and auxiliary. The electric propulsion subsystem is comprised of a vehicle

controller, power electronic converter, electric motor, mechanical transmis-

sion, and driving wheels. The energy source subsystem involves the energy

source, the energy management unit, and the energy refueling unit. The aux-

iliary subsystem consists of the power steering unit, the climate control unit,

and the auxiliary supply unit. [6]

Figure 1.3: Pure electric vehicle [8] .
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We have two main parts in full (Pure) electric vehicles:

Battery-based FEVs: In battery-based con�gurations, the battery is

the main source with a high-energy content. Thus, the battery can be com-

bined with other high- power density devices such as a supercapacitor (SC)

(also known as an ultra-capacitor (UC), or electric double-layer capacitor

(EDLC)), high power battery, or lithium-capacitor (LiC) to form a hybrid

energy storage system (HESS). In general, batteries have a high energy den-

sity and low power density in contrast to an SC. Hence, An HESS can store

su�cient energy and satisfy sudden power demands for the vehicle to achieve

a required acceleration performance. Compared to a standalone battery-based

FEV con�guration, An HESS-based con�guration exhibits numerous advan-

tages such as a higher energy/power density, longer battery life span, faster

dynamic response in acceleration mode, and the capability of absorbing more

energy in regenerative braking mode. HESS-based systems can vary when

considering the converter type and their positions through a powertrain. A

HESS can be classi�ed into two main types:

a semi-active con�guration or a fully active con�guration.[6]

Figure 1.4: semi-active con�guration (on the left) or a fully active con�guration

(on the right ) [6] .
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Fuel cell-based FEVs:

In fuel-cell (FC)-based FEVs, the FC is the main energy source used to gen-

erate electricity from hydrogen and air. The speci�c energy of an FC and its

speci�c power are close to and much less than those of gasoline, respectively.

Because FC systems have slow dynamics, fast power transients can lead to a

gas starvation, resulting in permanent damage to the FC. Therefore, batteries,

SCs, or battery-SCs can be integrated into a system to improve the dynamic

performance and extend the FC lifespan. In this regard, the possible con�g-

urations and combinations FC-Bat, FC- SC, or FC-Bat-SC are illustrated in

Fig 1.5

Figure 1.5: con�gurations and combinations FC-Bat, FC- SC, or FC-Bat-SC [6] .

Advantages of pure EV:

* Zero mission * Silent * Easy use and driving.

Disadvantages of pure EV:

* Travel range obstacle * Oriented only for urban uses * High cost

� Hybrid vehicle:

A Hybrid Electric Vehicle (HEV) is a vehicle that uses two or more sources of
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power. The two sources are electricity from batteries and mechanical power

from an internal combustion engine. This combination o�ers very low emis-

sions of vehicles with the power and range of gasoline vehicles. They also o�er

up to 30 more miles per gallon perform as well or better than any compara-

ble gasoline powered vehicle and never have to be plugged in for recharging

.A hybrid road vehicle is one in which the propulsion energy during speci�ed

operational missions is available from two or more kinds or types of energy

stores, sources, or converters, of which at least one store or converter must be

on board. Many con�gurations are possible for HEVs as series and parallel

HEVs.[8]

Series HEV

A series hybrid is one in which only one energy converter can provide propul-

sion power. The heat engine or ICE acts as a prime mover in this con�guration

to drive an electric generator that delivers power to the battery or energy stor-

age link and the propulsion motor. The component arrangement of a series

HEV is shown in �g 1.6

Figure 1.6: Series HEV [8] .
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Advantages of series HEV:

* Flexibility of location of engine-generator set

* Simplicity of drivetrain

* Suitability for short trips.

Disadvantages of series HEV:

* It needs three propulsion components: ICE, generator, and motor * The mo-

tor must be designed for the maximum sustained power that the vehicle may

require, such as when climbing a high grade. However, the vehicle operates

below the maximum power most of the time; * All three drivetrain components

need to be sized for maximum power for long- distance, sustained, high-speed

driving. This is required, because the batteries will exhaust fairly quickly,

leaving ICE to supply all the power through the generator.

* Parallel HEV

Figure 1.7: Parallel HEV [8] .

A parallel hybrid is one in which more than one energy source can provide
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propulsion power. The heat engine and the electric motor are con�gured in

parallel, with a mechanical coupling that blends the torque coming from the

two sources. The component arrangements of a parallel hybrid are shown in

Fig 1.7.

Advantages of hybrid HEV

* It needs only two propulsion components: ICE and motor/generator. In

parallel HEV, the motor can be used as the generator and vice versa;

* A smaller engine and a smaller motor can be used to get the same perfor-

mance, until batteries are depleted. For short-trip missions, both can be rated

at half the maximum power to provide the total power, assuming that the

batteries are never depleted. For long-distance trips, the engine may be rated

for the maximum power, while the motor-generator may still be rated to half

the maximum power or even smaller.

Disadvantages of hybrid HEV:

* The control complexity increases signi�cantly, because power �ow has to be

regulated and blended from two parallel sources;

* The power blending from the ICE and the motor necessitates a complex

mechanical device.

Series-parallel combination:

Although HEVs initially evolved as series or parallel, manufacturers later real-

ized the advantages of a combination of the series and parallel con�gurations

for practical road vehicles. In these combination hybrids, the heat engine can

also be used to charge the battery. The recently available Toyota Prius is

an example of such a hybrid, where a small series element is added to the

primarily parallel HEV . The small series element (yellow element in Fig1.8.

ensures that the battery remains charged in prolonged wait periods, such as at

tra�c lights or in a tra�c jam. These hybrid combinations can be categorically

classi�ed under parallel hybrids, because they retain the parallel structure of

a component arrangement. It is important to stress the fact that the detailed
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con�guration of an HEV depends on the application and the trade-o� between

cost and performance.

Figure 1.8: Series-parallel combination [8] .

AdvantagesSeries-parallel combination HEV:

* high autonomy and travel range;

* The most sold

* Rival to ICE vehicle.

* less polluting.

disadvantagesSeries-parallel combination HEV:

* High complexity of the drive traine;

* High complexity of its management components

*High cost and mass.

1.2.4 EV Motor Drives Evaluation

In EVs, the electric motor is the propulsion unit, while in hybrid electric vehicles

(HEVs), the electric motor and the ICE together in a series or parallel combinations
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provide the propulsion power. In an EV or an HEV, the electric traction motor con-

verts electrical energy from the energy storage unit to mechanical energy that drives

the wheels of the vehicle. The major advantages of an electric motor over an IC

engine are that the motor provides full torque at low speeds and the instantaneous

power rating can be two or three times the rated power of the motor. These charac-

teristics give the vehicle excellent acceleration with a nominally rated motor. As so

far, four types of motor drive shave been applied to EVs. They are Direct Current

Motor (DCM)drives, Induction Motor (IM) drives, Permanent Magnet Synchronous

Motor (PMSM) drives, and Switched Reluctance Motor (SRM) drives.[5]

� Direct current motor

Among the classic motors used in EV, the DCM with independent excitation,

is the most economical solution through its armature chopper-type converter

with two switches (the inductor is also powered by a small power chopper).

This is the technology used by many automakers to commercialize EVs �rst

generation. But the DCM has a number of well-known drawbacks. Positive

attributes of DC machines are as follows:

* Ease of control due to linearity;

* Capability for independent torque and �ux control;

* Established manufacturing technology.

Disadvantages of DC machines include the following:

* Brush wear that leads to high maintenance;

* Low maximum speed;

* Low power-to-weight ratio.

The separately excited DCM used in an EV or HEV has two separate DC/DC

converters supplying the armature and �eld windings from the same energy

source, The DC/DC converters process the �xed supply voltage of the energy

source to deliver a variable DC to the armature and �eld circuits. The power

rating of the converter supplying the armature windings is much larger than

that of the converter supplying the �eld winding. Control inputs to the con-

verter circuits are the desired torque and speed of the motor. Control outputs

of the converters are the voltages applied to the armature and �eld circuits of
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the DC motor. The performance analysis and modelling of used DCM in the

studied EV will be shown in the next chapter.

� Induction motor drives

Induction motors are of simple construction, reliability, ruggedness, low main-

tenance, low cost, and ability to operate in hostile environments. The absence

of brush friction permits the motors to raise the limit for maximum speed,

and the higher rating of speed enable these motors to develop high output.

