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Abstract

Long before the invention of the Internet, the purchasing process and customer be-

haviour were supported by the word-of-mouth, as it was the only channel to acquire

feedback and customer reviews. In many cases, our buying choices were made with

a leap of faith and hope that our purchase turned out to be everything we expected.

But with the rise of Web 2.0, customers share information or opinions about prod-

ucts and services, politics, current events online. As result, people and organisa-

tions refer to these information to harvest valuable insights and hence, make in-

telligent decisions. This shared information is a gold mine, if leveraged effectively,

can provide rich and valuable insights. The problem with this information is that

it is informal and unstructured, thus, difficult to assess automatically and in huge

volume. Accordingly, these data require appropriate processing to obtain useful in-

formation. Sentiment analysis (SA) is used to extract knowledge from online data.

Research in the field of SA seek to extract sentiment from textual data. In this thesis,

two approaches are provided to conduct sentiment analysis on text. The first one is

a lexicon-based approach for multi-class Twitter sentiment analysis by developing

a sentiment lexicon specific to the social media domain. The second one is a deep

learning approach for binary-class sentiment analysis of reviews by proposing a con-

volutional neural network (CNN). This research uses universally accessible data, i.e

Twitter and movie reviews datasets to evaluate the proposed frameworks for their

reliability and validity. Experiments were conducted using the proposed methodolo-

gies; firstly, the lexicon-based approach was evaluated on Twitter data. The results

show that the developed lexicon is able to capture sentiment intensity and handle

social media text. Secondly, the proposed CNN model was trained and tested using

the IMDb dataset. For evaluation, accuracy was used. A sizeable performance im-

provement was reported whereby the proposed network yielded better results com-

pared to prior models from the related work.

Keywords: sentiment analysis, natural language processing, text analytics, text min-

ing, deep learning, convolutional neural networks, IMDb dataset



Resumé

Bien avant l’invention de l’Internet, le processus d’achat et le comportement des

clients était soutenus par le bouche-à-oreille, étant le seul canal pour acquérir le

feedback des clients. Auparavant, nos choix d’achat était faits sur un acte de foi,

en espérant que cet achat allait s’avérer être tout ce que nous attendions. Mais avec

l’essor du Web 2.0, les clients partagent des informations sur les produits et les ser-

vices en ligne. En conséquence, les utilisateurs et les organisations utilisent ces don-

nées pour récolter des informations précieuses afin de rendre leurs décisions intel-

ligentes. Ces données sont une mine d’or, si elles sont utilisées efficacement, elles

peuvent fournir des informations précieuses. Néanmoins, le problème avec ces don-

nées c’est qu’elles sont informelles et non structurées, donc difficiles à traiter au-

tomatiquement et en volume énorme. Ainsi, l’analyse des sentiments (AS) est util-

isée pour extraire les connaissances des données. L’AS consiste à prélever le sen-

timent exprimé dans un texte. Dans cette thèse, deux approches sont proposées

pour prédire le sentiment de données en ligne. La première est une approche sé-

mantique pour identifier le sentiment énoncé dans des tweets. Pour cela, un dic-

tionnaire a été développé. La seconde est une approche deep learning basée sur

un réseau de neurones convolutionnels conçu pour distinguer le sentiment des cri-

tiques de films. Dans ce travail, des données publiquement accessibles sont utilisées

afin d’évaluer les approches proposées en matière de fiabilité et validité. Des expéri-

mentations ont été menées en employant les approches proposées; premièrement,

l’approche sémantique a été évaluée sur des données Twitter. Les résultats mon-

trent que le dictionnaire est non seulement apte d’extraire le sentiment mais aussi

de capturer son l’intensité. Deuxièmement, la base de données IMDb a été utilisée

pour l’apprentissage du modèle proposé. Pour l’évaluation, la métrique de préci-

sion a été utilisée. Le bilan démontre une amélioration considérable en termes de

performance, où le modèle proposé a obtenu de meilleurs résultats par rapport aux

modèles de travaux relatifs.

Mots clés: analyse de sentiments, traitement langage naturel, text mining, appren-

tissage profond, réseau de neurones convolutionnels, IMDb dataset
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Chapter One

Introduction

1.1 Research background

The spectacular diffusion of information and communication technologies (ICT) has

resulted in an exponential increase in the information available to socio-economic

actors. As stated by (Pateyron, 1998) more information has already been produced

during the last thirty years than in the previous ten thousand years, and it is expected

to double every five years. As result, it has become vital to analyse the generated

content by information flows from different sources such as social networks. The

new challenge does not lie on how to access information but how to select and extract

the relevant information to make good strategic decisions rapidly when surrounded

by a competitive environment (Pelissier and Pybourdin, 2009). In this perspective,

the ability of acquiring and analysing these data by actors such as organisations is

becoming an essential skill to achieve success. In this context territorial intelligence,

originally defined as "all coordinated actions of research, processing and distribution

in view of exploiting useful information for economic actors" (Matre, 1994) appeared

as an approach responding to the challenges faced during decision-making.

In real life, facts are certainly vital for individuals or businesses to make judgements

or decisions, but opinions or beliefs also play essential roles. Human behaviour is

considerably affected by their subjective feelings, such as attitude, emotion, opinion

or sentiment. The decisions we take can be influenced by others’ point of views or

perceptions of the world to a considerable degree, because carrying others’ opinions

is wired into all human beings naturally. The way people value things can easily be af-

fected by others’ sentiments towards them, taking this aspect into consideration has

become an important factor in decision-making processes (Campbell et al., 2010).

1
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Therefore, it is crucial to mine people’s opinions and feelings about a certain sub-

ject matter of interest, which is the task of sentiment analysis (Dave et al., 2003, Esuli

and Sebastiani, 2006, Pang and Lee, 2008). More specifically, sentiment analysis also

called opinion mining is a sub-field of natural language processing (NLP) which is a

type of text classification that primarily deals with subjective text, aiming to extract

and classify sentiments or opinions present in natural language text by using com-

putational methods (Pang and Lee, 2008, Liu, 2015).

With the increasing quality of the Web and social media sites such as Facebook, Twit-

ter and Instagram, the studies of sentiment analysis have drawn a lot of attention

from researchers due to the fact that Internet access has provided a simple and effec-

tive platform for individuals (users) to share opinions concerning everything. Before

the emergence of World Wide Web 1, many people typically asked friends or family

for advice or recommendations before buying products. The evolution of Web 2.0 2

has provided individuals with the chance to post their thoughts and opinions cover-

ing a wide variety of topics on different platforms. As John Scalzit states:"Everyone is

entitled to their opinion about the things they read, or watch, or listen to, or taste, or

whatever. They’re also entitled to express them online". With the growth of the digi-

tal age, the number of people able to share their thoughts online and also be aware

of others’ opinions is increasing. Thus, there is a tremendous amount of data con-

taining opinions generated from different sources such as reviews, posts from blogs,

micro-blogs like Twitter or other social media 3 (George, 2015). These data are also

referred to as user-generated content (UGC), which represents any positive or nega-

tive communication created by costumers regarding a product or company, which is

openly shared and made available via the Internet.

Compared with the traditional strategies of promotion in mass media, like televisions

and newspapers, the online UGC is judged to be more reliable and balanced than

those provided by businesses (Mudambi and Schuff, 2010, Chong et al., 2016). Thus,

several organisations have integrated social media as part of their marketing/pro-

moting strategies and encourage online users to share positive comments about their

products and services on purpose. Online reviews, as a specific form of UGC, have

1The World Wide Web is a global information medium connected to the Internet, which enables
users to search for information from one document to another (Berners et al., 2000).

2Web 2.0 are World Wide Web sites that highlight user-generated content, where users can read,
write and share various content (O’Reilly, 2005).

3Social media also refers to a social networking service, which is an online platform that allows
users to create user-generated content to share information, ideas and personal messages etc., in
which, users can also develop social relations with others. It contains many different forms including
blogs, forums, social gaming and so on (Obar and Wildman, 2015)
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not solely become a major data source to assist customers make decisions, but also

represent the base on which consumers re-evaluate their buying decisions and ulti-

mately modify their shopping behaviour (Ye et al., 2011, Cantallops and Salvi, 2014),

in line with various studies:

• According to (Shrestha, 2016), 92% of consumers read online product reviews

before purchasing the products compared to 88% in 2014 and 40% of con-

sumers make their initial decision by reading just one to three reviews;

• A study conducted by Nielsen shows that 66% of people trust online product

reviews (Stone, 2015);

• A study indicates that between one to three negative online reviews could be

enough to decrease 67% number of customers (Charlton, 2012);

• According to (Fan and Fuel, 2016), 97% of online customers read reviews before

making any buying decisions, 32% say written reviews are the only element

that makes them believe a site’s reviews are relevant or useful, 94% typically

read written reviews, 73% say written reviews are more taking into consider-

ation than star or number ratings and 35% say that it takes only one negative

review to make them decide not to buy a product.

The data statistics above uncover the interest that customers convey in online re-

views about items, products and services as far as depending on the online sugges-

tions or recommendations to settle on buying decisions. Therefore, the demand for

sentiment analysis is critical as a result of this rush of interest. For customers, it is

helpful for producing intelligent choices (decisions) by knowing the products’ posi-

tive and negative attributes. As for companies or businesses, on the opposite hand,

they can use it to harvest valuable insights about how customers really feel about

them and improve their marketing methods and differentiate themselves from com-

petitors so as to enhance their products and the customer experience (Wallace, 2015,

Jain and Kumar, 2016). Moreover, understanding the opinions expressed in social

media websites offers the possibility to bring tremendous business opportunities

and great assistance in the decision making process (Alghamdi, 2013). With the aim

to meet the need of customers and companies, effective and efficient sentiment anal-

ysis systems are requested in order to extract opinions and yield clear insights from

online UGC.
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1.2 Problem statement and research questions

The explosion of the Web 2.0 has not solely brought us researchers a huge volume of

unstructured data represented in digital form, but also offered us great opportunity

to interpret the sentiment of the public by analysing these large-scale data. However,

all of the user-generated content is a double-edged sword: the larger the size of the

data, the trickier it is to extract useful information. A survey shows that Facebook

generates 250 million posts per hour and Twitter users on the opposite hand generate

21 million tweets per hour (George, 2015). In 2018, the review website TripAdvisor 4

generated approximately 730 million reviews and opinions from users around the

world (Statista, 2019). Facing such big data, studies have already disclosed that over

half of online customers experience frustrations throughout their online shopping,

therefore, they are not able to make an informed decision.

Although we are in the era of Web 2.0, submerged with large amounts of data every

day, companies and organisations additionally face issues in analysing the unstruc-

tured data effectively because of the fact that this process is time consuming and re-

source demanding. A survey shows that three quarters of 2,100 organisations do not

have a straightforward idea of what their customers think about them and nearly 31%

of them find it difficult to measure customers’ opinions (Michael, 2012). It is obvious

that they do not lack the data sources of customers’ opinions, but the overwhelm-

ing size of data and the complexity of addressing the subjectivity aspect, makes it

difficult to extract helpful information for organisations.

The necessity to analyse these unstructured data naturally resulted in the rise of re-

search in the field of sentiment analysis. Sentiment analysis has been one of the most

active research areas in natural language processing (NLP) since 2002 (see Chapter

2). The main task of sentiment analysis is to automatically determine the sentiment

orientation in a given document (Pang and Lee, 2008, Turney, 2002) and indicate its

polarity whether it is positive, negative or neutral (Liu, 2010).

Currently research on sentiment analysis has been dominated by two approaches:

first, the supervised learning approaches, which aim to build and train classifiers by

choosing the appropriate features (see Chapter 2). Second, the semantic orientation

4TripAdvisor is worldwide travel website that was an early adopter of UGC, which provides reviews
of travel-related content such as hotel reviews and restaurants reviews (TripAdvisor, 2020)
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approaches, that involve calculating the overall polarity based on sentiment orien-

tation of terms (words), phrases or documents(see Chapter 2). Since the latter ap-

proaches utilize lexical resources like lists of opinion words, lexicons and dictionar-

ies, they are also known as lexicon-based approaches (Peng et al., 2003, Ding et al.,

2008, Taboada et al., 2011). Hence in this thesis, the terms ’semantic orientation ap-

proach’ and ’lexicon-based approach’ are used interchangeably.

Many sentiment analysis tools and applications have been developed to mine the

sentiments present in user generated content on the Web. However, the reported

performances were found to be very poor due to the complexity of the task of senti-

ment analysis in addition to the usage of natural language (Mohammad et al., 2013,

Ouyang et al., 2015, Maynard and Bontcheva, 2016, Houshmand, 2017). Basically,

sentiment analysis is primarily a problem of natural language processing (NLP) which

deals with unstructured data (Liu, 2012). Even thought various approaches have

been proposed to implement sentiment analysis, it is still difficult to capture and in-

terpret some linguistic features, such as negation and mix-opinion text. This results

in low accuracy of sentiment classification (Vinodhini and Chandrasekaran, 2012,

Park, 2015a, Khan et al., 2016). Due to the existing real-world challenges in dealing

with big data and current research gaps (see Chapter 2 for more details), the research

presented in this thesis is motivated to address the following research questions:

1. How can online text data be automatically and accurately classified with respect

to their sentiments?

2. How can the intensity of sentiment in online text data be effectively captured?

3. How can deep learning enhance the process of Data Analytics for companies so

they can improve their decision making?

The first research question covers the need to manage the massive quantity of on-

line reviews in an automated manner and improve the performance of sentiment

classification. The second research question emphasizes the necessity to capture the

intensity of the opinions present in a given piece of text in order to reflect real life

complex scenarios. The last one pursues to propose an enhanced supervised learn-

ing model for text analytics and provide valuable insight to businesses in order to

improve their products or services.
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1.3 Aim and objectives

The aim of this thesis is to explore an effective way to conduct fine-grained sentiment

analysis by upgrading the performance of sentiment classification. To meet the need

of this aim, there are three goals that this research has tried to reach. The first ob-

jective intends to handle the text that contains both positive and negative orientated

opinions, because the majority of available data shows that positive and negative

sentiments co-occur in the same document or sentence. Most documents or sen-

tences will have both positive and negative views. Besides the intensity of sentiment

can vary from one review to another.

Secondly, following the lexicon orientation approach (see Chapter 2) for sentiment

analysis, a sentiment lexicon for analysing social media text needs to be constructed

and, is employed to determine the polarity of a sentence. The sentiment lexicon

contains words with their sentiment orientations. Since there is a variety of domains,

words could be used differently and show opposite sentiment orientations in each

domain (see Chapter 3). In addition to the fact that online text specifically product

reviews include a diversity of abbreviations and slang language. These aspects are

taking into consideration, thus the sentiment lexicon used for sentiment analysis is

the key to obtaining more accurate results.

Furthermore, following the supervised learning approach for sentiment analysis (see

Chapter 2), a framework designed to improve text analytics is proposed which con-

sists of a new convolutional neural network model with an embedding layer (see

Chapter 3). To predict the sentiment orientation of text in our case reviews, the pro-

posed model is trained using the movie reviews dataset IMDb. At the same time, we

implemented different features and used different configurations to build the pro-

posed network (see Chapter 4). We develop our evaluation metrics based on accu-

racy to quantitatively compare the effectiveness of our model against prior models

from the related work. Achieving these objectives should lead to two coherent senti-

ment analysis frameworks that are proposed in this research (see Chapter 3), which

aims to improve the performance of sentiment classification and provide in-depth

text analytics.
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1.4 Structure of the Thesis

This thesis contains five chapters, which are organised following the phases illus-

trated in Figure 1.1. These phases incorporate: problem identification, objective def-

inition, design and development, implementation and evaluation. The first phase,

problem identification, is introduced in chapter one. The chapter of literature review

also simplifies the identification of the problem, and then motivates this research.

