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The dimensionally consistent uniform flow relationship Q = ϕ

(So, ε, A, R, ν) can be established by the only use of the Darcy–
Weisbach formula, thereby, accounting for the friction factor
f according to Colebrook–White equation. Nevertheless, as it
will be shown, the discussers’ relation (1.19) differs from the
authors’ equation (5) in the first term in parenthesis. This may
be explained by the restrictions which led to the establishment of
Hager’s inequality, numbered (2) by the authors, along with 1.5%
of deviation between friction factor values for complete turbulent
state and transitional state flow was assumed. Moreover, the same
inequality (2) is theoretically valid as long as Reynolds number
Re varies within the confined range 1 × 104 to 1 × 107. Further-
more, relating Chezy’s constant C to the known characteristics
of a chosen referential rough channel, the relative normal depth
can be determined using authors’ explicit equations.

Basic equations

The Darcy–Weisbach formula and the Colebrook–White
equation are expressed, respectively, by:

So = f

8g

P

A3
Q2 (1.1)

f−1/2 = −2 log

(
ε

14.8R
+ 2.51

Re
√

f

)
(1.2)

where Q is the discharge, So is the energy slope, ε is the absolute
roughness, P is the wetted perimeter, A is the water area, R is the
hydraulic radius, ν is the kinematic viscosity, g is the acceleration
due to gravity, and Re is the Reynolds number. The latter is
defined by:

Re = 4Q

Pν
(1.3)

For any shape of channel section, the geometric elements
A and P can be written, respectively, as:

A = L2A∗ (1.4)

P = LP∗ (1.5)

in which L is the linear dimension such as the bed width b of
a rectangular channel or the diameter D of a circular section,
etc. Both of the non-dimensional parameters A∗ and P∗ depend
solely on the relative normal depth. Inserting Eqs (1.4) and (1.5)
into Eq. (1.1) and rearranging, results in:

L = (f/8)1/5(Q/
√

gSo)
2/5(P∗/A∗3)1/5 (1.6)

whereas the combination of Eqs (1.3) and (1.5) leads to:

Re = 4Q

LP∗ν
(1.7)

Referential rough channel

With the subscript “r” we refer to a referential rough chan-
nel characterized by εr/Rr = 0.148 as the arbitrarily assigned
relative roughness value. Moreover, assuming a complete tur-
bulent state flow, the friction factor fr is given by Eq. (1.2) for
Rr → ∞, implying fr = 1/16. Thus, with the aid of Eqs (1.4)
and (1.5), Eq. (1.1) gives the following expression of the linear
dimension Lr:

Lr = (128)−1/5
(
Qr/

√
gSo,r

)2/5
(P∗

r /A∗3
r )1/5 (1.8)

According to (1.7), the Reynolds number Rer can be expressed as:

Rer = 4Qr/(LrP
∗
r ν) (1.9)

On the other hand, eliminating Qr from Eqs (1.8) and (1.9),
leads to:

Rer = 32
√

2

√
gSo,rL3
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ν
(A∗

r /P
∗
r )3/2 (1.10)

which can be rewritten, with the aid of Eqs (1.4) and (1.5), as
follows:

Rer = 32
√

2

√
gSo,rR3

r

ν
(1.11)
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Dimensionally consistent uniform flow relationship

Let us assume So,r = So, Lr = L, βn,r = βn (ηn = ηn,r for
the circular section) for Qr �= Q and obviously Re �= Rer.
Consequently, one may write A∗

r = A∗, P∗
r = P∗ and Rr = R.

Combining Eqs (1.6) and (1.8), we thus derive:

Q = ψQQr (1.12)

where ψQ is expressed by:

ψQ = 1

4
√

f
(1.13)

whereas Qr is given by:

Qr = 8
√

2g
√

SoL5(A∗3/P∗)1/2 (1.14)

In view of Eq. (1.12), the discharge Q is equal to the corrected
discharge Qr for effect of ψQ. The latter must be then considered
as a non-dimensional correction factor of discharge. Moreover,
Eq. (1.14) can be simply rewritten as follows:

Qr = 8
√

2gA
√

RSo (1.15)

which has the form of Chezy’s equation with Cr = 8
√

2g as the
Chezy’s constant.