Speed variations of induction motors are achieved by changing the frequency

of voltage. Field orientation control (FOC) of an IM can decouple its torque

control from �eld control. This allows the motor to behave in the same man-

ner as a separately excited DCM. This motor, however, does not su�er from

the same speed limitation sasin the DCM. Extended speed range operation

beyond base speed is accomplished by �ux weakening, once the motor has

reached its rated power capability. A properly designed IM, e.g., spindle mo-

tor, with �eld oriented control can achieve �eld weakened range of 3-5 times

the base speed. However, the controllers of IMs are at higher cost than the

ones of DCM. Furthermore, the presence of a breakdown torque limits its ex-

tended constant-power operation. At the critical speed, the breakdown torque

is reached. Generally, for a conventional IM, the critical speed is around two

times the synchronous one. Any attempt to operate the motor at the max-

imum current beyond this speed will stall the motor. Although FOC may

extend constant power operation, it results in an increased breakdown torque

thereby resulting in an over-sizing of the motor. In addition, e�ciency at a

high-speed range may su�er in addition to the fact that IMs e�ciency is inher-

ently lower than that of a Permanent Magnet Synchronous Motors (PMSM)

and Switched Reluctance Motors (SRMs) due to the absence of rotor winding

and rotor copper losses.

� Switched Reluctance Motor Drives

SRM drives are gaining much interest and are recognized to have a poten-

tial for EV applications. These motor drives have de�nite advantages such as
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simple and rugged construction, fault-tolerant operation, simple control, and

outstanding torque-speed characteristics. SRM drives can inherently operate

with an extremely long constant-power range. The torque-speed characteris-

tics of SRM drives match very well with the EV load characteristics. The SRM

drive has high speed operation capability with a wide constant power region.

The motor has high starting torque and high torque-inertia ratio. The rotor

structure is extremely simple without any windings, magnets, commutators or

brushes. The fault-tolerance of the motor is also extremely good. Because of

its simple construction and low rotor inertia, SRM has very rapid acceleration

and extremely high-speed operation. Because of its wide speed range opera-

tion, SRM is particularly suitable for gearless operation in EV propulsion. In

addition, the absence of magnetic sources (i.e., windings or permanent mag-

nets) on the rotor makes SRM relatively easy to cool and insensitive to high

temperatures. The latter is of prime interest in automotive applications, which

demand operation under harsh ambient conditions. An extended range of 2-3

times the base speed is usually possible using an appropriate control. The

disadvantages of SRM drives are that they have to su�er from torque ripple

and acoustic noise. However, these are not potential problems that prohibit

its use for EVs application.

� Permanent Magnet Synchronous Motors

The PMSM can be thought of as a cross between an AC IM and a brush-

less DCM. They have rotor structures similar to DCM motors which contain

permanent magnets. Advantages of PMSM are well known. The greatest ad-

vantage is low volume of the PMSMs in contrast with other types of motors,

it makes them suitable for wheel motor applications. On the other hand, the

traction drive with PMSM has to meet special requirements typical for over-

head line fed vehicles. The drives and specially their control should be robust

to wide overhead line voltage tolerance (typically from -30 % to +20 %), volt-

age surges and input �lter oscillations. These aspects may cause problems

during �ux weakening operation. PMSM motor drives have the drawbacks in

that the magnet is expensive and that the mechanical strength of the magnet
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makes it di�cult to build a large torque into the motor. PM BLDC motors

have no brush to limit speed, but questions persist over the �xing intensity

of the magnet because it restricts the maximum speed if the motors are of

an inner-rotor type. Furthermore, this motor su�ers from a rather limited

�eld weakening capability. This is due to the presence of the PM �eld which

can only be weakened through production of a stator �eld component which

opposes the rotor magnetic �eld. Nevertheless, extended constant power op-

eration is possible through the advancing of the commutation angle.[5]

� Comparison between four types of EV motor drives

The most appropriate choice for EVs among four types of motor drives is deter-

mined according to the following factors: weight factors in e�ciency, weight,

and cost. From the above summarized features of four types of motor drives

for EVs, Table 3.1 lists weight factors in e�ciency, weight, and cost of four

types of motor drives..

Indes DCM IM PMSM SRM

E�eciency medium high high high

Weigh medium medium high low

Cost low medium high high

Table 1.1: Comparison between four types of EV motor drives

The above table indicates that DCM drives will continue to be used in EVs

because DC motor drives are available at the lowest cost. From the point of view

of e�ciency, PMSM motor drives are the best choice. SRM drives have the lowest

weight among four types of motor drives for EVs. If the choice of motor drives for

EVs is determined by three factors that are weight, e�ciency and cost, it is clear that

SRM drives are the best choice for EVs. Except for the e�ciency, weight and cost,

SRM drives also have the ascendancy in the aspects of cooling, maximum speed,

fault tolerance, and reliability.[5]
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1.2.5 EV Advantages

The relative advantages and disadvantages of an EV over an ICEV can be better

appreciated from a comparison of the two on the bases of e�ciency, pollution, cost,

and dependence on oil. The comparison must be executed with care, ensuring

fairness to both systems.[5]

� EFFICIENCY COMPARISON

To evaluate the e�ciencies of EV and ICEV on level ground, the complete

process in both systems starting from

PIN=PIN PROCESS +PIN RAW

crude oil to power available at the wheels must be considered. The EV process

starts not at the vehicles, but at the source of raw power whose conversion e�ciency

must be considered to calculate the overall e�ciency of electric vehicles. The power

input PIN to the EV comes from two sources-the stored power source and the ap-

plied power source. Stored power is available during the process from an energy

storage device. The power delivered by a battery through electrochemical reaction

on demand or the power extracted from a piece of coal by burning it are examples of

stored power. Applied power is obtained indirectly from raw materials. Electricity

generated from crude oil and delivered to an electric car for battery charging is an

example of applied power. Applied power is labeled as PIN AW while stored power

is designated as PIN PROCESS. Therefore, we have the following:

The complete EV process can be broken down into its constituent stages involving

a chain of events responsible for power generation, transmission, and usage, as shown

in Figure 1.9. Raw power from the applied source is fed to the system only at the

�rst stage, although stored power can be added in each stage. Each stage has its

e�ciency based on total input to that stage and output delivered to the following

stage. For example, the e�ciency of the �rst stage based on the input and output

shown in Figure 1.9 is :

η1 =
P1

PINRAW + PINPROCESS1
(1.1)
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Figure 1.9: The complete EV process broken into stages. [5]

The e�ciency of each stage must be calculated from input-output power considera-

tions, although the e�ciency may vary widely, depending on the technology being

used. Finally, overall e�ciency can be calculated by multiplying the e�ciencies of

the individual stages. The overall e�ciency of the EV system shown in Figure 1.9

is

ηEV =
P0

PIN
=

P0

P0 +
∑7

i=1 PLOSSi
= η1η2η3η4η5η6η7 (1.2)

The overall ICEV process is shown in Figure1.10, while the process details are il-

lustrated in Figure 1.11. Starting from the conversion of crude oil to fuel oil in

the re�nery, the ICEV process includes the transmission of fuel oil from re�nery to

gas stations, power conversion in the internal combustion engine of the vehicle, and

power transfer from the engine to the wheels through the transmission before it is

available at the wheels. The e�ciency of the ICEV process is the product of the

e�ciencies of the individual stages indicated in Figure 1.11 and is given by

ηKCEV = η1η2η3η4 (1.3)

23



A sample comparison of EV and ICEV process e�ciencies based on the diagrams

of Figure 1.9 and 1.11 is given in Table 1.2. Representative numbers have been

used for the energy conversion stages in each process to convey a general idea of the

e�ciencies of the two systems. From Table 1.2, it can be claimed that the overall

e�ciency of an EV is comparable to the overall e�ciency of an ICEV.

Figure 1.10: ICEV process from crude oil to power at the wheels [5]

POLLUTION COMPARISON

Transportation accounts for one third of all energy usage, making it the leading

cause of environmental pollution through carbon emissions. The DOE projected

that if 10% of automobiles nationwide were zero-emission vehicles, regulated air
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Figure 1.11: The complete ICEV process broken into stages [5]

pollutants would be cut by 1,000,000 tons per year, and 60,000,000 tons of green-

house carbon dioxide gas would be eliminated. With 100% electri�cation, i.e., every

ICEV replaced by an EV, the following was claimed:

* Carbon dioxide in air, which is linked to global warming, would be cut in half.

* Nitrogen oxides (a greenhouse gas causing global warming) would be cut slightly,

depending on government-regulated utility emission standards.

* Sulfur dioxide, which is linked to acid rain, would increase slightly.

* Waste oil dumping would decrease, because EVs do not require crankcase oil.

* EVs reduce noise pollution, because they are quieter than ICEVs.

* Thermal pollution by large power plants would increase with increased EV us-

age. EVs will considerably reduce the major causes of smog, substantially eliminate

ozone depletion, and reduce greenhouse gases. With stricter SO2 power plant emis-

sion standards, EVs would have little impact on SO2 levels. Pollution reduction is

the driving force behind EV usage.

Figure 1.12: Electricity generation Pie chart [5]
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CAPITAL AND OPERATING COST COMPARISON

The initial EV capital costs are higher than ICEV capital costs primarily due to

the lack of mass production opportunities. However, EV capital costs are expected

to decrease as volume increases. Capital costs of EVs easily exceed capital costs

of ICEVs due to the cost of the battery. The power electronics stages are also

expensive, although not at the same level as batteries. Total life cycle cost of an EV

is projected to be less than that of a comparable ICEV. EVs are more reliable and

will require less maintenance, giving a favorable bias over ICEV as far as operating

cost is concerned.