The second phase of objective definition is also described in chapter one in order

to acquire the aim of this research. Following this is the third phase, design and de-

velopment, in which both sentiment analysis frameworks are presented. The fourth

phase is implementation which aims to convey how the proposed systems perform

social media sentiment analysis, which is also presented in chapter four. Afterwards,

the evaluation of the proposed sentiment analysis frameworks is done in this phase.

FIGURE 1.1: Thesis outline.

In chapter one, the scope of this research is presented with the introduction of the re-

search background. The problems are also pinpointed, leading to the research ques-

tions in sentiment analysis, and the thesis aim and objectives that this research seeks

to realise.

In chapter two, previous research on sentiment analysis are presented in detail. The

chapter starts by introducing the notion of sentiment analysis and its different levels.

In order to give an in-depth understanding of work on sentiment analysis, different
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progressive stages of sentiment analysis are also briefly presented. Furthermore, dif-

ferent approaches for sentiment analysis are surveyed in detail, and various literature

gaps are identified, by which this thesis is motivated.

In chapter three, a lexicon-based approach for sentiment analysis of Twitter data is

proposed. A description of the later approach is presented in detail to achieve the

aim of this research. A system called TweetEcho is implemented following the pro-

posed approach. Additionally, a sentiment lexicon specific to social media domain is

developed. In order to show the output of our system, keywords like ’Samsung S10’

and ’iphone X’ are used for demonstration.

In chapter four, a deep learning approach for sentiment analysis using a new con-

volutional neural network with an embedding layer to classify movie reviews is in-

troduced and implemented. Real data is used for training, testing and validating the

proposed model. Different features are implemented and accuracy is used for evalu-

ation. The experimental results are presented along with discussions.

Chapter five presents a summary of the work by reintroducing the research questions

stated at the beginning of this thesis and explaining how each question has been

addressed. Additionally, the contributions of this thesis are presented. Lastly, the

limitations and future research directions are also proposed.



Chapter Two

Literature Review

2.1 Introduction

An important part of information-gathering is to determine what other people think

about certain things. (Pang and Lee, 2008) state that new opportunities and chal-

lenges arise when trying to seek out and understand opinions of others due to grow-

ing availability of opinions sources such as online review sites and personal blogs.

Lots of people do online research on a product, hotel or restaurant, before buying.

The interest that individual users show in online opinions about products or services,

and the potential influence of such opinions, is something that sellers of these items

are paying more and more attention to. This is one of the reasons why sentiment

analysis is an important task.

Since sentiment analysis in social media needs good knowledge of sentiment anal-

ysis techniques, this chapter will lay out a landscape or a detailed summary and a

comprehensive understanding of the studies in the field of sentiment analysis, by

beginning with introducing the notion of sentiment analysis. Since the studies of

sentiment analysis have been applied in different levels, each level of sentiment anal-

ysis is investigated separately in this chapter, that is, document level, sentence level,

aspect level and user level sentiment analysis.

Although the quick development of sentiment analysis corresponds with the explo-

sion of Web 2.0, previous research related to sentiment analysis have set the founda-

tion for the current research activity. For the purpose of having an in-depth under-

standing of the background and methods of sentiment analysis, various progressive

stages of sentiment analysis are presented. Furthermore, two main approaches for

sentiment analysis, which are the semantic orientation approach and the machine

9
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learning approach, will be reviewed in detail. Each approach will also be inspected

and a comparison of both methods will be given in order to point out the advantages

and drawbacks of each approach. At last, the research gaps will be discussed.

2.2 The impact of social networks

One of the defining phenomena of the present days reshaping the world as we know

it, is the worldwide accessibility to the Internet. The major result of the World Wide

Web is social media, which comes in many forms, including blogs, forums, business

networks, photo-sharing platforms, social gaming, microblogs, chat apps, and last

but not least social networks. Despite the universality of social networks, market po-

tential is massively growing considering that on average, global internet users spend

an enormous amount of time per day using social networks. This phenomenon

bends brands and corporations on adapting their marketing strategies to take ad-

vantage of that time and screen usage to promote their products and services via

social media marketing and advertising.

FIGURE 2.1: This statistic provides information on the most popular networks
worldwide in October 2018 from (Statista, 2018).

As stated by (Kaplan and Haenlein, 2012), social media can be defined as the ’group

of internet-based applications that build on the ideological and technological founda-

tions of Web 2.0, and that allow the creation and exchange of user-generated content’.

Over the past decade, besides the leaders of the World Wide Web such as Facebook,
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Twitter, YouTube, Google and LinkedIn, there are currently emerging market oppor-

tunities for a variety of other services which target different groups of users depend-

ing on the targeted niche and the particular data need. This enlarges the scope to

very different kinds of research from consumer preferences and recommendation

systems to decision making. Hence from the above Figure 2.1 and Figure 2.2, these

statistics provide information on the most popular networks worldwide as of October

2018, classified by number of active accounts. According to (Statista, 2018), Facebook

is the market leader with more than one billion registered accounts and currently has

2.23 billion monthly active users. These numbers show the number of social media

users worldwide from 2010 to 2016 with predictions to 2021 (Statista, 2018).

FIGURE 2.2: Number of active users in billions (Statista, 2018).

2.3 Sentiment Analysis in Social Media

Sentiment analysis is a sub-field of natural language processing (NLP) that aims to

identify the sentiments or opinions, attitudes present in text or their sentiments to-

wards specific topics. Sentiment describes a sentiment, opinion or an attitude ex-

pressed by an individual about an entity. Attitudes handle things like beliefs, prefer-

ences, and perceptions towards objects or persons (liking, loving, hating) (Scherer,

2003) are different from emotions (angry, sad, joyful, fearful, ashamed, proud) as

result to external influences (Scherer, 2003). This differentiates sentiment analysis

from other problems such as emotion analysis where the global emotional state is

determined, and not the attitude towards a specific target. The strength and direc-

tion of sentiment (i.e., how positive or negative it is) is defined as its polarity. The

simplest and most common polarity calculation supposes two categories, positive
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and negative. This assumption includes most voting systems used in research, such

as:

• thumbs up/down (e.g., Facebook, YouTube, Netflix)

• positive, neutral, negative (e.g., eBay)

• star ratings (e.g., Amazon, IMDb, Rottentomatoes, Yelp)

Frequently, the sentiment polarity is represented inside the [-1; 1] interval, assum-

ing that -1 represents the most negative polarity possible, and 1 represents the most

positive one. There is some ambiguity concerning the center of the scale (0), which is

commonly represented as neutral. It has been acknowledged that the neutral state is

difficult to identify even for humans (Kim and Hovy, 2004), which is why it is some-

times excluded from experiments to simplify the problem (Speriosu et al., 2011, Go

et al., 2009, da Silva et al., 2014, Saif et al., 2012, Blitzer et al., 2007, Bakliwal et al.,

2012).

2.4 The notion of sentiment analysis

The word ’sentiment’ is defined as a specific view or notion: ’opinion’ and ’emotion’

in Merriam Webster dictionary. As (Liu, 2010) expresses it "opinions are usually sub-

jective expressions that describe people’s sentiments, appraisals or feelings toward

entities, events and their properties". Despite the fact that the field of sentiment

analysis and opinion mining has recently attracted a lot of attention from researchers

and marketers, there has been a steady interest of analysing opinions. Much of the

early research on textual information analysis has been mainly focused on mining

and retrieval of factual information, such as information retrieval, text classification

or text clustering (Gupta and Lehal, 2009). One of the principal reasons for the lack of

the research on sentiment analysis is that there was hardly no availability of opinion-

ated text before the era of World Wide Web. As (Liu, 2010) describes that an individual

often asks his/her friends or family for opinions before making any buying decision

and an organisation normally conducted opinion votes and surveys to determine

the users’ sentiments towards its products or services. After the Internet started to be

widely used due to the evolution of technology, people are able to express their opin-

ions and emotions by posting reviews of products or services online as Liu deduces:
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’This online word-of-mouth behaviour represents new and measurable sources of in-

formation with many practical applications’. Besides, (Pang and Lee, 2008) also pin

point other factors which led to a huge blow up of research on sentiment analysis:1)

the rise of machine learning methods in natural language processing and information

retrieval; 2) the availability of datasets for machine learning algorithms to be trained

on, due to the growing of the World Wide Web websites; 3) the realisation of the cap-

tivating research opportunities and challenges and intelligence applications that the

area provides’. Particularly with the explosion of Web 2.0 platforms, such as blogs,

Twitter, Facebook, Amazon and many other types of social media, any individual has

direct access and ability to share his/her opinions and brand experience regarding

any given product or service. Furthermore, organisations can alter their marketing

strategies using social media monitoring and analysis. Nevertheless, it still can be

a tricky task to obtain opinions sources and monitor them on the World Wide Web,

because there is a large number of different sources. Also each source may have an

enormous volume of user-generated content conveying sentiments or opinions. At

the same time, another problem has manifested in trying to entitle this new area as

(Zabin and Jefferies, 2008) described in their research report when they attempted to

generate the consumer insights from online conversation:

’. . . the beginning of wisdom is the definition of terms, wrote Socrates. The aphorism is

highly applicable when it comes to the world of social media monitoring and analy-

sis, where any semblance of universal agreement on terminology is altogether lacking.

Today, vendors, practitioners, and the media alike call this still-nascent arena every-

thing from ’brand monitoring’, ’buzz monitoring’ and ’online anthropology’, to ’mar-

ket influence analytics’, ’conversation mining’ and ’online consumer intelligence’... The

terms ’social media monitoring and analysis’ best describes the content focus of this re-

port. ’Social media’ explains what is being monitored. ’Analysis’ speaks to the fact that

the process involves not just unleashing spiders that can crawl the Web and collect data

in a mechanized fashion using natural text processing and other data mining and an-

alytic technologies. The process also means making sense of the data, often with the

help of human who can interpret and contextualise it in ways that machines aren’t yet

able to do, to generate actionable insights that results in smarter business decisions.’

The above quotation shows that it is essential to define a uniform terminology in the

field of analysing consumers’ online conversations (Pang and Lee, 2008). As a matter

of fact, it is difficult to collect the appropriate sources, extract the information from

the texts with sentiments and summarize them. Therefore, a framework is needed to
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automatically identify and analyse the online opinionated texts (Liu, 2010). In nat-

ural language processing (NLP), sentiment analysis covers various aspects regard-

ing how information about sentiments, opinions and attitudes is represented in lan-

guage. (Wei et al., 2013) also supposes that the goal of sentiment analysis is to figure

out consumers’ sentiments about entities using automatic analysis of text found in

reviews. (Dave et al., 2003) used the term ’opinion mining’ firstly in an article that

was published in the proceedings of the 2003 WWW 1 conference and they discuss

that an ideal opinion-mining system would ’analyse a selection of search results for

a random item, generating a list of product attributes (quality, features, etc.) and ex-

tracting sentiments about each of them (poor, mixed, good)’. (Pang and Lee, 2008)

declare that ’the history of the expression sentiment analysis coincides with opinion

mining, as many researchers interchangeably used the word ’sentiment’ and ’opin-

ion’ in their work in regard to the automatic process of analysing texts (Turney, 2002,

Sanjiv and Mike, 2001, Tetsuya and Jeonghee, 2003, Anindya et al., 2007). In con-

clusion, it appears "sentiment analysis" and "opinion mining" represent the same

research area. Moreover, there are also other many names and somewhat different

tasks, for example, opinion extraction, sentiment mining, subjectivity analysis, affect

analysis, emotion analysis and review mining (Liu, 2012).

In general, the textual information is divided into two categories. The first category

is the factual information that only holds facts or objective statements about entities.

The second category is the subjective information that manifests the actual feeling,

opinion of the writer toward entities. In this thesis, we consider the notion of senti-

ment as the subjective information that shows the feelings or opinions of a person

about a specific topic or subject (Turney, 2002).

Sentiment analysis (SA) is an evolving area that triggers the interest of researchers

and specifically organisations because SA can be used for decision making. Individ-

uals are no longer restrained to ask opinions from friends about products or services,

they can freely come across such information on the Internet. Additionally, organi-

sations may save time and money by avoiding carrying out surveys instead, they can

focus on analysing opinions that can be accessed from the Web freely. However, it is

important to state that sources that provide opinionated data are noisy, so it is im-

portant to only collect the necessary meaning from that information to use it later

on.
1WWW: World Wide Web
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2.5 Depth of sentiment analysis

Based on the levels of granularity (Figure 2.3) of the previous research, sentiment

analysis has been mainly studied at four different levels: document level, sentence

level, aspect level and user level (Pang and Lee, 2008, Liu, 2012).

FIGURE 2.3: Different levels of sentiment analysis.

2.5.1 Document level

The task of document-level sentiment analysis is to determine whether a given doc-

ument conveys an overall positive or negative sentiment. For example, a sentiment

analysis system classifies the general polarity of a customer review about a certain

product. This level of sentiment classification supposes that one document expresses

opinions on a single object, such as customer reviews of products and services, be-

cause typically the result of sentiment analysis only has two (positive and negative)

or three outputs (positive, negative and neutral). This supposition may be applica-

ble for customer reviews of products and services. But, it may not be suitable for a

forum or blog post because in these the author may express sentiments on different

products or compare them using comparative sentences.

There are many researchers who have conducted document-level sentiment analy-

sis (Pang and Lee, 2008, Turney, 2002, Balage and Pardo, 2013). They primarily focus

on how to isolate the positive texts from the negative texts automatically and they

also have proposed different approaches to enhance the accuracy. Due to the simple

result of the sentiment classification, the crucial limitation of document-level senti-

ment analysis is the lack of in-depth analysis (Liu, 2012).
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2.5.2 Sentence level

The sentence level of sentiment analysis implicates determining whether each given

sentence is expressing a neutral, positive, or negative sentiment (Gamon et al., 2005).

There is no key difference between document-level and sentence-level sentiment

analysis, because in a way sentences represent short documents (Liu, 2012). It com-

monly involves two sub-tasks: 1) establishing whether the sentence is a subjective

sentence or an objective sentence; 2) if the sentence is subjective, then establishing

whether it conveys a positive or negative sentiment (Liu, 2012). This level is associ-

ated with the subjectivity classification (Wiebe et al., 1999), which is to filter out the

subjective sentences that indicate sentiments or opinions from objective sentences

that indicate facts. Thus, it is essential to pinpoint the objective sentences and iden-

tify the strength of sentiments. The value of neutral frequently designate the objec-

tive sentences. Additionally, it is crucial to state that subjectivity is not equivalent to

sentiment, as (Liu, 2012) points out, because objective sentences can also hint sen-

timents, for example: "I bought this phone one week ago and now the battery only

lasts three hours". Those objective sentences that also suggest sentiment also belong

to one sub-group of opinionated sentences. This kind of opinionated sentences im-

ply sentiments towards different aspects of object, thus sentence-level classification

is not suitable for them (Narayanan et al., 2009).