On the other hand, Eqs (1.7), (1.9), and (1.12) lead to:

Re = ψQRer (1.16)

Inserting Eqs (1.13) and (1.16) into Eq. (1.2), we derive the
following ψQ(ε/R, Rer) explicit relationship:

ψQ = −1

2
log

(
ε

14.8R
+ 10.04

Rer

)
(1.17)

With the aid of Eqs (1.16) and (1.17), we derive the following
Reynolds number equation:

Re = −1

2
Rer log

(
ε

14.8R
+ 10.04

Rer

)
(1.18)

From Eqs (1.12), (1.15), and (1.17), the following dimensionally
consistent uniform flow equation is deduced:

Q = −4
√

2gA
√

RSo log
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ε

14.8R
+ 10.04
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)
(1.19)

in which Rer is given by either Eq. (1.9) for Qr = Q, Lr = L

and P∗
r = P∗, or Eq. (1.11) for So,r = So and Rr = R, whence:

Rer = 32
√

2

√
gSoR3

ν
(1.20)

Inserting Eq. (1.17) into Eq. (1.13), the friction factor relationship
is obtained as:

1√
f

= −2 log

(
ε

14.8R
+ 10.04

Rer

)
(1.21)

When So, ε, ν, and R are given, Eq. (1.21) allows, then, a direct
determination of the exact friction factor value for R ≥ 2300.

Comparing Eq. (1.19) with Chezy’s relation, the Chezy’s constant
C can be written as:

C = −4
√

2g log

(
ε

14.8R
+ 10.04

Rer

)
(1.22)

or as:

C = CrψQ (1.23)

On the other hand, comparing Eq. (1.19) with Manning’s
equation, the roughness coefficient n is obtained as:

1

n
= −4

√
2gR1/6 log
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ε

14.8R
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)
(1.24)

or as:

n = nrψ
−1
Q (1.25)

in which:

nr = (8
√

2g)−1R1/6 (1.26)

Computation of the relative normal depth

The relative normal depth can be worked out, once the following
improved friction factor relationship is assumed:

1√
f

= −2 log

(
ε/Rr

14.8ψ
+ 10.04

ψ3/2Rer

)
(1.27)

In which:

ψ ∼= 1.35

[
− log

(
ε/Rr

19
+ 8.5

Rer

)]−2/5

(1.28)

For R ≥ 2300 and for the wide range 0 ≤ ε/R ≤ 0.20, it
was observed that the deviation between Eqs (1.2) and (1.27)
is negligible. Thus, applying Eq. (1.27), one may consider the
obtained values of f as practically exact. Furthermore, the
Chezy’s constant C = √

8g/f is obtained as:

C = −4
√

2g log

(
ε/Rr

14.8ψ
+ 10.04

ψ3/2Rer

)
(1.29)

Thus, to compute the relative normal depth for the given values
of Q, So, L, ε, and ν, the following steps are recommended,
assuming Qr = Q, So,r = So, and L = Lr:

1. Knowing Q, So, L, and Cr, authors’ explicit equations (21),
(22), (40), (43), and (58) give the value of the corresponding
normal depth of the flow in the considered referential rough
channel. Furthermore, the hydraulic radius Rr can be, then,
worked out.

2. With So and Rr, Eq. (1.11) gives the value of Rer.
3. Knowing Rr, Rer, and ε, the parameter ψ is obtained using

Eq. (1.28).
4. Inserting the values of Rr, ε, and ψ into Eq. (1.29), gives the

value of Chezy’s constant C.
5. Knowing Q, So, L, and C, authors’ explicit equations (21),

(22), (40), (43), and (58) give finally the corresponding
relative normal depth.
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Reply by the Authors

The authors are very much grateful to Achour and Bedjaoui for
their discussion. The derivation of Eq. (1.19) by the discussers
uses Colebrook equation, which is valid for pipe flow. For open-
channel flow, the corresponding resistance equation given by
Anonymous (1963) is

f = 1.325

[
ln

(
ε

12R
+ 0.625ν

VR
√

f

)]−2

(1.30)

Equation (5) of the paper is based on Eq. (1.30). Thus, the
discussers’ Eq. (1.19) is not applicable to open-channel flow.

For derivation of Eq. (5) of the paper, the discussers may
see Swamee (1994), which is on similar lines as given by the
discussers.
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