1.3 Energy Management Strategies For EVs

1.3.1 Classi�cation of EMSs

EMSs can be divided into three principle types: Rule-Based (RB), Optimization-

Based (OB), and Learning-Based (LB). The RB-EMSs is working based on a set of

prede�ned rules without prior knowledge of the trip. The OB-EMSs are aiming to

�nd the optimal control sequence that minimizes a cost function. They have re-

ceived more attention than RB-EMSs. However, the LB-EMSs use previous driving

data for online learning, and they have shown promising potential.[8]As it shown in

�g1.13.

We can �nd a versatile EMS which can include a mixture of di�erent techniques

(RB, OB, and LB) forming an integrated EMS (iEMS).[8]

In order to Improve the performance of the vehicles we can integrate a cloud database

in an intelligent transportation system (ITS) and tra�c information in a global po-

sitioning system (GPS) into EMS.[9]

In general, GPS or ITS information is used to update the control rules or parame-

ters of an EMS. Di�erent predictive techniques have been proposed by researchers

to recognize and predict future driving conditions, including GPS- or ITS-based

techniques, Statistic and Clustering Analysis techniques, and Markov Chain-based
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techniques.[8]

� Rule-based EMSs

RB-EMSs' Rules are generally based on heuristics, intuition[10]or human ex-

pertise without a priori knowledge of the driving cycle. [1] They rely on a set

of rules to decide the value of the control to apply at each time, and they do

not involve explicit minimization or optimization.[10]

The main advantages are their simplicity, robustness to vehicle parameter

uncertainties and e�ectiveness in computation. Therefore RB-EMSs are ap-

propriate for real-time implementation.[11]] However, an RB-EMS has several

disadvantages. The �rst is its lack of optimality. In addition, requirement of

a signi�cant calibration e�ort to guarantee the performance within a satisfac-

tory range for any driving cycle. The setting rules are not scalable to di�erent

powertrain architectures or di�erent component sizes. Other optimization and

recognition techniques can be integrated into an RB-EMS to enhance their

performance. Such strategies include a multi-mode strategy combined with

an ECMS, a thermostat combined with driving recognition, and a multi-mode

EMS based on driving pattern identi�cation using learning vector quantiza-

tion and a neural network. Although a rule-based EMS may not obtain the

optimal solution, it has still received attention owing to its simplicity in terms

of a real-time implementation. RB-EMSs can be further sub-classi�ed into

deterministic and fuzzy-logic EMSs.[8]

A) Deterministic strategies:

In a deterministic RB-EMS, the rules can be extracted from experience, in

which the main energy sources (i.e. ICE and fuel cell) are controlled to per-

form mostly under optimal working conditions or in a high e�ciency region

to enhance the fuel economy and minimize the energy transmission loss [1].

Typically, the algorithms are implemented through look-up tables[11].

* Optimal working condition based strategies:

- Thermostat (on/o�) strategy:

In the thermostat strategy(known as an on/o� strategy), ICE operates at its
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Figure 1.13: : Classi�cation of EMSs and the iEMS concept. [8]

highest e�ciency point once it turns on, while battery SOC is always main-

tained between its preset upper and lower bounds by turning on or turning

o� ICE. Although the thermostat strategy provides best e�ciency for the

engine-generator set, overall system e�ciency of HEV is low. Furthermore,

the battery pack requires high performance to satisfy power demands under

various operating conditions. Therefore, the thermostat strategy is mostly

used in series HEVs. [12]Similarly, the thermostat strategy can be applied in

an FC-battery-SC system. In this case, the FC operates at the most e�cient

power level and turns on/o� when the battery SoC reaches the low/high limit,
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respectively [8].

- Power follower (baseline) strategy:

The power follower strategy (known as a baseline control) uses ICE as main

power source, ICE works along its optimal working curve as much as possible

while EM is used to provide additional power and sustain battery SOC. Com-

pared to the thermostat strategy, the power follower strategy improves overall

system e�ciency and the durability of the battery pack and other electrical

components. The power follower strategy is applicable to parallel HEVs and

series-parallel HEVs. [12]

Combining the advantages of both strategies above, a hybrid thermostat and

power follower can further improve the fuel economy of a series HEV and a

parallel HEV.[8]

- State machine strategy (multi-mode strategy):

The state-machine based strategy (SMS), also known as a multi-mode strat-

egy, is composed of a set of states, a set of transitions, and actions. In this

strategy, �rst, all possible vehicle operation modes are identi�ed and de�ned

as controller states. Next, the transitions between these states are determined

by considering a change in driver demand, a change in vehicle operating con-

dition, or a system or a subsystem fault, in conjunction with the performance

and drivability objectives. In the �nal stage, transitions are analyzed for exclu-

sivity in order to guarantee single-valued decisions within the state machine.

Dynamic control or optimization algorithms may be used to generate output

commands to each powertrain subsystem according to desired power demand

and vehicle states. This strategy is applicable to any hybrid powertrain con-

�guration, furthermore it can be applied to an FCEVs as it's done by Xu et

al[13]]. Although it has a simple and robust structure for practical implemen-

tation, its use cannot guarantee optimization of the performance objectives,

such as fuel economy or emissions[11].

- Frequency-decoupling strategies:

This strategy relies on a decoupling of the low- and high-frequency compo-

nents of the load demand signal and applying low-frequency content to the

high-energy source in the system, whereas the high-frequency is compensated
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using an auxiliary fast-responding source. Frequency-decoupling can be real-

ized through a simple low-pass �lter (LPF), a gliding average strategy (known

as a Phlegmatising strategy), or a time-frequency representation tool such

as a wavelet-transform (WT) [8]. Low-pass �ltering incorporated with load-

leveling, which is mainly applied in series HEVs [12]. This strategy can also be

applied to FCEV and FC-battery systems to soften the battery and FC peak

current demand, respectively [8] . Compared with the thermostat strategy, it

can improve fuel economy, decrease emissions and increase battery life simul-

taneously [12].

B)Fuzzy logic strategies:

An FL strategy converts human experience and reasoning into a set of IF-

THEN rules. This conversion process consists of �ve stages: input quanti-

zation, fuzziness, fuzzy reasoning, inverse fuzziness, and output quantization.

The performance of an FL strategy is determined by the membership func-

tion and fuzzy rules at the fuzzy reasoning stage. Because the fuzzy rules

can be easily tuned, the advantage of this method is its robustness owing to

its independence from the mathematical model of the controlled system and

its adaptation. This enables the FL strategy to handle the multi-domain,

time-varying, and nonlinear problems found in the EMS of the vehicle system.

As an example, It can be used to coordinate the operation of parallel HEV

subsystems or to e�ciently control the engine operation or to determine the

power split between the engine and motor using a forward-facing model built

in PSAT. However, FL strategies cannot guarantee an optimal performance

.[8]

- Optimised-fuzzy-rules control:

An optimised FL controller is used to tune the controller through an optimisa-

tion algorithm to achieve the control objectives, such as a minimisation of the

fuel consumption, a minimisation of the emissions, and SoC maintenance, and

enhance the driving performance. To improve the fuzzy RB strategy applied,

the membership function and fuzzy rules can be optimised by utilising evo-

lutionary optimization algorithms such as the proportional factor algorithm,

PSO, GA, and Bee algorithm for an HEV, or the DIRECT algorithm for a
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fuel-cell HEV [8].

-Adaptive fuzzy logic control:

Adaptive algorithms are integrated in an FL-RB strategy to improve its self-

adaption. There are many combinations such as: the decentralized adaptive

control system (DACS) which was applied for a four-wheel-drive HEV power-

train for adaptation with unknown tire dynamics, changing road surfaces, and

vehicle loading. The adaptive neural fuzzy interference system to maximize the

vehicle torque and minimize the fuel consumption. The compensation fuzzy

neural network (CFNN) with two neural-network-based adaptive estimators

was used for the torque and speed of both the EM and engine, can obtain a

better acceleration and deceleration performance of an HEV. The CFNN is a

hybrid control system that merges the features of both a fuzzy neural network

controller and an adaptive compensated controller. the learning optimal power

sources (LOPPS) and a fuzzy power controller for an HEV powertrain based

on multiple sources. The LOPPS algorithm learns from simulation data on the

possible requested power with SoC constraints, and then generates the optimal

power sharing between the power sources for an online EMS application [8].

- Predictive fuzzy logic control:

Predictive FL control works based on the predicted future state of the vehi-

cle, performing real-time control tasks and generating control power sharing

signals. Predictive FL-RB can be designed to determine how a vehicle reacts

to the future states of a tra�c �ow and steep grade gathered from a GPS [8].