2.5.3 Aspect level

Classifying opinions at document-level or sentence-level is useful in many cases, but

they are inadequate to provide details needed for applications, because they do not

spot sentiment targets (Liu, 2012). The aspect level of sentiment analysis focuses on

sentiment itself rather than looking at the composition of documents, such as para-

graphs, sentences and phrases. It can be decomposed into two sub-tasks: aspect

extraction and aspect sentiment classification (Liu, 2012). The task of aspect extrac-

tion can also be considered as an information extraction task, which aims to deter-

mine the aspects. For example, in the sentence, "My Xiomi screen is beautiful but

its battery life is low". We have "Screen" and "battery life" as the aspects of the ob-

ject "Xiomi". The basic method for extracting aspects is identifying frequent nouns

or noun phrases. Then the text holding aspects is classified as positive, negative or

neutral (Long et al., 2010). Most of the studies in aspect-level sentiment analysis are

based on the assumptions of the pre-defined aspects by keywords (Wang et al., 2011,
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Li et al., 2015). (Ding et al., 2008) proposed a lexicon-based method for aspect anal-

ysis but they suggest that aspects are known beforehand. (Liu, 2012) states that the

accuracy of aspect level sentiment analysis is still low because the existing techniques

still cannot handle complex sentences well. In conclusion, the aspect level sentiment

analysis is harder than both the document-level and sentence-level classifications.

2.5.4 User level

In addition to the previous levels of analysis, some studies conducted sentiment

analysis at user-level which consists on studying users’ networks and predict users’

sentiment based on the sentiment of neighbouring users (Haddi, 2015). Moreover,

a number of studies use different models that combine two or three different levels,

where the knowledge about one level, for example documents, assists to predict the

sentiment of a different level, like sentences (Haddi, 2015).

2.6 Development of sentiment analysis

2.6.1 Text interpretation

Although the research of sentiment analysis and opinion mining have flourished

with the rise of Internet and Web 2.0, the previous studies before that also established

the foundation for current research. At the early stage of opinion mining extraction,

the studies concentrated on text interpretation in some areas such as psychology and

politics. Text interpretation can be defined as analysing different formats of texts by

using simple computational methods with human assistance to understand the sub-

jectivity, point of view in a given piece of text (Pang and Lee, 2008, Anbananthen and

Elyasir, 2013). The research of literary theorist (Banfield, 1982) has been involved in

proposing the use of subjective and objective sentences as indicators. According to

Benfield’s theory, the sentences of narration have been divided into subjective and

objective sentences. Subjective sentences represent a character’s thought or a per-

ception including the character’s emotions, judgments, beliefs, attitudes and affects.

Objective sentences only represent the facts, Banfield’s theory has been considerably

used in the early history of sentiment analysis (Anbananthen and Elyasir, 2013).
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FIGURE 2.4: Evolution of sentiment analysis over the years.

In the light of the growing availability of computer-accessible documents, (Hearst,

1992) implemented one of the first Text-Based intelligent Systems, which provides

a search service to answer a broad class of queries for users. Although, it was just

a simple ’question-answering system’, (Hearst, 1992) deduced that preferably a Text-

Based Intelligent System needs to perform full interpretation of any kind of input and

allow the results to be retrieved.

2.6.2 Text annotation for information extraction

As seen from the work of (Banfield, 1982) to Hearst’s study in (Hearst, 1992), although

some researchers have implemented different systems of text interpretation, they in-

volve major human assistance, thus there persisted the difficulty of extracting infor-

mation from unstructured corpus and performing classification. In order to solve

this problem, text annotation was proposed, which is the application of tagging and

labelling the corpus by adding new information (attributes) to the text (Anbanan-

then and Elyasir, 2013, Wiebe et al., 2005). Text annotation research has taken place

at many institutions, such as Grenoble, and automated text annotation tools such as

footnote and endnote have been utilised in Microsoft Word (Shabajee and Reynolds,

2012). Much of the first studies on information extraction mainly focused on the

question answering (Cardie, 1997). Since information extraction is one of the tasks

that natural language processing is dedicated to; it is no surprise that the methods
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of information extraction would be suitable for opinion mining and sentiment anal-

ysis. The term opinion-oriented information extraction is used to mention informa-

tion extraction problems specific to sentiment analysis and opinion mining, which

in some cases was abridged to opinion extraction (Pang and Lee, 2008, Cardie et al.,

2003). Still, the problem with text annotation is that it demands considerable time

and effort to annotate and define the attributes manually in order to generate the

corresponding corpus from unstructured text. Therefore, advanced unsupervised

learning techniques were proposed for opinion-oriented information extraction to

work on different levels of opinion classification in order to improve the accuracy

of classification (Anbananthen and Elyasir, 2013). One of the important approaches

in text annotation for information extraction is part-of-speech tagging (POS), which

is where each word present in the text is individually classified as one of the parts

of speech such as noun, verb, adjective, preposition, adverb, conjunction, etc., thus

it can provide an important amount of information about the word and its neigh-

bours (Jurafsky and Martin, 2008). (Dave et al., 2003) have implemented a method

for automatically differentiating between positive and negative reviews by training a

classifier using a corpus of self-labelled reviews from websites. (Yi et al., 2003) pro-

posed a sentiment analyzer (SA) that extracts sentiments about a subject from online

text by detecting all the online references to the given subject. The sentiment ana-

lyzer is one of the first endeavours on sentiment analysis which made use of the bag

of words (BoW) (Anbananthen and Elyasir, 2013).

2.6.3 Web mining or Text mining

Due to the evolution of the Internet and the rise of machine learning methods in

natural language processing, the real sense of sentiment analysis began when it had

been involved in web applications, apart from other domains such as politics (An-

bananthen and Elyasir, 2013). Sentiment analysis has been used to investigate and

analyse text such as blog posts, social networks comments and online product re-

views. Several new techniques and applications were introduced for sentiment anal-

ysis in the era of Web 2.0. (Liu et al., 2005) implemented an analysis system called

Opinion observer to classify positive and negative product reviews from online re-

views and compare consumer opinions. The results of the proposed system repre-

sent the strengths and weaknesses of each product.
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FIGURE 2.5: The key steps in the Web mining process.

The work of (Kim and Hovy, 2006) focused on another challenging problem in sen-

timent analysis, which is to identify the reasons behind opinions in online reviews.

They proposed a system made for extracting the pros and cons automatically from

online reviews. The evolution of opinion mining is not only just about the unceasing

development of methodologies, but also its application in various domains. After the

era of Web 2.0, sentiment analysis has been applied extensively in many fields such

as marketing, e-commerce, health care, politics and education with aim of improv-

ing products and services (Esuli and Sebastiani, 2006, Khan et al., 2016, Anbananthen

and Elyasir, 2013).

2.7 Approaches of sentiment analysis

Sentiment analysis also referred to as opinion mining has been the center of grow-

ing attention in research and business industry due to its massive value and poten-

tial for practical applications, particularly in the era of Web 2.0 (Pang and Lee, 2008,

Montejo-Ráez et al., 2014). Traditionally, sentiment analysis is considered as a binary

classification problem of sentiment (Dave et al., 2003, Pang et al., 2002). (Esuli and

Sebastiani, 2005) explained that sentiment classification can be divided into three

main sub-tasks, which are illustrated in the Figure 2.6:

• Task 1: Determining subjectivity, as in deciding whether a given text contains

factual information or subjective information;

• Task 2: Determining the orientation or polarity of the text, as in deciding whether

a given subjective text holds a positive or negative opinion;
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• Task 3: Determining the strength of that orientation;

FIGURE 2.6: Sentiment analysis sub-tasks.

FIGURE 2.7: Sentiment analysis approaches.

Due to the enormous volume of subjective data found on the Web, automated sen-

timent analysis is required to tackle this problem (Liu, 2010). As shown in Figure 2.7

above, research on sentiment analysis has been dominated by two main approaches:

semantic orientation approach and machine learning approach (Chaovalit and Zhou,

2005, Medhat et al., 2014). The semantic orientation approach is also known as
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lexicon-based approach in some studies and it considers words and phrases as in-

dicators of semantic orientation and the overall polarity of the text is generated by

calculating the averaged sum of all polarities (Pang and Lee, 2008, Hatzivassiloglou

and McKeown, 1997). The other approach machine learning is based on the imple-

mentation of machine learning algorithms. Its main focus is determining the suitable

machine learning algorithm and using the right text features to classify the polarities

of the text (Pang et al., 2002, Brooke, 2009). Other researchers also refer to these two

approaches as supervised learning and unsupervised learning (Liu, 2012, Khan et al.,

2016, Montejo-Ráez et al., 2014). The current work seek to exploit the advantages of

both techniques. Moveover, by combing both methods, hybrid classification systems

of sentiment analysis were also implemented (Prabowo and Thelwall, 2009).

2.7.1 Semantic orientation approach

The semantic orientation or polarity of a word is the characteristic that designates

the direction of the opinion. Semantic orientation has various directions (positive,

negative or neutral) and different intensities from mild to strong (Turney and Littman,

2003). Positive semantic orientation of a word indicates a desirable state (e.g., beau-

tiful, good), while negative semantic orientation of a word conveys an undesirable

state (e.g. hate, ugly) (Hatzivassiloglou and Wiebe, 2000). The studies proclaim that

words with polarities, in particular adjectives, are considered as good indicators of

subjectivity (Turney, 2002, Hatzivassiloglou and McKeown, 1997). Therefore, the se-

mantic orientation approach focuses on words and phrases as the holders of polari-

ties, and the overall semantic orientation of the entire text is calculated by the sum of

indicators with polarities. It is also called the lexicon-based approach in some works

(Liu, 2010, Medhat et al., 2014, Brooke, 2009). The prototype of semantic orientation

approach for sentiment analysis is the lexicon-based method, which uses a dictio-

nary of sentiment words with their assigned polarities and intensity or strength to

identify the sentiments in the corpus to be analysed (Taboada et al., 2011). These

sentiment words are referred to as opinion words, which are frequently used to indi-

cate positive or negative sentiments. For example, words such as beautiful, amazing,

good are positive sentiment words while on the other hand words such as disgusting,

horrible, bad are negative sentiment words. Commonly, the dictionary of sentiment

words is also known as sentiment lexicon or opinion lexicon (Liu, 2012).
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There are three different techniques to produce the dictionaries for the lexicon-based

approach: 1) the dictionary of sentiment words can be generated manually, which is

more precise but time consuming and expensive (Brooke, 2009, Stone et al., 1966, Hu

and Liu, 2004); 2) the dictionary can be produced depending on the co-occurrence

patterns in a large corpus, which is known as corpus-based approach (Turney, 2002,

Hatzivassiloglou and McKeown, 1997, Turney and Littman, 2003); 3) another method

is based on the bootstrapping using a selection of seed opinion words and an online

dictionary such as WordNet for sentiment analysis, which is called dictionary-based

method (Pang and Lee, 2008, Liu, 2012, Kim and Hovy, 2004).

2.7.2 Corpus-based method for sentiment analysis

Seeking to create a sentiment dictionary, Bing Liu explained that corpus-based ap-

proach can be performed in two situations. First one is a recognition of opinion

words and their assigned polarities in the domain corpus using a given set of opin-

ion words. The second one is for creating a new lexicon within the specific domain

from another existing lexicon. The results obtained so far indicate that even if opin-

ion words are domain-specific there is a possibility that the same word will have

totally different orientation depending on context. The corpus-based technique is

primarily dependent on the syntactic or co-occurrence patterns and a list of seed

words to enlarge the selection of opinion words (Liu, 2012, Luo et al., 2013). Seed

words are a small set of words with powerful positive or negative orientation, which

are frequently defined and collected manually. The key idea was first introduced by

(Hatzivassiloglou and McKeown, 1997), where they presented an approach for au-

tomatically predicting the semantic orientation of words. They demonstrated that

conjunctions between adjectives provide additional information about their polarity.

For example, the two adjectives linked by "and" usually are of the same orientation:

clever and beautiful; those linked by the conjunction, such as "but", usually denote

opposing orientations: smart but arrogant. Their approach reported satisfactory re-

sults. Following this idea came the work of (Turney, 2002) which is a famous example

of sentiment analysis via his corpus-based approach and technique of combining

the use of mutual information and co-occurrence in the text has been employed by a

number of researchers (Pang and Lee, 2008). His method is described in the following

stages:
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Firstly, sentences containing adjectives or adverbs are used because adjectives are

good indicators of subjectivity (Hatzivassiloglou and Wiebe, 2000, Wiebe, 2000). How-

ever, (Turney, 2002) states that an individual adjective or adverb may convey subjec-

tive feelings or emotions but it may not be able to give sufficient context to identify

its semantic orientation. For example, the adjective ’soft’ may have a positive orien-

tation in a review about beds but it could totally have opposite polarity in a phone

case review. Thus, two successive words are extracted from the given text: one word

needs to be an adjective or an adverb, then POS tagger has been applied to the given

text. Secondly, the polarity of extracted sentences would be determined by using the

Pointwise Mutual Information (PMI) algorithm. PMI algorithm is used to determine

the associations between the phrases and the two seeds word: ’excellent’ and ’poor’.

These particular words were picked out because in a five star review system, the word

’excellent’ is commonly used to express five star review while the word ’poor’ is used

in one star review. The following formula is used to calculate the semantic orienta-

tion of each extracted phrase:

SO(phr ase) = P M I (phr ase,′ excel lent ′)−P M I (phr ase,′ poor ′) (2.1)

According to the above formula (Turney, 2002), if the phrase leans to be more strongly

linked with the word ’excellent’ than ’poor’, the SO(phrase) would be positive; if not

the semantic orientation of the phrase would be negative, if it is more strongly linked

with the word ’poor’. Thirdly, after determining the SO values of all extracted phrases

in the given text, the polarity of the text is the average of SO values of all phrases.

The overall text is classified as positive, if the average SO is positive, if not negative.

Based on this work (Turney and Littman, 2003) proposed a somewhat modified ap-

proach to calculate the semantic orientation of words by using the same PMI algo-

rithm. Rather than only using two sentiment words (’excellent’ and ’poor’), they ex-

panded the set of words to fourteen (seven words in each polarity). They reported

that their method has achieved 82.8% in terms of accuracy. By following the insights

of the co-occurrence approach proposed by (Hatzivassiloglou and McKeown, 1997),

(Rice and Zorn, 2013) built a corpus-based dictionary. They tested the dictionary us-

ing the Cornell Movie Review Data introduced by (Pang and Lee, 2004) and report the

accuracy of their measure is 72.5%, which comes near to matching the accuracy of

machine learning classifiers.
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The corpus-based method has a key advantage in that it is capable to deal with do-

main and context specific opinion words and their polarities (lexicons), but it re-

quires a large corpus to cover all words, which is difficult to develop. Altogether,

the performance of lexicon-based approaches regarding time complexity and accu-

racy primarily depend on the number of words present in the dictionary, that is, per-

formance decreases significantly with the exponential growth of the dictionary size

(Malik and Kumar, 2018). In conclusion, it is not as powerful as dictionary-based

techniques for sentiment analysis due to the restriction of words that compose the

corpus (Liu, 2012, Luo et al., 2013).