� Optimisation-based EMSs The objective of optimization-based (OB) EMS

is to �nd the optimal control sequence (i.e. reference power demand) that

minimizes a cost function while meeting the dynamic state constraints such as

the global state constraints (e.g. battery SoC) and local state constraints (e.g.

power limit, speed limit, and torque limit). The cost functions can be in di�er-

ent representations such as the fuel consumption, the hybridization costs, the

payload weight of the vehicle, the exhaustive gases emissions (i.e. NOx, HC,

and CO), the power e�ciency of the electric generation path in a series HEV,
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the hydrogen consumption in an FC-FEV, and the root mean square (RMS)

of the battery current in an FEV. The OB strategies can generally be grouped

into two types, o�ine and online strategies, according to their dependency on

a priori knowledge and information of the driving conditions [8].

A)O�ine strategies:

An o�ine OB strategy is a non-causal and global optimisation strategy because

it requires a priori knowledge from typical driving cycles. The importance of

�nding non-causal optimal solutions of o�ine strategies is in providing a bench-

mark solution (global optimum) that other causal strategies can be compared

against, and providing modi�ed online strategies. Therefore, o�ine strategies

are still gaining attention from researchers. Because power �ow paths are dif-

ferent between powertrain topologies, the problem formulation is also di�erent.

For example, an optimisation problem in a series HEV can be a minimisation

of the energy consumed along the generation path. In a parallel HEV, the

optimisation problem can be a minimisation of the fuel consumption and the

selected emission species over the driving cycle. The constraints are normally

the power demand for the vehicle, the boundary of the battery SoC, or the

drivability. After de�ning the problem and constraints, an algorithm needs to

be employed to �nd a solution, such as in a gear-shifting sequence, or a power-

split between the ICE and the EM. Regarding the problem-solving approaches

used for the EMS problem, o�ine OB strategies can generally be sub-divided

into four types: direct, indirect, gradient, and derivative-free types. Direct

algorithms approximate an optimal control problem as a static optimisation

through a discretisation, whereas indirect algorithms are based on the opti-

mal control theory and a calculus of the variations. By contrast, gradient

algorithms use the derivative information of the objective function, which is

under mathematic conditions such as the continuity, di�erentiability, or sat-

isfying the Lipschitz condition, to solve the optimisation problem. To avoid

a dependency on the derivatives, derivative-free algorithms use a stochastic

search iteratively over the entire design space to �nd the global optimum. A

classi�cation of o�ine OB EMS strategies according to the problem-solving

approach is shown in Fig1.14
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-direct algorithms:

Figure 1.14: : Classi�cation of o�ine OB-EMSs based on problem solving approach

[8]

The most widely used algorithm for solving the EMS optimisation problem

directly in an o�ine application is dynamic programming (DP), which was pi-

oneered by Bellman during the 1950s to �nd numerical solutions. Because DP

requires a priori knowledge of the driving cycle, it is also known as determin-

istic DP (DDP). The basic ideas behind DDP is that the nonlinear dynamic

optimisation problem is subdivided into sub-problems in a discrete time. A

cost-to-go function is then formulated at each sample time. The same opti-

mal control policy can be achieved by using a backward recursive method or

a forward dynamic programming technique to solve the sub-problems. The

utilisation of DDP can be found in various types of HEVs, PHEVs and for a

fuel cell-battery FEVs to minimise the cost function formulated from a serial

multiplication function of a SoC deviation, the hydrogen consumption, and the

excess oxygen ratio. The drawbacks of DDP make it infeasible for real-time

implementation. Although DDP can be only used o�ine, it has been still use-

ful as an optimal benchmark for other controllers or as a method to extract the
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control parameters for the RB EMSs. To overcome DDP issues, the stochastic

DP (SDP) was developed, in which the model of the driver demand is treated

as a Markov chain with transition probabilities. The EMS is then optimised

over a family of random driving cycles in an average sense. However, SDP

still has certain drawbacks. To handle them a new technique was developed a

shortest path SDP (SP-SDP), which is known to be a variation on an in�nite

horizon SDP. The SP-SDP technique achieves a better SoC control and has

fewer parameters to tune owing to a minimisation of the total undiscounted

costs.[8]

-Indirect algorithms:

The most well-known algorithm for solving the optimal control problem in-

directly is Pontryagin's minimum principle (PMP), which is an extension of

the calculus of variations, particularly the Euler-Lagrange equation. For an

optimum solution, the PMP provides only the necessary conditions while the

su�cient conditions are satis�ed using the Hamilton-Jacobi-Bellman equation.

The key idea of the PMP is that the constrained global optimisation problem

is reduced to the local Hamiltonian minimisation problem. The Hamiltonian

is characterised by a costate, which is interpreted as a weighting factor for the

electrical usage. The optimal value of the initial costate can be found through

an iterative process if full knowledge of driving cycle is pre-determined. With

di�erent driving cycles, the initial costate may have di�erent values. The PMP

has a heavy computation load, because the size of the look-up table will in-

crease exponentially with the number of dimensions. This means the storage

capacity and computational power of the controllers also need to be increased,

leading the PMP to be inapplicable for direct use in real-time applications.

PMP was tested for a parallel HEV, a hybrid electric refuse truck, FEV, for

an FC-SC vehicle combined with Markov chain.Although the PMP o�ers op-

timal solutions close to the DP results, the initial costate has a considerable

e�ect on the SoC variation. Therefore, a number of solutions have been pro-

posed to estimate the initial costate [8]

-Gradient algorithms: Vehicle powertrains have become more sophisticated

with nonlinear models of the ICE, EM, battery, and complex constraints. To
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reduce the calculation time and increase the robustness of the optimisation

solution, the powertrain systems or objective functions need to be e�ciently

simpli�ed as analytical equations for use in the gradient algorithms. Such

algorithms use the derivative information of an objective function, which is

under mathematic conditions, such as the continuity or di�erentiability, or

satisfy the Lipschitz condition to solve the optimisation problem. Gradient

algorithm-based EMSs are mainly classi�ed into linear programming (LP),

quadratic programming (QP), sequential quadratic programming (SQP), and

convex programming (CP). The LP frames the algorithms for a solution to the

optimisation problems with linear objectives and constraints, the QP frames

the algorithms for a solution to the optimisation problems using quadratic

objective and linear constraints, and CP frames the algorithms for a solution

to the optimisation problems using convex objective and concave inequality

constraints.

-Derivative-free algorithms:

The use of derivative-free algorithms (DFAs) in an EMS control application

is among the potential techniques to solve problems in which derivative in-

formation is unavailable, unreliable, or impractical to obtain. Compared with

gradient algorithms, DFAs are able to converge at a global solution. The

DFAs for EMS control found in the literature mainly consists mainly of meta-

heuristic algorithms such as simulated annealing (SA), the genetic algorithm

(GA), multi-objective genetic algorithm (MOGA), particle swarm optimisa-

tion (PSO), and divided rectangular (DIRECT) algorithm [8]

. - Other algorithms:

Game theory (GT) was applied to develop an EMS for a Jaguar Land Rover

Freelander 2 HEV. Driver intention regarding the desired vehicle performance

(called the leader) and the fuel economy (called the follower) were considered

as two non-cooperative players who have con�icting objectives in a competitive

game. In non-cooperative GT, most of the drivers do not think or explicitly

try to optimise their driving behaviour for a better fuel economy and emissions

while driving. GT was applied also to an FC HEV in which the powertrain
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Figure 1.15: : Classi�cation of o�ine OB-EMSs based on problem solving approach

[8]

e�ciency and vehicle performance are con�icting interests. Although GT uses

simpler equations than DP and a similar receding horizon as MPC, the compu-

tation burden of GT can be comparable to that of DP, making its application

di�cult for online implementation. In addition, the dependency of GT to cer-

tain component models makes the extension of its applicability limited to the

use in a broad range of powertrain systems [8]

B)Online strategies:

An online strategy is a causal and local optimisation strategy because it neither

requires a priori knowledge of the driving cycle nor ensures the optimal solution

in a real-time implementation. Conceptually, the global optimisation problem

of an o�ine EMS is formulated in an instantaneous optimisation problem

for implementation with a limited computational time and memory resources

in real-time, An equivalent consumption minimisation strategy (ECMS) and

model predictive control (MPC) are the most well-known real-time EMSs and

have been extensively used in di�erent applications.

- Equivalent consumption minimisation strategies:
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The ECMS, as a realisation of o�ine PMP was originated for parallel HEVs

that operate under a charge-sustaining condition. The global optimisation

problem of PMP is reformulated into a local optimisation problem by min-

imising the equivalent fuel consumption. The ECMS calculates the equivalent

fuel factor, which accounts for the actual fuel consumption required to recharge

the batteries and to recuperate the regenerating braking energy. The equiva-

lence factor (EF) of the ECMS has the same role as the costate of the PMP.

Researchers have focused on a proper estimation of the EF, which is generally

dependent on three unpredictable factors: the battery SoC limits, the direc-

tion of the electric current, and the driving cycle information. Many researchs'

results show that the ECMS can provide the best performance in the hydrogen

consumption reduction and minimum stress on the fuel-cell system.

- Model predictive control based strategies:

Model predictive control was introduced to tackle the issue of the DP algo-

rithm [8]. MPC solves the power management optimization problem online at

each time interval in a future time frame, based on the predicted states and

inputs, while respecting the limitations and time-varying constraints of pow-

ertrain components such as the engine, motor, generator, and battery. In each

time interval, new optimizations are completed using updated predictions and

new measurement data. In such controllers, instead of using information about

the future drive cycle, a mathematical model is used to estimate the torque

demand and the resulting velocity over a future prediction horizon. The main

advantage of MPC algorithms is their ability to handle constraints directly in

the design procedure [11].

-Other algorithms:

*Robust control:

The objective of robust control (RC) is to determine an output feedback con-

troller that minimises the fuel consumption. The e�ectiveness of RC can be

used for the EMS of an FC-SC hybrid system of an FEV. It was reported that

an RC-based EMS can operate the FC preferably at maximum e�ciency to

improve the hydrogen economy [8].

*Extremum seeking:
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As an online adaptive optimisation algorithm, the extremum seeking (ES)

method can be e�ectively employed to �nd an extremum (maximum or min-

imum) value of a static nonlinear system in real-time. The ES algorithm

formulates a sliding surface where the objective function is forced to follow a

time increasing function, and a discontinuous switching function is selected for

the optimisation parameter [8].

* Decoupling contro:

Decoupling control (DC) is a modelbased strategy used to handle con�icting

performance objectives, such as the fuel economy, SoC regulation, and drivabil-

ity. By exploiting the structure of the powertrain dynamic model, decoupling

means that the battery control and drivability control are decoupled using the

power request constraint and vice versa [8]

. *Pseudospectral optimal control:

Another recent variation of an optimisation-based mathematical method ex-

tended to an EMS is pseudospectral optimal control (PSOC) which is a direct

method for solving optimal control problems. PSOC transcribes an optimal

control problem into a nonlinear programming (NLP) problem by parame-

terising the state and control variables using global polynomials at a set of

collocation nodes. Therefore, it is necessary to model the powertrain compo-

nents using analytic expressions rather than look-up tables [8].

*Sliding mode control

: Sliding mode control (SMC) has gained popularity in automotive applica-

tion thanks to its robustness against time-varying parameters and the highly

nonlinear nature of a vehicle system. Concerning a series HEV application

proposed two chattering-free SMCs to restrict the engine operation to its re-

gion of optimal e�ciency. One of the designed SMCs applies engine speed

control whereas the other SMC controls the engine/generator torque, and to-

gether they maintain the engine to within the optimal e�ciency region of the

torque-speed curve. In a hybrid system of an FC, battery, and SC an SMC for

three operational modes (i.e. normal, discharging, and charging) was used to

keep the FC operating in only nearly steady state conditions. The SMC en-

sures a high safety and fast dynamics of the FC current. However, a fast sliding
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mode current loop for the SC converter is used to satisfy the power demand by

the load and to share the current load demand between the FC and the SC [8].

c)Learning-based EMSs:

Learning-based EMS (LB-EMS) employs advanced data mining schemes for

massive historical and real-time information to derive the optimal control law.

In the LB-EMS, the precise model information is no longer required to make

the control decision. However, it is di�cult and time-consuming to estab-

lish a correct database the structure and size of which have a direct e�ect on

the controller performance. Data-driven methods and machine learning are

adaptive and are able to manage large datasets e�ciently under di�erent ex-

ternal driving conditions and drivers. LB algorithms can be incorporated into

model-based approaches to tune the control parameters optimized for di�erent

driving cycle types (e.g. urban or highway), derive the thresholds for rule-

based EMSs, or recognize the driver's driving style (e.g. calm or aggressive).

By grouping the algorithms based on their learning type, an LB-based EMS

can be sub-categorized into reinforcement learning, supervised/unsupervised

learning, neural network learning, and classi�cation learning approaches [8]

-Reinforcement learning : A reinforcement learning (RL) system consists of

two components: a learning agent and an environment where the learning

agent interacts continuously with the environment. At each time step, the

learning agent receives an observation of the state of the environment. The

learning agent then chooses an action, which is subsequently input to the en-

vironment. The environment then moves to a new state owing to the action,

and the reward associated with the transition is calculated and fed back to

the learning agent. Along with each state transition, the agent receives an im-

mediate reward, which is used to form a control policy that maps the current

state to the best control action upon that state. At each time step, the agent

makes the decision based on its control policy. Ultimately, the optimal policy

can guide the learning agent to take the best series of actions to maximise the

cumulated reward over time, which can be learned after su�cient training. A
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graphical illustration of the learning system is given in Fig1.16. 6. The RLEMS

can autonomously learn the optimal policy based on the data inputs, without

any prediction or prede�ned rules. Several RL-based EMSs have recently been

reported. An RL-EMS was proposed for a series HEV. A recursive updating

algorithm representing the real-time power-request transition probability was

proposed, leveraging the power-request transition probability in the near past

and previous history. The Kullback-Leibler (KL) divergence rate was applied

to measure the di�erence in the power-request transition probability. The RL

algorithm was triggered to update the EMS online when the power-request

transition probability di�ers signi�cantly according to the KL divergence rate.

A temporal-di�erence-learning strategy was adopted for the RL problem in a

plug-in HEV. the RL method with a continuous state and action spaces, called

an Actor-Critic method, was used to derive the optimal control strategy for a

PHEV. A nested RL framework was presented for a parallel HEV, in which

the inner-loop RL minimizes the operating cost and the outer-loop modulates

the battery SoH degradation globally. Deep reinforcement learning (DRL)-

based EMS combines a deep neural network, called a deep Q-network, with a

conventional RL. a DRL-based EMS was designed for a PHEV using a �xed

target Q network that can obtain the action directly from the driving state.

However, the critical issue of the RL and DRL is how to output the continuous

actions; otherwise, the ICE output torque will su�er from violent oscillations

owing to the discretized output action. [8]

-Supervised learning:

In supervised learning, a model is prepared through a training process in which

it is necessary to make predictions and corrections based on the prediction er-

rors. The training process continues until the model achieves the desired level

of accuracy of the training data. In supervised learning, the training data re-

quires corresponding labels for the sake of a problem classi�cation. Supervised

learning has been considered for an EMS based on an error-correction learning

approach. This assumption implies that the training data are labelled, and

the desired output of the training input set is known to feed the training al-
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Figure 1.16: :Graphical illustration of a reinforcement learning system [8]

gorithm for a computation of the parameters and an emulation of the desired

behaviour. In this regard, the root mean square error was used to assess the

performance of the selection algorithm, which is precompiled from all possible

conditions in the knowledge database storing the sensor data of the EM and

gas engine, such as the fuel system status, engine coolant temperature, and

throttle position. [8]

-Unsupervised learning:

In unsupervised learning, a model is prepared by deducing structures presented

in the input data. The deduction procedure can (i) extract general rules, (ii)

apply a mathematical process to systematically reduce the redundancy, or (iii)

organise the data based on the similarity. The input data may come with an

associated cost function for minimisation. The c-means clustering was used

to group the elements of the database that contain the optimal hybridisation

degree over standard driving cycles along with the corresponding state-vector

of the vehicle, such as the vehicle speed, the battery SoC, the catalyst temper-

ature, and the ICE temperature. A knowledge-based control strategy based on

a fuzzy c-means clustering algorithm will be trained throughout all the driving

41



cycles. Based on the same concept, to extract the RB control strategies for

a parallel HEV, a clustering algorithm was used that is preliminarily run to

generate the set of clusters.

D)Neural network learning :

Neural network learning (NNL) is modeled based on neurons in the human

brain. Like a real neuron, which has multiple connections (i.e. synapses),

nodes are objects in a neural network that have multiple inputs and outputs.

By connecting many of these neurons into layers forming a network, di�erent

types of behaviors can be modelled. a machine learning framework that in-

cludes an arti�cial neural network was introduced for the roadway types and

tra�c congestion level prediction and another learning optimal energy control

(i.e. the DP algorithm). Another type of NNL-based EMS for a vehicle is

an Elman neural network (ENN), which can gradually learn by imitating the

human brain. In essence, it improves the learned knowledge and the neuron

weight. the instantaneous optimal control rules based on an ECMS was used

to train the ENN and to maintain the SoC value within a high e�ciency range

and reduce the computational time by 60%. Other types of NNL such as

neural dynamic programming, and a back propagation neural network can be

used for an EMS in an HEV [8].
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Chapter 2

Modelization of EV Electric System

T
he electric vehicle that we will be working on it is illustrated on the diagram

bellow. Which contains two main power sources A Lithium ion battery and

super capacitor:

Figure 2.1: EV and EMS studied

The strategy we have chosen to manage the power demanded by the load from the

two power sources we have,the Frequency-decoupling strategy, it relays on decou-

pling of the low- and high-frequency components of the load demand signal, and
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applying low-frequency content to the high-energy source in the system (the bat-

tery), whereas the high-frequency is compensated using an auxiliary fast-responding

source, which is in the case studied is the super capacitor.