2.7.3 Dictionary-based method for sentiment analysis

The dictionary-based method has taken a slightly different path for sentiment anal-

ysis, which depends on a dictionary (lexicon) to collect opinion words, which is also

mentioned as lexicon-based method in some previous works (Pang and Lee, 2008,

Montejo-Ráez et al., 2014). (Liu, 2008) states that it a straightforward and efficient

approach to produce the sentiment lexicon. The dictionary-based approach begins

with assembling a small selection of words with different polarities manually, fol-

lowed by utilising an existing dictionary (e.g. WordNet) to expand the set of opinion

words via their synonyms and antonyms. The newly extracted words from the dictio-

nary are added to the first selection of opinion words. In the end, manual investiga-

tion is needed for possible correction before using the constructed sentiment lexicon

for sentiment analysis (Hu and Liu, 2004). There are a number of studies that have

taken on this technique along with an online dictionary for sentiment analysis (Kim

and Hovy, 2004, Montejo-Ráez et al., 2014, Hu and Liu, 2004, Kamps et al., 2004, Mo-

hammad et al., 2009, Poria, 2012). (Hu and Liu, 2004) have focused their work on the

classification of customer reviews, specifically they collected product features that

hold sentiments, then classified sentences based on those features. In order to give

a positive or negative label to a sentence, first, they extracted adjectives from each

review. The classification was based on the polarity of an adjective, their method

showed good results with an accuracy of 84%.

Opposed to the technique that only can identify the polarity of adjectives (Kim and

Hovy, 2004, Hatzivassiloglou and McKeown, 1997, Hu and Liu, 2004). The work of

(Esuli and Sebastiani, 2005) has taken a new step in sentiment analysis with the birth
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of SentiWordNet (Esuli and Sebastiani, 2006, Baccianella et al., 2010). It is an exten-

sion of WordNet where each term is labelled with sentiment orientation information.

SentiWordNet is constructed in a two-step stage: firstly, an initial set of words both

positive and negative is collected manually and then WordNet is used to extract syn-

onyms and antonym to generate more words. Secondly, the selection of terms is

used to train the classifier. The Random Walk classifier is used in sentiment analysis

based on the assumption that ’if the classification process starts at a given word it is

more probable to come across another word with the same semantic orientation before

a word with a different polarity’ (Montejo-Ráez et al., 2014).

The work of (Taboada et al., 2011) investigated various dictionaries to compare their

performances. Their results indicated that SentiWordNet gave better performance

than the Google dictionaries, Maryland dictionaries and the General Inquirer lexicon

(Stone et al., 1966). (Jain and Pandey, 2013) have implemented a method by using

the lexical resource SentiWordNet to assign the polarity at sentence level. They used

part of speech tagger as feature for sentiment calculation. Their results obtained an

average accuracy of 69.1%. By making use of SentiWordNet, (Khan et al., 2016) pre-

sented a hybrid method to predict the sentiment orientations of movie reviews. They

constructed a sentiment dictionary SentMi and implemented a supervised learning

algorithm for sentiment classification. The results of their proposed hybrid method

and its comparison with SentiWordNet classifier are reported: their method achieved

an average accuracy of 76%, while SentiWordNet obtained an accuracy score of 68%.

Previous research illustrated that dictionary-based methods performed very well in

different domains (e.g. movie reviews, tweets) against traditional methods. However,

dictionary-based technique has several disadvantages. The main issue resides on the

fact that the process of collecting synonyms and antonyms is time-consuming. Ad-

ditionally, these dictionaries contain only formal words, but social media text such

as tweets or reviews are full of informal language. Overall, the main drawback of

dictionary-based approach is the incapacity to identify sentiment words with do-

main and context specific polarity orientations (Malik et al., 2018).

2.7.4 Linguistic approach for sentiment analysis

The linguistic approach is based on the syntactic properties of words, phrases, nega-

tions, and the structure of the text to predict the text orientation. This method is

commonly combined with a lexicon based method (Turney, 2002, Tan et al., 2011,
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Thelwall et al., 2011). One of the techniques used in the linguistic approach is based

on Parts-Of-Speech (POS). This feature defines the syntactic patterns or categories of

the words. To determine these patterns, n-grams are used where; an n-gram is a se-

quence of n words from a given sequence. Usually, we can use uni-grams, bi-grams,

tri-grams, and n-gram for more than three words.

In conclusion, the three different approaches we surveyed can be applied individu-

ally or combined together. For example, machine learning and linguistic approaches

can be combined (Montejo-Ráez et al., 2014), so that the selected features for train-

ing are POS tags. The lexical based approach can be combined with a linguistic ap-

proach, so the lexicon is produced for example from the adjectives that appear in a

given text or in a specific domain. Afterwards, those adjectives can be labelled in a

lexicon as positive or negative. To illustrate, the words ’beautiful’ and ’ugly’. In any

case does this suggest to ignore the importance of other parts of speech like verbs

or nouns, given some of them express very strong sentiment, such as the verb ’hate’

(Pang and Lee, 2008).

2.8 Machine learning approach

The advancement of machine learning algorithms in natural language processing

(NLP) has led to increased popularity of research in sentiment analysis. In the ap-

proach of machine learning, a feature representation of text is used combined with

several classifiers such as naive Bayes, Support Vector Machines (SVM), Maximum

Entropy, which are frequently utilised to build the classifiers for sentiment analysis.

These classifiers can learn the features or decision basis of sentiment classification

based on training data, then they are used to apply sentiment analysis automatically

(Waila et al., 2012, Ghiassi et al., 2013). This obviously shows that the machine learn-

ing approach for sentiment analysis is fairly a supervised learning framework, where

a large number of labelled training data are needed to train the classifier before it

is used for classifying the new data later on (Pang et al., 2002, Waila et al., 2012). A

detailed discussion on how these machine learning algorithms work are beyond the

scope of this thesis. Nevertheless, the idea behind the machine learning approach

for sentiment analysis is straightforward. It is based on the framework of supervised

classification (Figure 2.8) and composed of two stages:
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1. Learning the model from a corpus of labeled training data using different fea-

tures;

2. Classifying the new data based on the trained model. Overall, the whole clas-

sification process involves several sub-tasks: data pre-processing, feature se-

lection, data representation, data classification and evaluation (Khairnar and

Kinikar, 2013).

FIGURE 2.8: Standard framework for supervised classification.

2.8.1 Sentiment analysis using supervised learning

Sentiment classification can clearly be represented as a supervised learning prob-

lem with two class labels (positive and negative). Training and testing data used in

research are for the most part product reviews, which is not surprising due to the

above mentioned assumption. Since each review on a regular review site already has

a reviewer attributed rating (e.g., 1-5 stars), training and testing data are easily and

publicly available. Typically, a review with 4-5 stars is identified a positive review

(thumbs-up), and a review with 1-2 stars is considered a negative review (thumbs-

down) (Liu, 2010). In sentiment classification, sentiment or opinion words that con-

vey positive or negative sentiments are important, e.g., great, excellent, amazing,

horrible, bad, worst, etc. The application of existing supervised learning approaches

to sentiment analysis can be pretty straightforward e.g., naive Bayes, and support

vector machines (SVM), decision trees (DT), logistic regression (LR), etc. Research

were carried out where various kinds of features and techniques were used for learn-

ing and training classifiers (subsection 2.8.3). In most machine learning applica-

tions, the main task of sentiment classification is to design a suitable set of features.
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Some of the features used in research are described in detail (subsection 2.8.3). For a

more thorough survey of existing features, please refer to (Pang and Lee, 2008). Aside

from classification or prediction of positive or negative sentiments, studies have also

been conducted on predicting the rating scores (1-5 stars) of reviews (Pang and Lee,

2005). Another compelling research direction that has been investigated, is the trans-

fer learning or domain adaptation as it has been indicated that sentiment classifica-

tion is extremely sensitive to the domain from which the training data are extracted.

A classifier trained using opinionated texts from one domain commonly performs

poorly when it is experimented with or tested on opinionated texts from a different

domain. This issue is caused by the fact that words used in different domains to ex-

press sentiments can be considerably different. To make matters worse, the same

word may designate positive sentiment in one domain, but in another domain may

indicate a negative one. Here the classic example is from the work of (Turney, 2002),

where the adjective unpredictable can mean a negative sentiment in a car review

(e.g., "unpredictable steering"), but it could have a positive sentiment in a movie

review (e.g., "unpredictable plot"). Therefore, in cases similar to the mentioned ex-

ample domain adaptation is necessary. Many research has been proposed to deal

with domain adaptation, where they used labelled data from one domain and un-

llabeled data from the target domain and a selection of opinion words as features

(Blitzer et al., 2007, Aue and Gamon, 2005, Yang et al., 2006).

2.8.2 Sentiment analysis using unsupervised learning

In unsupervised learning, unllabeled datasets are used to uncover the structure and

identify the similar patterns from the input data. This method is usually used when

there is difficulty in collecting reliable labelled dataset, yet collecting unllabeled data

is easier. It does not cause any difficulties when new domain-dependent data have

to be retrieved. It is obvious to imagine that opinion words and phrases are the es-

sential indicators in the sentiment classification process. Therefore, the application

of unsupervised learning based on such words and phrases would be quite common.

(Turney, 2002) proposed an unsupervised machine learning approach for the classi-

fication of reviews. Typically, reviews are classified into recommended (thumbs up)

and not recommended (thumbs down). The author employed POS to the document

in order to decide which phrases have to be extracted. In this work, phrases con-

taining adjectives, adverbs, verbs or nouns were retrieved. Afterwards, the semantic

orientation of each phrase from the review was calculated. Then, Pointwise Mutual
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Information (PMI) was applied to find semantic orientation. PMI measures the se-

mantic resemblance of a given phrase with the following two words: "excellent" and

"poor", where if the phrase has a bigger association with "excellent" then it is posi-

tive and if its association with "poor" is bigger then negative. Last step is to identify

the sentiment for the whole review and conclude whether it is recommended or not

recommended. If the average semantic orientation score is positive then the review

is determined as recommended and not recommended otherwise. The average ac-

curacy reported was 74%.

2.8.3 Feature Selection

Engineering the best feature set for sentiment analysis has the highest importance as

it has a massive influence on the evaluation results. This section presents the most

frequent features and these are commonly pre-processed beforehand using different

techniques in order to reduce the feature space. Assembling the feature set is nec-

essary when building a model in order to reduce overfitting, improve accuracy and

reduce training time. In general, feature selection is considered as the important part

of dealing with the corpus’ training data in the machine learning approach (Kummer

and Savoy, 2012, Basant and Namita, 2016). This part consists of converting a piece

of text into a feature vector or other existing representations for computational pro-

cessing (Pang and Lee, 2008).

As a start, the training data are labelled as positive, negative or neutral and next a

selection of features is extracted from the labelled training data. Afterwards, the ex-

tracted features can be represented using simple value types, such as Booleans, num-

bers and strings. For example, the presence or absence of words that appear in the

text can be considered as features. Since the training data is normally composed

of two groups (positive and negative), each individual word in each group can be

considered as a feature vector. Some words such as stopwords (e.g. "a", "is", "the")

and some alphabet do not convey any information about sentiment therefore, these

words are usually filtered out or removed. Adding single words to the set of features is

a technique frequently known as uni-grams method (Pang et al., 2002). There is con-

siderable research dealing with the feature selection in machine learning approach,

however an in-depth discussion of such work is beyond the extent of this thesis. Nev-

ertheless, some typi cal features used in sentiment analysis are listed below as well

as a brief description of each one (see Table 2.1).
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TABLE 2.1: Examples of different features used in machine learning.

Feature Description

Terms and their frequency
Words and their frequency of appearance in text.

The TF-IDF method is applied

Part of Speech
It is used because adjectives are considered

as important indicators of sentiment.

n-grams
The position of a word can possibly influence the

sentiment.
Syntactic dependency It is usually generated with existing lexicons.

Negation
Negation words are important because they alter

the overall sentiment.
Opinion words Words used to express positive/negative sentiments.

Punctuation Special characters like ! ? ’ " or/.
Emoticons Lists of positive, negative emoticons in the text.

Orthographic Features
It is based on the appearance of the word,e.g. the

first letter is a capital letter.

Word2vec
Linguistic resource for word embeddings, with

large input and produces vectors.

Glove
It is an unsupervised learning algorithm for
obtaining vector representations for words.

The key purpose of feature selection is to decrease the dimensionality of the feature

space and hence, make the computational processing easier. A number of studies

(Pang et al., 2002, Kummer and Savoy, 2012, Abbasi et al., 2008) have tried to ex-

periment with different feature types using various algorithms in order to enhance

the performance of sentiment classification. Various combinations of features ex-

tracted in the machine learning approach could generate to different performances.

For example, the problem whether n-gram feature can improve the accuracy of sen-

timent classification has been heavily investigated by different researchers. (Pang

et al., 2002) have evaluated a number of features, such as uni-grams and bi-grams,

with and without POS labels. The results showed that the SVM classifier achieved

better sentiment classification using uni-grams as feature rather than bi-grams. In

contrast, (Dave et al., 2003) carried on an experiment to classify product reviews col-

lected from the websites CNET2 and Amazon3 into two polarities (positive and nega-

tive) and surprisingly, they concluded that bi-grams and tri-grams gave better results

than uni-grams in some cases.

2https://www.cnet.com/
3https://www.amazon.com/
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(Ng et al., 2006) conducted a comparison study of the n-gram features by classifying

the polarity of a review as positive or negative. Primarily, they trained a first polar-

ity classifier using only uni-gram and following that, they trained a second polarity

classifier based on all uni-grams, bi-grams and tri-grams. The results reported the

accuracy of the first classifier was 87.2% and 79.2% for the second classifier. N-gram

features provide an easy way to capture the context, if n is too small, the model does

not have enough context. Oppositely, if n is too large (for n > 3), it is very hard to

computationally generate the features and also it will produce serious sparse data

issues (Peng et al., 2003, Ng et al., 2006, Bespalov et al., 2011).

2.8.4 Evaluation metrics

After the model for sentiment analysis is trained and tested, its performance eval-

uation is mandatory. The performance of the classifiers used for sentiment anal-

ysis is measured by calculating various metrics such as accuracy, precision, recall

and F-measure also referred to as F-score or F1 score. Below, we will describe these

measures on a binary classification of positive and negative labels, but normally any

number of labels can be used. We can show the results in the form of a confusion

matrix.

• Positive (P) - positive text classified as positive.

• Negative (N) - negative text classified as negative.

• False positive (FP)- negative text classified as positive.

• False negative (FN) - positive text classified as negative.

TABLE 2.2: Confusion matrix.

Positive Negative

classified as positive Positive (P) False positive (FP)
classified as negative False negative (FN) Negative (N)

Now we can straightforwardly define the other metrics; accuracy, precision, recall

and F-measure as follows:

Accur ac y = P +N /P +N +F P +F N (2.2)
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Pr eci si on = P/P +F P (2.3)

Recal l = P/P +F N (2.4)

F −measur e = 2P/2P +F P +F N (2.5)

Accuracy is a percentage of all correctly predicted labels in contrast to all sentences.

Precision is a measure of trust, that the items identified as positive are really positive.

Recall is a measure of trust, that all the positive entities are identified. F-measure is

a harmonic mean between precision and recall and it is considered to be an overall

proportion.