So what happened exactly is that the load which presenting the motor on electric

vehicle demand current (variable) and voltage (constant), so to keep the voltage com-

ing from the DC bus stable we used a PI regulator who is responsible for generating

a reference current then get decoupled to high and low frequency current by a low

pass �lter, afterword it applies low-frequency content to the high-energy source (the

battery), and the high-frequency get compensated by the auxiliary fast-responding

source (super capacitor), now likewise the �rs phase, each one of the battery and

Sc reference currents get compared with the real currents on each source then the

regulator generate a signal that controls the duty cycle on the corresponding con-

verter of each source to generate the suitable current that keeps the voltage of DC

bus stable.

Now we are going to modulate the principle components of our system that contain

initially, the lithium ion battery and back boost converter also a super capacitor

and �nely the PI regulators.

2.1 The Lithium Battery

Lithium is one of the lightest metals and have very interesting characteristics

from electrochemical perspective. Indeed, it allows a very high thermodynamic

voltage, which results in a very high speci�c energy and speci�c power.

- Lithium-Ion (Li-Ion) Battery:

Since its �rst announcement in the beginning of the 90's, Li-ion battery technol-

ogy has seen an unprecedented rise to reach to what is now considered to be the

most promising rechargeable battery of the future thanks to its poly-advantages,

Although still at the development stage, the Li-ion battery has already being the

suitable choice for EV and HEV applications.

Many battery manufacturers, such as SAFT, GS Hitachi, Panasonic, SONY, and

VARTA, are actively engaged in the development of the Li-ion battery. Recently,

SAFT reported the development of Li-ion high-power batteries for HEV applications
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with a speci�c energy of 85 Wh/kg and a speci�c power of 1350 W/kg. They also

announced high-energy batteries for EV applications with about 150 Wh/kg and

420 W/kg (at 80% SOC, 150 A current, and 30 sec) respectively. [8].

2.1.1 Lithium-ion Cell Principle of Function

During cell discharge, lithium ions (Li+) are released from the negative elec-

trode that travels through an organic electrolyte toward the positive electrode. In

the positive electrode, the lithium ions are quickly incorporated into the lithium

compound material. The process is completely reversible[5]. The chemical reactions

at the electrodes are as follows:

At the negative electrode:

LixC6 C6 + xLi+ + xe− where 0 < x < 1 (2.1)

At the positive electrode:

xLi+ + xe− + Li(1−z)CoO2 LiCoO2 (2.2)

Figure 2.2: Lithium-ion cell [5]

During cell charge operation, lithium ions move in the opposite direction from the
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positive electrode to the negative electrode. The nominal cell voltage for a Li-ion

battery is 3.6 V.

2.1.2 Battery Performance Characteristics

explained the concept of energy source/storage systems, including batteries and

their parameters. This section describes the mathematical representation of battery

performance characteristics and its related parameters, including capacity and state

of charge (SoC)[11]

� Battery Capacity:

batteryâs capacity Generally is the amount of electric charge that a battery can

store in. The battery capacity size directly relates to the amount of electrolyte

and electrode material inside the battery, the most electrolyte and electrode

material are provided the more capacity gained. The battery capacity is also

a function of other battery parameters such as the magnitude of the current,

the allowable terminal voltage of the battery, the temperature, and other fac-

tors. The measurement unit of a batteryâs capacity is Ah (1Ah= 3600C or

coulomb). In vehicle applications, it is preferable to measure energy stored in

the battery as watt-hour (Wh). The energy capacity of a battery measured in

Wh can be converted to Ah using Ohmâs rule that states battery power Pb=

vb* ib, where vb and ib are the voltage and current of the battery[11] Thus:

Eb = power* time = vb∗ ib ∗ time (2.3)

Therefore:

Wh = Ah∗vb (2.4)

The capacity can be expressed in energy unit if the voltage of the battery is

known. It is noted that the theoretical capacity of a battery in is derived with

assumption of constant current while, in practice, a variable electrical current

is the case. Thus, the usable capacity, CU;b, of a battery is the electric current

i(t) integrated over time:
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CU, b =

∫ tcut

t0

i(t) (2.5)

where, t0 is the time when a battery is at a full charge and tcut is the time when

a battery terminal voltage is at the voltage cut, vcut. battery capacities are

limited to the voltage cut in order to prevent sustaining permanent damage.

Hence, the practical capacity is always less than the theoretical one because

of practical limitations.

� State of Charge/Discharge :

State of the charge (SoC) is a measure of residual capacity of a battery and

is the equivalent of a fuel gauge for the battery pack in EVs/HEVs. In other

words, it is the amount of capacity that remains after the discharge from the

fully charged condition. The units of SoC are percentage points (0% =empty;

100% = full). Direct determination of SoC is not usually possible. However,

it can be theoretically calculated using battery voltage and current.

In the voltage method, the battery voltage is converted to SoC by a given

discharge curve (voltage vs. SoC). However, the voltage is signi�cantly a�ected

by the battery current and temperatures. Therefore, the discharge curves are

subject to variation under di�erent operating conditions, thereby making this

method unreliable. On the other hand, SoC can be theoretically calculated

using the battery current and integrating it in time. The current is the rate

of charge given by[11]:

I(t) = CT,b
dq

dt
(2.6)

where q is the per-unit charge (charged divided by the capacity) �owing thor-

ough the circuit. For a time interval, dt, the theoretical battery state of charge,

SoCT,b is:

dSoCTαb = −dq = −
1

CT,b
i(t)dt (2.7)

Integrating from the initial time, t0, to the �nal time, t, and with considera-

tion of dSoCT,b typically measured as the percentage of battery capacity, the

instantaneous battery SoC is:
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dSoCTbh(t) = SoCTµb (t0)−
(

1

CT, b

∫ t

t0

i(τ)d(τ)

)
(2.8)

Discharging the battery results in an decrease of the SoCT,b. If the state of

the charge is 100% at initial time, then the SoCT,b is:

SoCT, b = 1−
∫ t0
t
i(τ)d(τ)

CT, b
(2.9)

If i(t) represents the charging current and the state of the charge is zero at

initial time, the formula for SoCT,b is:

SoCT, b =

∫ t0
t
i(τ)d(τ)

CT, b
(2.10)

It is noted that calculation of SoC using the afore-mentioned equations re-

quires integration of the current signal, which can su�er from long-term drift

and lack of a reference point. A more accurate estimation of SoC can be ob-

tained by more advanced estimation algorithms such as Kalman �lters.[11]

Provided us with this equation :

dSoCT,b
dt

= −
Vb ±

√
V 2
b − 4RbiPb

2RbiCT,b
(2.11)

� Depth of Discharge:

depth of discharge, DoD, is a measure of the amount of discharged energy

capacity from the battery, typically expressed as a percentage of maximum

capacity. The state of discharge can be given as:

DoDT,b =
1

CT,b

∫ t

t0

i(τ)dτ −DoDT,b (t0) (2.12)

Deep discharging beyond the cut-o� voltage must be avoided, especially under

heavy loads, to prevent serious damage to the batteries.

� Speci�c power:

In high power demand applications, such as EV and HEV applications, Speci�c

power is important in the reduction of a battery weight, The speci�c power of

a chemical battery depends usually on the batteryâs internal resistance, the

maximum power that the battery can supply to the load is[8]:

Ps =
V 2
int

4 (Rc +Rint)
(W/kg) (2.13)
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� Energy e�ciency:

The energy or power losses either on discharging and charging a battery ex-

pressed by voltage losses. Thus, the e�ciency of the battery during discharging

and charging can be de�ned at any operating point as the ratio of the cell op-

erating voltage to the thermodynamic voltage, that is [8] nd = V
Vint

nc = Vint
V

(2.14)

where nd and nc are the energy e�ciency during discharging and charging,

respectively

� Battery electric equivalent circuit:

Figure 2.3: Battery electric equivalent circuit [5]

2.2 Supercapacitors

For the EV applications, the energy sources such as batteries and fuel cells allow

to have a large amount of energy with a reasonable weight; but, with acceleration

when crossing hills and e�ective regenerative braking, it must be possible to supply

or store high power for a relatively short time in power source either a mechanical
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device (�ywheel); or an electrochemical device (supercapacitor) as itâs illustrated in

Fig 2.4 The use and the management of �ywheel storage within an EV is described

in[14]. However, the Supercapacitors (SCs), also called Ultracapacitors (UCs), are

the power source that have received widest attention [8].

The �rst patent related to supercapacitors was granted to Becker (General Electric

engineer) in 1957 while experimenting with devices using porous carbon electrode.

In 1969, the company Sohio granted another patent for a non-aqueous electrolyte

supercapacitor allowing higher voltages. The marketing of supercapacitors only took

place in the 1970s, by the two companies NEC and Matsushita[15]

Figure 2.4: Ragone plot of energy density vs. power density for various energy-

storing [16]
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2.2.1 Basic Principles Of Supercapacitors

Unlike the battery cells, the operational mechanism of Electrochemical SC con-

sists of two electrodes separated by an ion permeable membrane (separator), and

an electrolyte connecting electrically the both electrodes [17]. An electric double

layer at both electrodes is formed by applying a voltage to the capacitorâs collec-

tors, which has a positive or negative layer of ions deposited in a mirror image on

the opposite electrode [18]. The principle of a double-layer capacitor is presented in

Fig2.5

When two carbon rods are immersed in a thin sulphuric acid solution, separated

from each other and charged with voltage increasing from zero to 1.5 V, almost

nothing happens up to 1 V; then at a little over 1.2 V, a small bubbles will ap-

pear on the surface of both the electrodes. Those bubbles at a voltage above 1 V

indicate electrical decomposition of water. Below the decomposition voltage, while

the current does not �ow, an "electric double layer" then occurs at the boundary of

electrode and electrolyte, then electrons are charged across the double layer[8].

Figure 2.5: Principle construction of a supercapacitor [16]
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2.2.2 Technologies

We can distinguish di�erent supercapacitor types: Electrochemical double layer

capacitors (EDLCs), Pseudocapacitors and Hybrid capacitors[18]. There are several

electrode technologies, they can be:

- made of activated carbon materials

- in inorganic materials: based on transition metal oxide (MnO2, V2O5, ...) or noble

metal oxide (ex: RuO2, ...)

- in organic materials: polymers with electronic conduction The most common su-

percapacitors are with activated carbon electrodes. Their performances are variables

depending on the type of electrolyte:

- aqueous electrolyte: it has low resistance because ionic conductivity of the order

of 800mS.cm-1, but also low voltage (around 1V).

- organic electrolyte: higher voltage (around 3V), but high resistance because ionic

conductivity of the order of 10mS.cm-1 and use, for the electrolyte, of acetonitrile

(methyl cyanide), a �ammable compound and harmful for health [15].

2.2.3 The SC Electric Equivalent Circuit

Figure 2.6: The SC electric equivalent circuit

There are many di�erent models of supercapacitor have been described in the

literature. In this work we used the standard model. The standard model is a

simple model, the de�nition of which is given in the European standard IEC 62391

[20]., relating to the use of supercapacitors. It is an equivalent electric circuit model
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consisting of a capacitance Csc and a resistor Rsc in series Fig2.6This model is often

used in the context of functional modeling for the study of energy systems [12][22][21]

[19]. The relation between the UC voltage Vsc and its current isc is given bellow:

[12]

VSC = VC −RSC · iSC (2.15)

The state of charge SoCsc can be estimated using this equetion [12] :

SoCsc(t) = 100
V 2
sc

V 2
scMax

(2.16)

Where Vsc.max is its maximal voltage.

2.3 Modeling Of The Buck-Boost Convertors

In a hybrid energy system composed of continuous sources, the choppers control

the power and the output voltage. Choppers are DC / DC converters used to

obtain a �xed or variable voltage from any DC voltage. The input DC voltage can

be the output voltage of a fuel cell, a supercapacitor, a battery, or a photovoltaic

system. There are three types of non-isolated choppers: the Boost chopper, the

Buck chopper, and the Buck-Boost chopper[23]

In this work, we are particularly interested in the Buck-Boost choppers, which are

often used to control the energy supplied or absorbed by the sources, in our case

the battery and the supercapacitor, according to the chosen energy management

strategy. The converter must therefore be reversible in current

2.3.1 The Average Model of the Buck-Boost

In many cases, it is in our interest to transform the original system into a con-

tinuous system which macroscopically represents better the dynamic and static be-

haviors of the circuit. For this purpose, the average behavior is quite suitable. We

can �nd a wide range of applications of the average model, whether in control, sim-

ulation or even in mode analysis. The average model allows to meet three essential

requirements:

- Simplicity of implementation and use.
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Figure 2.7: The Buck-boost power converter model [24]

- Su�cient precision in its �eld of validity.

- The possibility of use in a closed loop: possibility of switching to a transfer func-

tion

*Operating sequences and state equations:

The average model of the Buck-Boost converters will test the control algorithms

in continuous models of the global system. A distinction is made between the two

switching phases of IGBTs, represented by a wire when they are closed and the lack

of connection when they are open. Thus, the switching period (Tpwm) is splitted

into two.

-The �rst conduction sequence t ∈ [0; αES *Tpwm] :

The dynamic equation of vES and iDC in the second sequence are written:

VES = LES
diES
dt

+RES · iES (2.17)

CDC
dvDC
dt

= −iL (2.18)
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Figure 2.8: The schematic diagram of the �rst conduction sequence

-The second conduction sequence t ∈ [αES *Tpwm; Tpwm] :

Figure 2.9: The schematic diagram of the second conduction sequence

The dynamic equation of vES and iDC in the second sequence:

VES = LES
diES
dt

+RES · iES + Vdc (2.19)

CDC
dvDC
dt

=
∑

iES − iL (2.20)
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-The temporal average of these two equations thus gives an average model of this

converter[24]

LES
diES
dt

= vES − vDC · (1− αES)−RES · iES (2.21)

CDC
dvDC
dt

=
∑

iES · (1− αES)− iL (2.22)

Where: RES is the internal resistance of the source, LES is the inductance of the

converter. vES and iES are the voltage and current respectively of the electric power

source, CDC is the capacity of the DC bus, αES is the corresponding duty cycle of

converter, iL is the load current.

L · dibat
dt

= vbat − vDC · (1− αbat)−Rbat · ibat (2.23)

L · di
dt

= vSC − vDC · (1− αSC)−RSC · iSC (2.24)

CDC ·
dvDC
dt

= ibat · (1− αbat) + iSC · (1− αSC)− iL (2.25)

2.4 The Closed-Loop Transfer Functions Of The Sys-

tem

The transfer function of the two converters can be written as follows:

HES(s) =
iES

1− αES
=

−VBUS
LES × s+RES

=
−K

T · s+ 1
(2.26)

Where T= LES / RES , K= VBUS / RES . Following this modeling, a con-

ventional proportional integral (PI) control structure (with anti-saturation loop) is

used to follow the references of the currents of the battery and the supercapacitor ,

respectively.

HPI(s) = Kp

(
1 +

1

Ti

)
(2.27)
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So, The closed-loop transfer function of the system of the two converters is:

HBFES(S) =
HpI(s) ·HES(s)

1 +HPI(s) ·HES(s)
(2.28)

After simpli�cation we get :

HBFES(s) =
Ti · s+ 1

− Ti·T
Kp·K · s

2 +
(
− Ti
Kp·K + Ti

)
· s+ 1

(2.29)

The parameters of the regulator K p and Ti are determined according to the form

of the desired closed-loop response, for which two adjustment factors are available

the response time corresponding to the cut-o� frequency To and the damping ratio

m, a second order equation is written as:

H(s) =
K

T 2
0 · s2 + 2mT0 · s+ 1

(2.30)

In order to ensure the stability of the system, the internal loop must be faster than

the external loop for this purpose. A response time of the internal loop which is

equal to �ve times that of the external loop is chosen and an optimal damping is

chosen which is equal to 0.707 to calculate the gains of the three regulators.

KP = 1
K
·
(

2mT
T0
− 1
)

Ti = 2mT0 − T 2
0

T

(2.31)

-In the case of an unknown load, each load power variation modi�es the DC bus

voltage. Hence its measurement is essential in order to estimate power demand.

Consequently, the DC voltage loop has to control the bus voltage VBUS (t) and

allows to generate the load current (iLoadEST(t) ≈ iLoad(t)) which represents the

power demand image since VBUS (t) is constant. The PI controller is designed

following a similar strategy to the current loop. So, the closed-loop transfer function

of the system can be deduced as a second-order transfer function [24] , where:

HBFBUS(s) =
1

CBUS ·S
KPBUS ·S+ωIBUS

S

1+ 1
CBUS ·S

KPBUS ·S+ωIBUS
S

= 1+τBUS ·S
1+2mBUS

S
ωnBUS

+
(

S
ωnBUS

)2

ωnBUS =
√

ωIBUS
CBUS

, mBUS = KPBUS
2
√
ωIBUS ·CBUS

and τBUS = KPBUS
ωIBUS

(2.32)

So, the PI controller parameters of the DC bus loop are:

ωIBUS = CBUS (ωnBUS)
2 and KPBUS = 2mBUSCBUSωnBUS (2.33)
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2.5 The Used Energy Management Strategies

The energy management in this system which is consisted of the battery and the

supercapacitor associated to the charge, is on aim to minimize the variation of the

current from the battery towards the load during the chosen driving cycle.