2.9 Supervised learning methods for SA

After a collection of features is determined from the training data, an algorithm is im-

plemented to learn those features. If a specific feature leans to be always true when

the training data belongs to a particular class (positive, negative), the used classifier

will learn that this feature is a good indicator of that class. For example, if the word

"good" appears consistently in positive training data, the algorithm will learn the fea-

ture word "good" is a useful indicator of positive orientation. When the classifier is

used to test the new data (testing data), it will extract values based on the features

from the new data and multiply those values by the weights previously learned from

the training data. The sum of the value will display the results of the sentiment clas-

sification (Pang and Lee, 2008, Liu, 2010).

These last years, a lot of work has been done in the field of data analytics precisely

sentiment analysis in natural language and social media posts. To determine whether

a piece of text expresses a positive or negative sentiment, different approaches are

commonly used such as support vector machines (SVM), logistic regression (LR),

maximum entropy (ME)...etc. However, most popular classifiers in the field of senti-

ment analysis are: Naive Bayes (NB), Reccurent Neural Networks (RNNs), SVM and

Convolutional Neural Networks (CNN) also known as ConvNets are a deep learn-

ing tool that has gained expertise in computer vision applications (Srinivas et al.,

2016). It was first introduced in (LeCun et al., 1989) to recognize handwritten ZIP

code in 1989, (LeCun et al., 1998) later extended to recognition and classification of

various objects such as hand-written digits (MNIST), house numbers (Semanet et al.,
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2012), Caltech-1014 (Fei-Fei et al., 2007), traffic signs (Semanet and LeCun, 2011), and

during recent years the work of (Krizhevsky et al., 2012) 1000-category ImageNet5

dataset.

(Go et al., 2009) implemented the same algorithms used in the work (Pang et al., 2002)

to classify the sentiment of Twitter messages, in which the training data were a selec-

tion of tweets with emoticons. Their experimental results reported that the naive

Bayes, SVM and Maximum Entropy classifiers respectively obtained the accuracy of

81.3%, 82.2% and 80.5% corresponding to the reported results in the study of (Pang

et al., 2002). By following the work of (Go et al., 2009), (Pak and Paroubek, 2010)

had taken on a study on the credibility of Twitter as a source of data used for sen-

timent analysis. They described a method for constructing a corpus of tweets that

were later on used for training the classifier and then to determine the polarity of the

tweets. They implemented three different algorithms: naive Bayes, SVM and Con-

ditional Random Fields (CRF). Their results revealed that the best configuration for

the sentiment analysis on Twitter was using naive Bayes classifier along with n-grams

and POS tags as features.

A framework to detect the polarity product reviews was explored by (Lin et al., 2012),

in which the scores of sentiment words were assigned. They conducted their experi-

ment using SVM in order to predict the polarity of product reviews from four different

domains: books, electronics, DVDs and kitchen appliances. The reported accuracies

varied from 73% to 88% depending on the selected features and domain application.

The results revealed that the performance of the classifier gave higher accuracy in

the domains of electronics and kitchen appliances than those in books and DVDs

domains. The best reported performance was using uni-grams as feature and in the

domain of kitchen appliances with 88% accuracy score.

The choice of using neural networks to build natural language processing (NLP) ap-

plications has attracted growing interest in research community and they are regu-

larly applied to all NLP tasks (Kim, 2014). The principal idea of convolutional neural

networks is to think about feature extraction and classification as one combined task.

(Dhande and Patnaik, 2014) proposed a sentiment analysis approach combing neu-

ral network (NN) algorithm with naive Bayes for NN classifier is able to handle the

correlation and dependence. In their experiment, they implemented three different

4http://www.vision.caltech.edu/Image-Datasets/Caltech101/
5http://www.image-net.org/
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classifiers with uni-grams as feature to analyse 2000 movie reviews and their results

are presented in Table 2.3.

In the work of (Ouyang et al., 2015) a CNN and word2vec methodology was proposed

for movie reviews sentiment analysis using a dataset from rottentomatoes.com6. The

dataset consisted of 11,855 reviews with five different sentiment classes: negative,

somewhat negative, neutral, positive and somewhat positive. Their CNN model used

three different convolution layers with different kernels and each layer was followed

by a dropout layer, and normalization layers. For result evaluation, they compared

their model against other models including naive Bayes, SVM, Recursive Neural Net-

work (RNN) and Matrix-vector RNN (MV-RNN). The result shows that performance

is best when it comes to classifying every review into the five different classifications.

Their model achieved a test accuracy of 45.4% on the test dataset.

TABLE 2.3: Accuracy of classifiers in the above mentioned work.

Authors/year Method/feature Best results

Go et al. (2009) NB, SVM and ME with n-grams 80.4%—82.9%
Lin et al. (2014) SVM with n-grams 73%—88%

Dhande and Patnaik (2014) NN-NB with n-grams 80.65%
Severyn et al. (2015) CNN with weights 84.97%

Ouayang et al. (2015) CNN with word2vec 45.4%
Houshmand (2017) NN, NB with word2vec 40.5%—46.4%

In the work of (Houshmand, 2017) a comparison between different neural networks

architectures against the naive Bayes algorithm to see how well they performed on

movie reviews from the Stanford Sentiment Tree bank dataset. The results of their

study showed similar accuracy between the neural networks used (recurrent, recur-

sive and convolutional neural networks) and naive Bayes. One interesting thing about

the result was the fact that their model’s accuracy improved significantly by adding

a word vector from word2vec to the network. Their model reached an accuracy of

46.4% on the test data while the CNN without a word vector got 40.5%

Recently, the biggest reason to adopt convolutional neural networks in natural lan-

guage processing, sentiment analysis, text, topic and document classification is due

to the following key reasons; 1. CNN can extract an area of features from global infor-

mation; 2. It is able to consider the relationship among these features (Kim, 2014); 3.

6https://www.rottentomatoes.com/
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Text data features are extracted piece by piece and the relationship among these fea-

tures, with the consideration of the whole sentence, thus, the sentiment can be un-

derstood correctly. The scope of using this methodology in data analytics has proven

to be advantageous in various ways.

2.10 Domains of sentiment analysis

2.10.1 Twitter Sentiment Analysis

Research on acquiring and analysing Twitter data has been growing exponentially

over the past decade. This interest is due to several reasons: First, social media text is

a rich source of public information. Second, information on Twitter is open, has clear

character number and well-documented. Third, it is in real-time where the appear-

ance of messages occurs, figuratively speaking, with the speed of thought. Fourth,

this site is used to pass and express opinions by different sectors. Twitter content

analysis can help to evaluate changes in moods of many users, to reveal their prefer-

ences, likes and dislikes.

Posts on Twitter referred to as tweets are considered as a gold mine for sentiment

analysis researchers. There is empirical evidence that Twitter users tend to share

posts (tweets) or opinions about products or services (Pak and Paroubek, 2010), and

these tend to be short (at most 280 characters long), informal and normally straight

to the point. Sentiment analysis tasks that can be applied to Twitter data are polarity

classification and sentiment identification. Considering the short nature of tweets, a

sentence-level classification approach can be conducted, based on the assumption

that tweets express sentiments about one single entity. Furthermore, retrieving mes-

sages from Twitter is a pretty straightforward process using the public Twitter API7.

In (Go et al., 2009), the Twitter API was fetched to extract tweets containing both pos-

itive and negative emoticons for building a training dataset for their maximum en-

tropy classifier. A good accuracy of 83.7% was obtained when the model was trained

on a manually labelled dataset. They experimented with uni-grams and bi-grams

as features. Moreover, they tried to reduce the feature sparse by replacing repeated

letters (e.g., huuungry to hungry, loooove to love) and replacing users tags found in

tweets by the ’@’ symbol. Just the same for URLs were replaced with the symbol ’URL’.

7https://developer.twitter.com/en/docs

https://developer.twitter.com/en/docs
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Pak and Paraoubek conducted similar work to their previous research in (Pak and

Paroubek, 2010). In addition to positive and negative classes extracted from emoti-

cons, they added a neutral class retrieved from tweets posted by accounts of popu-

lar newspapers and magazines such as the New York Times. The corpus was used to

train the classifier and perform 3 class sentiment analysis. This work aimed on taking

advantage of both types of labels, emoticon-based and human-labelled. In (Zhang

et al., 2011), the authors proposed a lexicon based method to apply sentiment anal-

ysis on Twitter data. They trained a classifier using a selection of annotated tweets.

Their method is able to capture domain specific sentiment patterns and achieved

high precision, yet low recall.

(Speriosu et al., 2011) proposed another supervised learning approach combined

with a lexical approach. The authors constructed a graph consisting of users, tweets,

words, hashtags and emoticons as its nodes. A sub-selection of these nodes is la-

beled beforehand with a score from the polarity lexicon. These labels are distributed

throughout the built graph. An exhaustive survey of approaches utilising unlabelled

data for Twitter sentiment analysis based on self-training, co-training, topic mod-

elling, and distant supervision is provided in (Silva et al., 2016).

In (Kouloumpis et al., 2011) demonstrated the impact that feature selection has on

the model’s performance. At first, they trained their model using different linguistic

features in addition to existing lexical resources developed for micro-blogging to de-

tect the sentiment orientation. Their results showed that POS features and features

from existing sentiment lexicons were effective. Additionally, they also concluded

that the training data will be of less gain if they consider micro-blogging features

(Nahili et al., 2020).

In 2013, The Semantic Evaluation (SemEval) workshop held the "Sentiment Analy-

sis in Twitter task 3" with the goal of encouraging research in social media sentiment

analysis (Rosenthal et al., 2014). The competition was divided into two sub-tasks: the

sentence level and the message level. The team that reported the best performance in

both tasks was the NRC-Canada team (Mohammad et al., 2013). They implemented

a supervised learning method based SVM classifiers using the following selection of

features: n-grams, part-of-speech tagging, the number of words with repeated char-

acters, the number of words in uppercase, presence of positive or negative emoti-

cons, the number of continuous sequences of dots, question marks and exclamation
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marks. Additionally, they used features derived from their previously proposed po-

larity lexicons (NRC-Hashtag 8 and Sentiment140 9 lexicons), which were built using

a large selection of tweets.

Following the above research was the work of (Goncalves et al., 2013) in which an

ensemble approach combining different sentiment analysis techniques for polarity

classification of social media messages. The authors evaluated the methods in re-

gards to their corresponding classification performance, proving that their combi-

nation achieved a better percentage of correctly classified messages. For their sen-

timent analysis research, (Severyn and Moschitti, 2015) developed a convolutional

neural network for analysing tweets. The representation of each tweet was using a

matrix whose columns correspond to the words in the tweet, by keeping track of the

order in which they appear. The words are represented by dense vectors or embed-

dings trained from a large corpus of unlabelled tweets. The network is build consist-

ing of the following layers: an input layer with the specified tweet matrix, one con-

volutional layer with a rectified linear activation function, followed by a max pool-

ing layer, and a softmax classification layer. The parameters of the neural network

are pre-trained using emoticon-annotated data, and then trained with the hand-

annotated tweets from the SemEval competition. Experimental results proved that

the pre-training phase leads to suitable initialisation of the network’s parameters,

and therefore, had positive affect on the classification accuracy.

(Debjyoti et al., 2017) investigated a data science project called US Election 201610,

where they performed a spatial-temporal sentiment analysis from large-scale so-

cial media data. Their goal was to discover sentiment on Twitter towards either the

democratic or the republican party at US county and state levels over any arbitrary

temporal intervals. They used a huge set of geo-tagged tweets from a period of 6

months before the US Presidential Election in 2016. Their results showed effective

outcomes and proved that by integrating and developing a combination of machine

learning and data management techniques, it is possible to perform a spatial tem-

poral sentiment analysis at scale. The adaptation of their results towards solving and

influencing other interesting social issues such as building neighborhood happiness

and health indicators prove its potential.

8https://saifmohammad.com/WebPages/lexicons.html
9http://help.sentiment140.com/

10https://dl.acm.org/doi/10.1145/3097983.3098053
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In the work of (Mohamad et al., 2017), sentiment analysis was applied to analyse

and extract the polarity of sentiment from product reviews (laptop and restaurant)

collected in the SemEval 2014 Task 4 dataset. They conducted an aspect-based sen-

timent analysis approach which consisted on studying specific aspects of products

such as food, service, price and ambiance. This research was conducted following

three phases; data pre-processing which involved part-of-speech (POS) tagging, fea-

ture selection using Chi Square because it has been proven to speed up the compu-

tation time in the classification process, and classification of sentiment polarity of

aspects using naive Bayes classifier. Based on their evaluation results, the proposed

system gave promising output and was able to perform aspect-based sentiment anal-

ysis with its highest F-measure of 78.12%.

In (Alomari et al., 2017) claimed that Arabic tweets pose a good opportunity for opin-

ion mining research but they were set back due to lack of sentiment analysis re-

sources or challenges in Arabic language text analysis. Their work included Ara-

bic Jordanian twitter corpus11 in which the tweets were labelled as positive or as

negative. These tweets were analysed using different supervised machine learning

approaches. Several experiments were conducted using different TF-IDF weights,

stemming and n-grams. This initiative showed that SVM classifier with TF-IDF and

bi-grams feature was better as compared to naive Bayes classifier. Following an ex-

perimental study they finally concluded that SVM classifier using a combination of

TF-IDF with stemming and bi-grams showed 88.72% accuracy and 88.27% f-score,

their model performed better than other Arabic sentiment analysis research results.

(Ankit et al., 2018) proposed an ensemble classifier that combines commonly used

classifiers such as naive Bayes, random forest, SVM and logistic regression to form

a single classifier. Their proposal aimed on improving the performance and accu-

racy of sentiment classification techniques. The proposed architecture included four

modules; 1. Data pre-processing module: for pre-processing the data; 2. Feature

representation module: for feature extraction from pre-processed tweets, BoW tech-

nique was used for converting tweets into numeric representation; 3. Sentiment clas-

sification using base classifiers: in which different base classifiers were implemented

for sentiment analysis and finally; 4. Sentiment classification using the proposed en-

semble classifier (Nahili et al., 2020). The implementations were done in Python. The

results showed that the proposed ensemble classifier performed better than stand-

alone classifiers and majority voting ensemble classifier. In addition, as part of their

11https://github.com/komari6/Arabic-twitter-corpus-AJGT
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study the role of data pre-processing and feature representation in sentiment classi-

fication technique was also explored.

2.10.2 Sentiment analysis of reviews (product/movie)

Adapting text reviews publicly available on the Internet is a trending opportunity in

the field of sentiment analysis, which is the process of exploring these product re-

views to identify the overall sentiment or opinions about a specific product. Online

reviews constitute the notion referred to as user-generated content (Chapter 1), and

this is of growing attention and a gold mine for researchers, marketing teams and

people who might be interested in sentiments, opinions, views and public mood.

The tremendous volume of reviews on the web displays the present scheme (mani-

festation) of user’s feedback (reaction). The task of analysing the sentiment present

in a given review is a challenging problem due to several reasons. One matter is the

subjectivity detection explained in (section 2.8) in the text and the necessity to dis-

tinguish the opinionated sentences from the non-opinionated ones. An additional

matter that makes it difficult to classify reviews is that in some cases the writer writes

many sentences manifesting the same sentiment (e.g positive), and then concludes

with one negative sentence that shifts the overall meaning of the entire text. Con-

sequently, this is why there should be better techniques for feature selection. Many

studies have explored different methods in classifying the sentiment of product re-

view, some of which implemented machine learning approaches, some applied lexi-

cal methods, and some used linguistic approaches or a combination of various tech-

niques. Due to the fact that a lot of reviews data are publicly available and easily

accessed with platforms like Twitter, Amazon, Yelp, IMDb and rottentomatoes. Sev-

eral research have been conducted to analyse and predict sentiment orientation of

online reviews.

(Wang and Manning, 2012) proved that for text classification different alternatives

of machine learning algorithms show large variation in their performance. They

also demonstrated how Bayes (NB) was more suitable than Support Vector Machines

(SVM) for small part in sentiment tasks in addition to bi-gram results that showed

constant improvements in tasks. They also, proposed a new SVM variant which

showed better consistent results on datasets and resulting to this information they

demonstrated NB and SVM variants. This paper resulted in several conclusions:

Multinomial Naive Bayes (MNB) was a better choice for sentiment analysis tasks;
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SVM was more preferred on long reviews; the performance of bi-grams depends on

the sentiment tasks; They also concluded that NB-SVM generated the best results

and Bernoulli Naive Bayes (BNB) produced poor results compared to MNB.

(Nguyen et al., 2014) implemented a new feature type to check its contribution in

document level sentiment analysis. They achieved better results than (Maas et al.,

2011) in terms of accuracy with a score of 91.6% on the dataset collected by (Pang

and Lee, 2004). They also applied sentiment analysis on a dataset containing 233,600

reviews and their proposal achieved 93.24% accuracy. In this study, a sentiment po-

larity classification system has been implemented. Primarily, they described a rating

feature used to train the model from an external data set of 233,600 movie reviews.

Afterwards, the reported results of their classifier and rating feature showed an accu-

racy of 91.6% and 89.87% respectively on the datasets from different domains.

In (Mesnil et al., 2014) sentiment analysis was used to perform natural language pro-

cessing aiming to detect the polarity of text document. First, they followed a binary

classification problem using IMDb 12 dataset where only positive and negative senti-

ments were considered. Various machine learning techniques were implemented for

this problem. First one based on language models, second one based on consecutive

models of sentences and the last one based on the BoW (Bag of Words) model. This

work helped in determining how to adapt different models for sentiment analysis.

They included a code which is available publicly at http://github.com/mesnilgr/iclr15

In (Tripathy et al., 2016) presented that the reviews and blog datasets obtained from

the social networking sites were unsystematic and need classification for a meaning-

ful information. They used various supervised machine learning methods to classify

reviews as positive, negative and neutral. In this particular work, they introduced

four different machine learning algorithms: NB (Naive Bayes), ME (maximum en-

tropy), SGD (stochastic gradient descent) and SVM (support vector machine) for sen-

timent classification. They used precision, recall, F-measure, and accuracy as evalua-

tion metrics for the proposed models. This paper helped in classifying movie reviews

using supervised machine learning algorithms which was further applied on IMDb

dataset using n-gram approach. The results of this paper gave several insights; they

concluded that the classification accuracy decreases as the value of n increases in

the n-gram approach; better accuracy was obtained when TF-IDF and count vector-

izer techniques were combined. And last, hybrid machine learning techniques were

considered for better accuracy.

12https://www.imdb.com/

http://github.com/mesnilgr/iclr15
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(Tiwari et al., 2017) analysed online audits and film ratings using a content based

sentiment analysis approach. They considered different supervised machine learn-

ing algorithms to classify these reviews. For conclusions three different machine

learning algorithms were considered; SVM, ME, NB and these were based on eval-

uation parameters such as accuracy, recall, F-measure and precision. In this paper

to classify film reviews from the rottentomatoes dataset, the authors used the n-gram

method where different machine learning techniques have been suggested. This re-

search main conclusion was that in comparison with other studies their results ob-

tained the best accuracy.

In the work of (Miedema, 2018) the goal was to find out why RNN and LSTM mod-

els work well for sentiment analysis and how these models work. Their research was

based on the principle of compositionality, which states that the meaning of a longer

expression depends on the meaning of its predecessors. RNNs were used to perform

sentiment analysis because they allow the network to have a memory. Since the au-

thor dealt with sequenced text data, having a memory in a network is useful because

the meaning of a word depends on the context of the previous text. The main draw-

back of the RNN is that its capacity of only dealing with short-term dependencies. To

solve this problem they proposed a combination of both RNNs and LSTM. The model

was trained using word embeddings as feature. It was very sensitive to overfitting, so

the model was stopped from training after the fifth epoch. The final model resulted

in an accuracy score of 86.74

So in (Law et al., 2017) focused their study on the domain of under performance in

large home appliances precisely dishwashers. They constructed two domain specific

lexicons related to dishwasher defects (sparkle and smoke). Their work was destined

to improving the quality of dishwasher appliances. The authors had taken on differ-

ent experiments to capture the defects in the products. They used Afinn lexicon in

the first experiment to detect the defects but they reported that the other sentiment

analysis techniques gave better performance than uni-gram, bi-grams and tri-grams.

From the second experiment they came with the conclusion that in discovering the

defects logistic regression, neural network and decision tree classifiers performed

better. The best reported results were obtained by neural networks and the negative

reviews had unsuitable outcome on sales, brand reputation and company profits.

The approach implemented in the work of (Malik et al., 2018) is a modification of the

approach stated in (Haider, 2012). For their extended study, 100 reviews about the
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product ’Fit-Bit’ were crawled from the well-known e-commerce Amazon 13 website.

They proposed an ontology based sentiment classification framework in which they

used various attributes along with their assigned polarity scores. To capture users’

preferences regarding different product aspects and attributes they used the formula

defined in (Yaakub et al., 2012). Their experimental results showed that the proposed

ontology model works effectively. The result obtained proved that when the buyer’s

choice is the most specific the more the decision making process is accurate.

After an extensive study of the above surveyed work on sentiment analysis on re-

views, an obvious conclusion is drawn as the platforms delivered by e-commerce are

evolving at an exponential rate, access to information is becoming pretty straight-

forward. In consequence, growing number of consumers (users) will seek product

information from online consumers feedbacks, instead of the information commu-

nicated by the product manufacturers. Reviews shared by users are examples of such

type of information and they have by now become a key part of customer’s purchas-

ing decision process. Hence, a large number of people lean towards online shop-

ping due to the fact that these platforms provide a transparent system for costumers

to make informed decision and feel satisfied with it. Considering the rapid evolu-

tion of Internet-distributed computing, up to now, we have the ability to process

and analyse tremendous amount of data and predict customer choices and future

interests. Therefore, it is becoming progressively compelling to quickly and effec-

tively capture users’ sentimental orientations and preferences based on online text

reviews and comments. In this thesis, movie and product reviews are investigated,

using online reviews data from different sources; first one is tweets and the second

one is movie reviews using the famous dataset for sentiment analysis IMDb. The

problem is tackled using two approaches; for analysing Twitter data a lexicon-based

approach is proposed; for predicting the sentiment of movie reviews (IMDb), a su-

pervised learning methodology is implemented using a novel convolutional neural

network. Both approaches will be presented in detail in the next chapter.

13https://www.amazon.com/
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2.11 Comparison of semantic and supervised learning

approaches

After a thorough review and comparison of the surveyed literature on sentiment

analysis some interesting observation was generated: for one thing the semantic ori-

entation approach to sentiment analysis is unsupervised learning, because it does

not require data for training. But, the supervised learning approach is considered

as a supervised learning method, which is dependent on training data, the text fea-

tures and chosen algorithms identify the polarity of a given text (Liu, 2012, Turney

and Littman, 2003). In conclusion, the semantic orientation approaches are typi-

cally effective and need very little training, still the performances are usually lower

than those of supervised learning techniques. Nonetheless, the supervised learn-

ing approach is very time-consuming because the model built by machine learning

or deep learning classifiers is extremely dependent on both the size and quality of

training data (Zhou and Chaovalit, 2008). A couple of research have been conducted

to compare the performance of both methods. (Chaovalit and Zhou, 2005) followed

both approaches to perform sentiment analysis by using a movie reviews dataset and

realised the first comparison in the same domain. They used the scoring approach

from (Turney, 2002) for their semantic orientation approach whereas in their ma-

chine learning model, they experimented with n-grams. Their results showed that

the semantic orientation approach yielded 77% accuracy, and the machine learning

model achieved 85.5% accuracy. However, no results reporting their performance

comparison of the two approaches on specifically the same dataset were mentioned.

Also, in our opinion the data size was too small and we found obvious inconsistency

in the number of positive and negative reviews: 285 positive reviews and 47 negative

reviews.

Despite the fact that there is broad agreement that supervised learning approaches

achieve better performance than the semantic orientation approach, it is essential to

specify that studies also point out that the sentiment classifiers built via supervised

learning techniques might perform really well in the domain they are trained on, but

the performance can drop tremendously, if the same sentiment classifier is tested in

different domains. Because the performance of supervised learning approaches de-

pend on the quality and size of the training data (Brooke, 2009, Zhou and Chaovalit,

2008). Opposed to, semantic orientation methods have the ability to identify the

words with assigned polarity usually independent of context and hence offer a much
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broader scope of application than supervised learning techniques (Liu, 2012). Addi-

tionally, in some cases the semantic orientation approach might be a better choice

than a supervised learning classifier while handling negation. For example, in some

proposed work using the semantic approach, negation is commonly dealt with by

calculating the polarity scores of the terms and then determining a combined polar-

ity score (Taboada et al., 2011, Choi and Cardie, 2008). Consequently, the semantic

orientation approaches are simply appropriate to determining both the polarity and

the strength of orientation considering that their result is a numeric score represent-

ing an averaged value of the scores from opinionated words in the text. However, it

is difficult to catch the sentiment strength using machine learning approach. Due to

the training data often consists of positive and negative training datasets, sentiment

classifiers built by supervised learning algorithms frequently output binary results.

In conclusion, capturing the rating intervals of polarity using the sentiment classi-

fiers does not come easily in the supervised learning approaches (Brooke, 2009, Pang

and Lee, 2005).

Each approach has its advantages and drawbacks. Previous research showed both

of semantic and supervised learning techniques for sentiment analysis have been

implemented in different domains. Table 2.4 shows a brief detailed summary of the

surveyed previous research including the approach and features that were used along

with datasets, level of analysis and the highest achieved results in terms of accuracy

and F1 score:

Authors/year Approach/features Dataset Best results

Fenna Miedma

(2018)

SL with

word embeddings
IMDb 86.74%

Malik et al.

(2018)

LB with

attribute scores
Amazon

Ankit et al.

(2018)

SL with

BoW

Sent140

HCR, GOP

75.81%-

76.85%

Mohamed et al.

(2017)

SL with

POS
SemEval14 78.12%

Houshmand

(2017)
SL STT

40.5%-

46.4%

Alomari et al.

(2017)

SL with

TF-IDF,n-grams
AJGT

84.73%-

88.72%
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Law et al.

(2017)

SL with

2 lexicons

AFINN,n-grams

Dishwasher

reviews

Tiwari et al.

(2017)

SL with

n-grams,TF-IDF
Rottentomatoes

87.53%-

89.64%

Khan and Bashir

(2016)

LB with

adj only
Movie reviews 76%

Tripathy et al.

(2016)

SL with

n-grams,tf-idf
IMDb

70%-

86.23%

Saif et al.

(2015)
LB Twitter 87.50%

Severyn et al.

(2015)
SL Twitter

Park et al.

(2015)
LB and SL Amazon

Ouayang et al.

(2015)

SL with

Word2Vec
Rottentomatoes 45.4%

Yih et al.

(2014)
SL 54%

Kalchbrenner et al.

(2014)
SL TREC

48.5%-

86.8%

Dhande and Patnaik

(2014)
SL

Movie

reviews
80.6%

Nguyen et al.

(2014)

SL with

rat-feature,n-grams

PL4

IMDb
80.6%

Khanaferov et al.

(2014)
SL Tweets

Mesnil et al.

(2014)

SL with

n-grams,TF-IDF
IMDb

86.5%-

92.57%

Ortega et al.

(2013)
LB SemEval13 50%

Balage and Pardo

(2013)

LB with

adj

Self-collected

reviews
69%

Ostrawski et al.

(2013)
SL
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Fei et al.

(2012)
DB Dictionary 68.9%

Montejo-Ráez et al.

(2012)
LB

Self-collected

Tweets
63%

Lin et al.

(2012)
SL Amazon 88%

A. Abrahams et al.

(2012)
SL USDT

Wang et al.

(2012)

SL with

n-grams,BoW

RT,Amazon,

Subj, IMDb

79%-

93.6%

Xu et al.

(2011)

SL with

ling feature

Self-collected

reviews
61%

Taboada et al.

(2011)
LB Movie reviews

Kouloumpis et al.

(2011)

LB with

n-grams,POS

Edinburgh,EMOT

iSieve
75%

Li and Liu

(2010)

SL with

TF-IDF

Movie

reviews
74.7%

Melville et al.

(2009)
SL Blogposts 91.21%

Zhou and Chaovalit

(2008)

Ontology

with n-grams

Self-collected

reviews
72.2%

Godbole et al.

(2007)
LB News

82.7%-

95.7%

Kennedy and Inkpen

(2006)
SL

Movie

reviews
86.2%

Cui and Mittal

(2006)
SL Froogle

Gamon (2005) SL Amazon 86%

Pang and Lee

(2004)
SL IMDb 86.4%

Turney and Littman

(2003)

LB with

scores

Novels

articles
65.27%

Pang et al.

(2002)
SL IMDb 82.9%
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Turney (2002)
LB with

scores

Pos

neg terms

66%-

84%

TABLE 2.4: Summary of the main studies on sentiment analysis.

2.12 Challenges of research in sentiment analysis

Typically, sentiment analysis also referred to as opinion mining is considered a par-

ticular case of text classification in a natural language processing task. Although sen-

timent analysis has a limited number of classes, the process of sentiment classifi-

cation is more difficult than the traditional topic text classification (Pang and Lee,

2008). Generally, when performing topic text classification, classification depends

on using keywords, but according to (Turney, 2002) this does not work well in the

case of sentiment analysis. The other challenges faced in sentiment analysis emerge

from the nature of this problem. Whereas, we explained in previous sections in some

cases the negative sentiment might be expressed in a sentence without using any

distinct negative words. Furthermore, there is a subtle line between whether a sen-

tence should be identified as objective or subjective. Extracting the sentiment gen-

erator; the one who expresses the sentiment in the text is one of the hardest tasks

in sentiment analysis. Additionally, the sentiment analysis task extremely relies on

the domain of the data. Also, the words sometimes may convey positive sentiment

in a specific domain, at the same time they may express another sentiment polarity

in another domain (Pang and Lee, 2008). Last, some other writing patterns such as

irony, sarcasm, or negated sentences could lead to more difficulties in the sentiment

analysis field.

In pursuance of mining the opinions automatically, two diverse approaches for sen-

timent analysis have been described in detail in previous sections. The approach

of supervised learning has accomplished acceptable accuracy, which to a great de-

gree depends on the quality and size of the training data (Basant and Namita, 2016).