2.5.1 the frequency-decoupling strategy

This strategy relies on a decoupling of the low- and high-frequency components

of the load current demand signal and applying low-frequency content to the high-

energy source in the system (the battery), whereas the high-frequency is compen-

sated using an auxiliary fast-responding source (the supercapacitor). Frequency-

decoupling can be realized through a simple low-pass �lter (LPF) as it is shown on

�g 2.10

Figure 2.10: The Low-Pass �lter, and frequency decoupling

2.5.2 Neural Networks Energy Management Strategy

To properly manage the system under a variable load demand, a frequency sep-

aration technique is used. This method allows to supply each source according to

its power frequency spectrum. In this context, an NN based management routine

is proposed, trained o�-line via the previous technique, permits to handle multiple

inputs to provide as a result the reference current amount of each support source.

Neural Network technique is utilized for modeling,
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Figure 2.11: The principle of Neural Networks [26]

optimization, simulation and prediction of a system performance. Neurons are an

arti�cial neural network component which are processing elements. They are con-

nected by joining links called weights. A simpli�ed NN model has an input layer, an

output layer, and at least one hidden layer [25]. Fig.2.10. illustrates the principle

of the neural network.

The neural network structure, showed in Fig.2.11, has 4 input nodes, 10 hidden

nodes and 2 output nodes. The inputs are: the voltage of the DC-Bus (Vdc), the

load current demands (Iload) sensed at the dc link, the battery and the SC states

of charge (SOCbat, SOCsc). Regarding the changing of these inputs, the algorithm

provides the reference current of the storage devices, Ibat-ref, and Isc-ref, to cover

the load current demand.

There are 3 steps to realize this controller: create a data set of the four inputs

(ILoad, Vdc, SOCbat, SOCsc) and the two outputs (Ibat-ref and Isc-ref) for the

speci�c desired load pro�le using PI controller and the frequency-separation based

technique. Afterword, Train the Neural Network on this data set. Then �nally,

implement the NN in the scheme of the hybrid sources. This steps will be explained

in details in the appendix A.
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Figure 2.12: The Neural Network structure
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Chapter 3

Simulation And Results

The diagram and its components (sources of energy, converters, �l-

ter...) had been simulated under the Matlab/Simulink Software.

The main parts of the Simulink diagram are as following:

1) Power sources (battery + supercapacitor)

2) The two chopper

3) The load image

4) Currents, voltages & SoCs visualizing

5) DC-BUS Voltage regulation & currents' refer-
nces generating
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Figure 3.1: The schematic diagram of FBS
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3.1 Diagram description:

The diagram and its components (sources of energy, converters, �lter) had been

simulated under the Matlab/Simulink Software.

As is shown above, the energy management strategy (EMS) by frequency separation

is what was based on to manage multi-source (battery and super capacitor) contri-

bution on this particular system, using current source to generate a simulation of

vehicle on the track (accelerating and braking): :

Figure 3.2: load image on accelerating and braking state

Then, we use a low pass �lter to separate the frequencies which generate the

references current that the converter needs (I bat ref & Isc ref) Then the two con-

verters controls the battery and the super capacitor to deliver the proper amount of

energy that it is needed each moment :

Figure 3.3: Voltage regulation & refernces currents generating
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Figure 3.4: The schematic diagram of Neurel Network EMS

The rest of details and demonstration will be added on Appendix A
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3.2 Results & interpretation:

The table 3.1) shows the parameters associated to the system:

Parameters Names and values

battery Lead-Acid

Nominal voltage 12 (v)

Rated capacity 100(Ah)

Initial state of charge 80% values

Battery time response 30s

Super capacitor

Rated capacitance 58 (F)

Equivalent DC series resistance 2.2e-3 (Ohms)

Rated voltage 12

Number of series capacitors 6

Number of parallel capacitors 1

Operating temperature 25c

Filter Passband edge frequency 2*pi*0.5 (rad/s)

DC bus capacitance 2200e-6 (F)

Inductance values 10e-3 (H)

Converter-PI parameters Kp=0.01 ki=10

DC-BUS-PI parameters Kp=1 ki=50

Table 3.1: The parameters associated to the system
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Currents visualization and Interpretation: Currents:

Figure 3.5: Currents of the battery and the SC with FBS

Figure 3.6: Currents of the battery and the SC with NN
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comparing I bat and Isc using Neural Network and Frequency based strategy

Figure 3.7: comparing I bat using NNk and FBS

Figure 3.8: comparing Isc using NNk and FBS
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Interpretation and Comparition:

As it is shown on the currents curve, the battery keeps feeding the system by

current in every moment but when there is more power demand (at acceleration mo-

ments), the supercapacitor responds immediately and provide peak current given its

ability and its dynamics, that is illustrated on both �g 3.6, 3.5 in cases of NN or

FBS

Now we move to comparing the two methods and ravel out the deference, so by and

large there is no big deference especially on responding time, but the deference is

manifested on tiny details such as the oscillations are smaller on Neural Network as

it is shown on Isc 3.8, also more stability comparing to FBS as its also illustrated

on I bat comparation 3.7, with no oscillation at all.

What makes the system preform butter and smoothly and more e�cient.

Voltages:

Figure 3.9: Voltage of the battery and the SC with FBS
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Figure 3.10: Voltage of the battery and the SC with NN

comparing Vdc using Neural Network and Frequency based strategy

Figure 3.11: comparing Vdc using NNk and FBS 1
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Figure 3.12: comparing Vdc using NN and FBS 2

Interpretation and Comparition:

Its noticed that dc voltage maintained at its reference with certain over passing

during the variations moment (acceleration) but remains in permissible interval,

thought it overshoot on beginning of FBS comparing to NN as we proved previously

that is more stable and more e�cient, where there are less oscillations and more

smaller �g 3.11

Figure 3.13: FBS SOC
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Figure 3.14: Neural Network SOC

Fig 3.14 ,3.13 show a decrease in state of charge of the supercapacitor and the

battery when they deliver current, what is noticed that the supercapacitor recover

amount of current on deceleration phase given to its fast dynamics of charging and

discharging.
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General Conclusion

O
n this thesis we have seen an overview of electric cars, the challenging and fu-

ture alternative of fuel car that becoming the major threats to human beings.

causing serious problems for society and human life by Deterioration in air quality,

global warming, and a decrease in petroleum resources? However, the complexity of

EVs or even HEVs as electro-mechanical-chemical systems implies the use of Energy

Management Strategies (EMSs) that we?ve been through them along with a state

of art, knowing the most used methods. Moving to the case studied, we choose a

Frequency-decoupling strategy, to manage two power sources, (battery and super

capacitor) that feeds the system, going back to the simulation results it worked per-

fectly given the intervention of super capacitor on each intense demand of current

by the load (presenting the acceleration phase) which preventing the overload on the

battery and extend its life to guarantee a long life term also longer travel range to

meet the required autonomy. then we integrate arti�cial intelligent to Energy Man-

agement of EV to increase the e�ciency of performance and improve the quality

of control and that what was noticed above all we attribute with new tech on this

new �eld of cars and green transportation For future work we aiming for improving

this method and seeking for perfection with more real and complex drivig cycle to

match as possible the reality considering the hit and all other paramrters so we

could produce our EMS that will help building the �rst Algerian Electric Car.
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Appendix A

Creating and implementing NN using MATLAB/Simulink

In this appendix, we will explain in details the 3 steps to implement a neural network

controller for the energy anageent of our system. The three steps are: create data

set; train the neural network; implement the NN controller in the system.

1 Create a data set:

In this step, we use the system with frequency-separation based EMS (FBS),

to create the data set of the Inputs of the NN : load current (ILoad), DC-BUS

voltage (Vdc_FBS), SoC of the battery and the supercapacitor (SoC_bat_FBS &

SoC_sc_FBS). And the Outputs ( known as targets): the reference current of the

battery and the SC (Ibat_ref & Isc_ref).

To create the data set, we send the Inputs and the Outputs as matrixes to the

workspace using (To workspace) block, as it is illustrated in �g 3.15

Then we transpose the two matrixes to have the columns as the features and the

rows as samples.
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Figure 3.15: Create data set of inputs and outputs from FBS
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2 Create and Train the NN:

After getting the data set, we create and train the NN using the Neural Network

Start with the nnstart instruction in MATLAB, then follow the steps shown in the

following �gures:

>> nnstart

Figure 3.16: Neural Network Start
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Figure 3.17: Neural Fitting app

Figure 3.18: Select Inputs and Outputs
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Figure 3.19: Validation and Test Data

Figure 3.20: Network Architecture
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Figure 3.21: Train Network

Figure 3.22: Neural Network Training
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Figure 3.23: NN Training Results

Figure 3.24: Display Soulutions
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Figure 3.25: NN Simulink Diagram
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3 Implementation of the NN Controller:

After the generation of the NN Simulink block, we copy it to our block diagram

system and implement it as it is shown in the following �gure (Fig 3.26) :

Figure 3.26: The schematic diagram of Neurel Network EMS
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