This obviously demonstrates that the supervised learning approach is with no doubt

domain dependent, which is a key factor that leads to a better performance of sen-

timent classification in the corresponding domain. Yet, it is difficult to capture the

sentiment intensity by implementing the supervised learning approach, because the

output is frequently binary; positive or negative. The issue found here resides on the
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fact that most of real life data available on social media illustrates different strengths

of sentiment. Although, the essence of the supervised learning methods, it is not ad-

equate for in-depth sentiment analysis, such as phrase level or aspect level analysis

(Khoo et al., 2015) this research is taken on both the semantic and supervised learn-

ing orientation technique seeking to inspect a better way for fine-grained sentiment

analysis by proposing novel frameworks to analyse social media data.

2.13 Research gaps in sentiment analysis

Over the last few years, the semantic orientation approach for sentiment analysis has

been focused and implemented either in academia or in business industry, but it ap-

pears it runs into a wall when it comes to performance (Taboada et al., 2011, Khan

et al., 2016). A few research gaps are identified in the semantic orientation research.

At first, the main task in semantic orientation method is building the sentiment lex-

icon, which is frequently domain dependent and thus, is limited. The general sen-

timent dictionary has been globally applied in most research, where sometimes it is

an automatic generated lexicon, such as SentiWordNet or manually constructed dic-

tionary, such as Hu and Liu Lexicon (Hu and Liu, 2004, Esuli, 2013, Ghosh and Kar,

2013, Cernian et al., 2015). The principal issue found when using general sentiment

dictionary is that the polarities of words rely on the context of use. For example, (Hu

and Liu, 2004) have collected a list of English positive and negative sentiment words,

which they claim are domain independent. However, majority of words found in that

list are unclear without context. Due to the components of natural language, previ-

ous research point out that domain dependent approaches can obtain better accu-

racy (Liu, 2015), but, it is tricky to automatically build domain dependent sentiment

lexicons, because that method depend on seed words with clear sentiment orienta-

tions such as "good" and "bad" (Kim and Hovy, 2004, Qiu et al., 2009). Therefore,

the domain dependent lexicon requires manual effort to select sentiment words. As

result of the cost in regards to time and effort, a steady domain dependent sentiment

lexicon is impossible. Also, the current sentiment dictionaries mostly contain adjec-

tives, adverbs and verbs. Lastly, they involve limited selection of nouns and phrases

that indicate sentiment and no slang language which is largely used on social media

platforms. Likewise, the semantic orientation approach is unsuitable for handling

contextual information. Both the semantic orientation approach or the supervised

learning approach, process text using the bag-of-words model by perceiving text as
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a sequence of words, which grants no attention to the context (Montejo-Ráez et al.,

2014). Hence, it is difficult to manipulate linguistic features, such as negation. An-

other research gap is that there is small number of methods proposed for sentiment

analysis on data containing mixed sentiments. Previous work in the field of senti-

ment analysis are based on the suggestion that each document or sentence contains

single sentiment; positive, negative or neutral, whether it is based on document level

or sentence level (Liu, 2012, Zhou and Chaovalit, 2008).

In pursuance of narrowing the research gaps presented above, this research is moti-

vated to explore a new approaches to apply sentiment analysis. Our contribution

comes in two folds; the first one is to deal with the notions of negation and nat-

ural language processing presented in the research gaps. Recently, many research

have been done in the domain of social media analytics precisely sentiment analy-

sis; whether using semantic orientation methods or supervised learning algorithms,

most of which concentrate on people’s sentiment regarding different topics. The

problem in analysing social media unstructured data in this manner is not effec-

tive in terms of accuracy and provides a generalised idea. In order to make it more

specific, in this thesis, we propose a lexicon-based approach to perform sentiment

analysis on tweets since they are a reliable source of information, mainly because

people share posts (tweets) about everything, either it is about purchasing products

or reviewing them. The previously presented approaches are different from ours:

First, we perform sentiment analysis at the phrase level, thus the sentiment polar-

ities assigned at a much accurate, precise level. Second, our approach for polarity

assignment is also different since we deal with five classes of sentiment (very posi-

tive, positive, very negative, negative and neutral) because it catches the change in

sentiment strengths and hence conveys real life scenarios. The second fold is for the

limitations in the work done on sentiment analysis of online reviews such as movie

reviews from IMDb and rottentomatoes or product reviews from Amazon. We pro-

pose a deep learning approach using a convolutional neural network with an em-

bedding layer to perform sentiment analysis. The results proved the model to be

effective and achieved satisfactory accuracy. These contributions are proposed in

this research in pursuance of slimming the mentioned gaps, which are presented in

the next chapter.
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2.14 Conclusion

In this chapter, the notion of sentiment analysis and its different levels have been

introduced. In particular, a thorough discussion of the semantic orientation and su-

pervised learning approaches for sentiment analysis was provided. After a compar-

ison study of both techniques, the strengths and weaknesses of each approach were

also presented, thus many research gaps have been identified. In order to narrow

these gaps, 1. A system aiming to perform sentiment analysis is proposed in this the-

sis by following a lexicon-based approach for sentiment analysis of social media data

(Twitter), 2. A deep learning approach, in which a new convolutional neural network

model with an embedding is built pursuing to analyse and predict the sentiment of

online text precisely movie reviews. Both approaches are presented in the following

chapters.



Chapter Three

Proposed lexicon-based approach for

sentiment analysis of tweets

3.1 Introduction

In the previous chapter, various research on sentiment analysis (SA) have been de-

scribed and several research gaps have also been spotted. In order to narrow the

gaps and accomplish the objectives of this research, two new sentiment analysis ap-

proaches are proposed in this chapter. The first one aims to provide a hybrid ap-

proach combining lexicon-based and supervised learning methods to conduct fine-

grained sentiment analysis on Twitter data (Nahili and Rezeg, 2018), the second one

is a new convolutional neural network model for sentiment analysis of social media

text (Nahili et al., 2019). This chapter begins by introducing the specifics of research

on Twitter data, followed by the dictionary construction then a detailed description

and explanation of the proposed approach for analysing tweets, which seeks to pro-

vide an approach to conduct sentiment analysis automatically. Afterwards, the chap-

ter continues with the implementation of a system called TweetEcho along with ex-

perimental results.

3.2 The specifics of research on Twitter data

Twitter is a real-time, highly social microblogging service that allows users to post

short messages referred to as tweets of 280 characters or less. As opposed to other

52



Proposed lexicon-based approach for sentiment analysis of tweets 53

social networks like Facebook1, Instagram2 and LinkedIn3, where users have a bidi-

rectional connection, Twitter has an asymmetric connection of "friends" and "fol-

lowers" (Russell, 2011). Twitter is a significant phenomenon due to many reasons;

its impressively high number of users (Chapter 2), as well as its use as a marketing

device by companies in order to built more targeted marketing campaigns to satisfy

customers’ needs. This particular microblogging site offers an extensive collection

of APIs destined for data analytics (Twitter-Dev, 2020)4. As presented in the previous

chapter, research on Twitter data analysis has been growing exponentially over the

past decade. This interest is due to several reasons:

1. First, social media text is a rich source of public information;

2. Second, information in Twitter is open, has clear number of character and well-

documented.

3. Third, it is in real-time where the appearance of messages occurs, figuratively

speaking, with the speed of thought.

4. Fourth, this site is used to pass and express opinions by different sectors. Twit-

ter content analysis can help to evaluate changes in moods of many users, to

reveal their preferences, likes and dislikes.

Based on the above reasons, microblogging content analysis can help to evaluate

changes in moods of many users, to reveal their political preferences, likes and dis-

likes, their choice in favour of one or another candidate during election campaigns.

That is why the development of methodologies destined for Twitter sentiment anal-

ysis witnessed growing interest in recent years. Most often, the researchers used sen-

timent analysis. It can be used for political or sociological researches, for analysis of

consumer preferences microblog users, and in other cases.

3.2.1 Sentiment Analysis of Twitter data

The Oxford English dictionary defines sentiment analysis as follows:

1https://www.facebook.com/
2https://www.instagram.com/
3https://www.linkedin.com/
4https://developer.twitter.com/
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’The process of computationally identifying and categorising opinions expressed in a

piece of text, especially in order to determine whether the writer’s attitude towards a

particular topic, product, etc. is positive, negative, or neutral.’

Sentiment analysis also referred to as opinion mining or text mining is a sub-task

from natural language processing (NLP). Successfully performing sentiment analysis

caters an important component of understanding the semantics of text. It can be

applied to different levels of granularity, as for instance document or sentence level

(see Section 2.5). Most of the work on sentiment analysis focuses on product reviews

(Medhat et al., 2014). The difference between tweets and typical product reviews

is that tweets are restricted in length and contain Twitter specific attributes such as

hashtags (indicated by the ’#’ symbol) and author references (@author) that are not

necessarily found in product reviews.

3.3 Proposed lexicon-based approach for Twitter SA

As stated by (Wieringa, 2014), the phases of problem identification and objective def-

inition are considered as fundamental starting points of design science methodology

for information systems and software engineering (Wieringa, 2014). As presented in

Chapter 1 and 2, the real-world requirements and research gaps of sentiment anal-

ysis have been identified based on the preceding research. In order to slim the re-

search gaps and provide an efficient approach to sentiment analysis, the first inno-

vative framework has been proposed in this research (see Figure 3.1).

FIGURE 3.1: Proposed approach for Twitter sentiment analysis.

The proposed approach conducts fine-grained (i.e. multi-class) sentiment analysis

on tweets at sentence level. It cannot only process and analyse single opinionated

text but also mixed opinion text. The system provides an enhanced way to capture
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phrases or multi-word expressions in the text based on a sentiment lexicon (dictio-

nary) in order to yield more context from the text. Moreover, with the combination

of machine learning classifiers specifically naive Bayes classifier the framework of-

fers a valid approach to conduct accurate sentiment classification. The proposed

approach is divided into the following four phases: sentiment lexicon construction

which will be explained in details in the following sections, data collection, data pre-

processing and data classification will be presented is the next chapter.

3.3.1 Sentiment lexicon development

When adapting the lexicon based approach, the main component to conduct senti-

ment analysis with efficiency is lexicon or dictionary construction. Prior work present

the unsupervised approaches to develop dictionary extremely depend on the context

of words, but several words have no purpose in the sentiment analysis task, in conse-

quence their unsuitable sentiment orientation values (score) result in a great deal of

noise in the final classification of sentiment (Brooke, 2009, Hu and Liu, 2004). With

the aim to overcome these problems, the most stable way is manually classifying by

human judgment, considering the human annotators are able to identify the polarity

of words intuitively in most circumstances and compare words to each other to de-

cide where they should fit on a scale relatively (Taboada et al., 2011, Hatzivassiloglou

and McKeown, 1997, Brooke, 2009).

FIGURE 3.2: The different steps for our sentiment lexicon development.

The advantage of this approach is its performance and speed, in addition, it can be

used for text analysis at the document, sentence or entity level. In conclusion, the
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sentiment lexicon within the framework is built manually, which has three steps: col-

lecting frequently used sentiment terms on social media to describe and review prod-

ucts (Nahili and Rezeg, 2018); assigning sentiment orientation value (score); evaluat-

ing and refining the sentiment lexicon for necessary modifications further on (Nahili

and Rezeg, 2018).

3.3.1.1 Word collection

In this work, we proposed a lexicon-based approach for Twitter sentiment analysis,

apart from sentence-level analysis of text, another inventive element of the proposed

framework is the development of sentiment lexicon, in which we not only include

single-word terms (see Table 3.1) but also multi-word terms (see Appendix A). In this

thesis, sentiment terms invoke those sentiment words or expressions used to express

positive, negative or neutral sentiments. The sentiment terms in the constructed lex-

icon can appear in two patterns: single-word term and multi-word term. The single-

word term only consists of a single-word entity, whereas multi-word terms contain

at least two words such as phrases and abbreviations which are considered as a sin-

gle entity (Table 3.1). Taking into account sentiment aspects of words in different

context, we distinguish two types of sentiment words: global sentiment or domain

independent words and domain specific or domain dependent sentiment words.

The global sentiment words denotes a selection of words and phrases with polarity

consistent across domains such as "good", "love", "wonderful" and "disappointed".

What is on the other hand is domain-specific sentiment words, which might only be

useful in some particular domain or might have variable polarities in different do-

mains (Turney, 2002, Law et al., 2017, Qiu et al., 2009, Ding and Liu, 2007, Sharma

and Bhattacharyya, 2013).

TABLE 3.1: Examples for single-word and multi-word terms from the lexicon.

Single-word terms Multi-word terms

good no problem
wonderful best forgotten

satisfied can’t be happier
bad not bad

sucks no good
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In this research, the sentiment lexicon is composed of both global and domain spe-

cific words by extracting the frequently used sentiment words or expressions in prod-

uct reviews. There are three reasons why the sentiment lexicon is built over domain

specific corpus in our research. First of all, the problem confronted when using lex-

icon based approach resides on the fact that the polarities of words and expressions

rely on the context of application. Previous research show that the domain specific

lexicon achieves better sentiment analysis than the domain independent because

the expressions of sentiments or opinions differ significantly across different do-

mains. It is challenging to maintain the global lexicon to enclose all the domains

(Qiu et al., 2009, Sharma and Bhattacharyya, 2013, Park, 2015b). For example, the

word ’soft’ might have a positive meaning of warmth in various domains, but it can

be negative if it is employed in sport domain (e.g "soft players") (Hamilton et al.,

2016). Without selecting the domain specific terms, the sentiment classification task

could be mistaken by different contexts.

Secondly, as for the companies or organisations, they are only interested and atten-

tive to the customer reviews or feedbacks associated to their products or services.

It is more efficient and useful to develop a domain specific sentiment lexicon for

them. Additionally, the domain specific words can simplify the aspect of capturing

the explicit and implicit sentiments present in the text. A text with an explicit senti-

ment conveys a positive or negative sentiment explicitly using a subjective sentence

whereas a text that have an implicit sentiment implied the sentiment in an objective

sentence (Liu, 2012). For example, the sentence, ’the phone I bought is amazing’,

expresses an obvious positive opinion. On the other hand, the following sentence,

’the screen lags all the time’, illustrates an objective fact but still it implies a nega-

tive opinion. The word ’lag’ identifies a negative message, hence it can be treated

as a specific sentiment term in the phone domain. The sentiment lexicon is devel-

oped starting with the collection of a small number of the global sentiment words

and phrases, such as ’good’, ’bad’, which have stable polarity across all domains. Af-

terwards, the domain specific collection of terms were examined manually and sup-

plementary words and phrases expressing sentiments were collected and added into

the sentiment lexicon. For example:

1. (a) ’This is an excellent product.’

(b) ’I had an unpleasant customer service experience from this seller.’

(c) ’My phone screen is frozen all the time.’
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(d) ’Conserves food frozen well.’

(e) ’Although this phone looks nice, it lags all the time.’

The words "excellent" and "unpleasant" in the sentences 1.(a) and 1.(b) respectively

demonstrate the positive and negative sentiment, hence they were selected from the

selection of words and added into global sentiment terms because they normally

convey the same polarity in different domains.

The word "frozen" is commonly indicating negative polarity in a phone review 1.(c),

where in the case of a refrigerator review it is positive or neutral 1.(d) Therefore the

word "frozen" belongs to the domain specific sentiment terms.

It is frequent to find the word "nice" in a sentence having been used for many pos-

itive expressions in various areas, thus it is classified into the universal sentiment

terms. The word "lags", for instance, is categorised into the domain specific sen-

timent terms, since it is commonly used to describe products in some specific do-

mains such as phones and computers.

3.3.2 Score value assignment

The sentiment lexicon developed in this work is established on two principal as-

sumptions: that each word has its polarity, and that the semantic orientation of a par-

ticular word can be attributed as a numerical value. A selection of lexicon based ap-

proaches have already followed these assumptions (Pang and Lee, 2008, Khan et al.,

2016, Nielsen, 2011, Montejo-Ráez et al., 2012). The advantage of affecting the nu-

merical value to a word, is not only able to identify the sentiment orientation but also

capture the sentiment intensity. However, assigning semantic orientation scores to a

word or phrase can be a difficult task for sentiment analysis (Guerini et al., 2013). A

few techniques have been implemented to calculate scores automatically (Esuli and

Sebastiani, 2006, Turney, 2002, Kamps et al., 2004) (see Chapter 2). But in light of

the absence of stability for automatically generated scores, these approaches have

resulted in a large amount of noise in words of calculating the general polarity due

to the fact that the automatically generated score commonly does not illustrate the

polarity and strength accurately (Brooke, 2009). Therefore, the approach of assigning

scores manually is adapted in this research.
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In view of various sentiment analysis applications, different researchers have se-

lected different interval ranges for the semantic orientation values (Esuli and Sebas-

tiani, 2006, Taboada et al., 2011). For instance, (Taboada et al., 2011) constructed a

dictionary that only contain single word terms, by using an interval ranging from -5

for extremely negative to 5 extremely positive, where 0 identifies a neutral orienta-

tion. Nonetheless, the sentiment lexicon built in this research is not only containing

single word terms but also multi word terms (see Table 3.1). For example, the terms

’good’, ’very good’ convey different degree of sentiment intensity. The interval range

for the sentiment lexicon in this research needs to be illustrative of different terms

found on social media to capture the variation of sentiment intensities.

Therefore in this research, each term collected is added into the sentiment lexicon

and assigned manually an integer value varying from negative -5 to positive +5 by

human judgement. If a term determines a positive sentiment, it is assigned a positive

(+) score, whereas if the term conveys a negative sentiment, it is given a negative (-)

score. Logically speaking, for those terms that have neutral sentiments, their score

are pointed as zero. The absolute value score of each term expresses the strength of

its sentiment polarity (see Table 3.2 below). Still, the use of score interval range from

-5 to 5 in the sentiment lexicon can still be somewhat arbitrary.

TABLE 3.2: Examples of adjectives and verbs in the sentiment lexicon.

Terms Score Verbs Score

beautiful 4 like 3
good 3 hate -3
bad -3 enjoy 2

really good 4 love 4
disappointed -3 work 1

extremely beautiful 5 crash -2
awful -4 froze -2
happy 3 loose -3

sad -3 recommend 3

3.3.3 Acquisition of single word terms for the lexicon

The manually labelled sentiment dictionary in this research, does not only consist

of adjectives (Table 3.2) and adverbs (Table 3.2) that have been proven to be indica-

tors of sentiment in prior studies (Taboada et al., 2011, Turney and Littman, 2003),
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but also nouns and verbs. Considering the fact that nouns and verbs have different

forms, thus they are more complex than the adjectives and adverbs. For instance,

majority of nouns have singular and plural structures. As for verbs, they have differ-

ent conjugation tenses such as past tense, present tense and future tense. In order

to be able to analyse the given text efficiently, diverse schemes of nouns and verbs

are also collected and added into the sentiment lexicon and they are treated as single

words by the proposed system (see Table 3.3).

TABLE 3.3: Examples of adverbs and nouns in the sentiment lexicon.

Adverbs Score Nouns Score

accidentally -2 masterpiece 5
astoundingly 3 complaint -3

beautifully 3 disaster -5
desperately -3 happiness 3

badly -4 failure -2
outstandingly 5 damage -3

sadly -3 frustration -2
perfectly 5 disappointment -3

A number of conversational terms, common misspellings, "text or chat speak" and

informal language frequently witnessed in use in social media are also handled in

single word terms. These would include words such as ’luv’, ’gud’, ’lol’, ’lmfao’ and

’haha’ for more examples see Appendix A.

3.3.4 Acquisition of multi-word terms for the lexicon

In conjunction with collecting single word terms, we also considered multi-word

terms, such as phrases expressing sentiment orientation were also collected from so-

cial media and added into our sentiment lexicon, by cause of multi-word expressions

can offer more information to determine the polarity of the text. Processing and

analysing multi-word expressions is always challenging for natural language pro-

cessing tasks (see Chapter 2). But, the proposed approach in this work has the ability

to handle multi-word terms directly. Therefore, linguistic features, such as intensifi-

cation, negation can be treated effectively.
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3.3.5 Handling intensifiers

The intensifier is a linguistic term and a modifier, its role is to enhance emotional

context to the neighbouring word. The intensifiers are usually used in spoken and

written language, since according to (Xiao and Tao, 2007) the degree expressed is of

’a subjective nature, as it reflects and indexes the attitude of the speaker or writer’.

There are two kinds of intensifiers: amplifiers and downtoners. On one hand ampli-

fiers increase the semantic intensity of a neighbouring word, while on the other hand

downtoners decrease it (Brooke, 2009). For example, the words such as ’very’, ’abso-

lutely’, ’completely’ are considered as amplifiers, while the words such as ’barely’,

’hardly’, ’slightly’ diminish the force of other words and are referred to as downton-

ers. More precisely, intensifiers do not convey any sentiment orientations, but they

affect the semantic intensity of the words they alter. Thus, the intensifiers and the

words altered by intensifiers were collected and added together into the sentiment

lexicon as one single new component. For instance, ’this is a very bad phone’, the

expression ’very bad’ present in this sentence has identified strong negative empha-

sis, hence ’very bad’ was added into the sentiment lexicon and assigned the score

value of -5, while the term ’bad’ has the score value of -4. Table 3.4 illustrates some

examples of intensified phases.

3.3.6 Handling negation

Dealing with the negation aspect is an important feature and a challenging task in

sentiment analysis considering that, the sentiment orientation of text to be analysed

can be entirely reversed by negation terms such as ’not’, ’never’ and ’barely’. In this

work, expressions of negation were also collected and added into the sentiment lexi-

con, so the system can deal with them directly. For example, in the sentence ’the bat-

tery is not bad’, here the key sentiment word is ’bad’. Despite the fact that the word

’not’ by itself does not express any sentiment orientation whatsoever, it has modified

the sentiment of this sentence when it is used with ’bad’ together as a phrase. There-

fore the term ’not bad’ was added into the sentiment lexicon. For another example,

let us consider the following sentence ’I don’t like this phone’, here the expression

’don’t like’ expresses the polarity of this entire sentence, thus it is also included in the

created sentiment lexicon. There are other examples of terms presented in Table 3.4

below:
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TABLE 3.4: Examples of negation and intensifiers in the sentiment lexicon.

Term Score Term Score

bad -4 not good -4
very bad -5 can’t stand -3

usable 2 does not work -3
barely usable -4 don’t like -3

love 4 dislike -3
really love 5 no good -4

extremely love 5 don’t love -4

3.3.7 Evaluation of sentiment lexicon

In this proposed framework for analysing sentiment orientation in social media text

specifically tweets, the performance of sentiment analysis principally depends on

construction of the sentiment lexicon (dictionary). Accordingly, the process of eval-

uating and refining the sentiment lexicon plays a major role in the proposed system,

thus has a key impact on its performance.

FIGURE 3.3: Different phases for our sentiment lexicon creation.

The task of building the sentiment lexicon itself is literally the process of evaluation

and refining in essence. During the collection and selection of sentiment terms into

the lexicon, more domain corpora specific to social media are analysed and investi-

gated by updating sentiment terms at the same time. In the course of this process,

hence the sentiment lexicon will be refined by adding new words or modifying the
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score values (see Figure 3.3). The performance of the entire proposed system relies

upon the quality of the sentiment lexicon which makes refining the lexicon crucial.

Furthermore, in addition to evaluating the sentiment lexicon while building it, the

other evaluation method used in this research is by the comparison of the created

dictionary with prior built sentiment lexicons by the judgment of different human

annotators (Taboada et al., 2011, Chamlertwat et al., 2012). There is a consistent diffi-

culty in assigning fine-grained score values to the words when it comes to construct-

ing a sentiment lexicon, exclusively when they are out of context. In spite of the fact

that the multi-word terms offer additional information to improve the performance,

the score value ranges in the fixed interval of -5 to 5 can be very subjective. In this

research, the sentiment terms were collected and assigned the score values by the

author of the thesis. In order to reduce the bias, the most efficient way to validate

the score value of sentiment terms is to compare it with different human annotators

to assign the values (Taboada et al., 2011, Chamlertwat et al., 2012). In this thesis, a

comprehensive comparative study was followed in order to assign the score values

during the process of validating the sentiment lexicon.

3.3.8 Text segmentation

Most of the previously proposed works primarily focus on document level senti-

ment analysis, which designates the overall sentiment orientation of a given docu-

ment (see Chapter 2). This issue in analysing sentiment at this level is the fact that

the systems assume that each document only contains one single opinion regarding

one entity. Having said that, it is frequent that a document might enclose different

sentiments in the real world. Therefore, it is inadequate to simply classify the doc-

ument into one of the polarity categories (positive, negative or neutral) because it

does not represent reality. Although more recent research have been conducted at

sentence level sentiment analysis (Jain and Pandey, 2013, Alomari et al., 2017), their

approaches are also based on the suggestion that a single sentence only contains a

one single sentiment. Essentially, there is no major difference between document

level and sentence level sentiment analysis (see Chapter 2) in the existing literature.

Consequently, it is difficult to deal with composite and complex sentences that ex-

press various sentiments. To illustrate with the following example: "the camera of

this new phone is amazing but I am very disappointed at its battery that only lasts

for two hours a day". This customer review expresses both positive and negative



Proposed lexicon-based approach for sentiment analysis of tweets 64

sentiments (or it has mixed sentiments) regarding the same product, which makes

the sentiment classification process even more challenging. To solve these issues,

the proposed approach in this thesis implements a novel way to conduct text seg-

mentation at clause level.

The proposed approach is able to separate the text (tweet) into different sections or

pieces by tokenisation (see Chapter 4). Taking the following customer review for ex-

ample, ’I have to say the camera is amazing but I am not happy with its price. Poor

signal at times’, this customer review about mobile phone expresses positive and neg-

ative sentiments regarding different features of the phone. According to the proposed

approach, this review will be divided into three sections, as result, the review can be

processed and analysed more accurately in the form of three pieces, that is:

(1) ’I have to say the camera is amazing’;

(2) ’I am not happy with its price’;

(3) ’Poor signal at times.’

3.3.9 Polarity calculation

As described in the previous chapter (section 2.7), the second main task of sentiment

analysis is determining sentiment polarity or polarity calculation, which is classifying

the polarity of a given text. The majority of the sentiment analysis research based

on the semantic orientation approach have primarily investigated document level

or sentence level classification (Pang and Lee, 2008, Turney, 2002, Anbananthen and

Elyasir, 2013).

FIGURE 3.4: Predefined intervals for polarity calculation.
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In this research, the proposed lexicon based framework for sentiment analysis pro-

vides a score based approach to conduct multi-class sentiment classification utilis-

ing the manually built sentiment lexicon (see section 3.3.1). Instead of processing

the whole document or sentence as one piece or bag of words like other researchers

did (Montejo-Ráez et al., 2012, Melville et al., 2009), the proposed system analyses

the text at clause level based on text segmentation (see Section 3.3.8). The polarity

of each clause or section of text is generated by the values of the sentiment lexicon

applied as implemented by the proposed algorithm of the framework.

For our lexicon based approach, we concentrate on the selection of sentiment words

frequently used to express sentiment towards an entity (product) on social media. In

case of the presence of an irrelevant term to the constructed dictionary, the state-

ment (tweet) is not taken into consideration and thus is rejected. To do so, for each

pre-processed tweet we calculate its polarity and assigns a score, after that, we cal-

culate the sum of the polarities to find the average polarity later on.

As illustrated in Figure 3.4 The distinction between positive, negative and neutral

statements is calculated as follows: if Sentiment Polarity (SP) is equal to 0 then neu-

tral, if SP is between 0 and 0.3 then weak positive, if SP is between 0.3 and 0.6 then

positive, if SP is between 0.6 and 1 then strong positive, if SP is between -0.3 and 0

then weak negative, if SP is between -0.6 and -0.3 then negative and if SP is between

-1 and -0.6 then strong negative (Nahili and Rezeg, 2018). For example, as for the

customer review of iphone 7 shown below:

’I usually love iphone products but I am very disappointed at iphone 7 this time, poor

design and the camera is too bad.’

According to the proposed approach, this review is divided into the following sec-

tions at clause level:

1. ’I usually love iphone products;’

2. ’I am very disappointed at iphone 7 this time;’

3. ’poor design’;

4. ’the camera is too bad’;

Then the polarity of each segment is determined by making use of the sentiment lex-

icon and the overall value score can be calculated by summing up of the score values
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TABLE 3.5: Example of sentiment classification.

clause term score

I usually love iphone products love 4
I am very disappointed at iphone 7 this time very disappointed -4

poor design poor -2
the camera is too bad too bad -4

Overall score -6

of the each section, which generates a result indicating that the review expresses neg-

ative sentiment or opinion. Adapting this way for sentiment classification offers the

following advantages: 1) It captures mixed sentiments; 2) It supports and handles

intensification, negation misspellings and slang language;

FIGURE 3.5: Use case diagram of the proposed approach for sentiment analysis of
tweets.

3.3.10 Naive Bayes classifier

Over these last few years, a lot of research have been done in the field of data an-

alytics precisely sentiment analysis in natural language and social media posts. To



Proposed lexicon-based approach for sentiment analysis of tweets 67

determine whether a piece of text expresses a positive or negative sentiment, dif-

ferent approaches are frequently used such as support vector machines (SVM), lo-

gistic regression (LR), maximum entropy (ME)...etc. However, most popular classi-

fiers in the field of sentiment analysis are: naive Bayes (Houshmand, 2017, Go et al.,

2009, Dhande and Patnaik, 2014), SVM and convolutional neural networks Housh-

mand (2017), Severyn and Moschitti (2015), Miedema (2018), Lin et al. (2014), thus in

the proposed lexicon based approach for sentiment analysis of social media text we

combine the constructed lexicon with the machine learning classier naive Bayes for

sentiment classification.

FIGURE 3.6: General workflow of the proposed approach for classifying tweets.

The classifier based on naive Bayes algorithm is a simple probabilistic classifier based

on applying Bayes’ theorem (equation 3.1), which "applies to a certain class of prob-

lems, namely those that can be phrased as associating an object with a discrete cate-

gory". They are among the simplest Bayesian network models (NB).

P (Ck |x) = P (Ck )P (x|Ck )

P (x)
(3.1)

• P(C|x) is the posterior probability of class (c, target) given predictor (x, attributes).

• P(C) is the prior probability of class.

• P(x|C) is the likelihood which is the probability of predictor given class.

• P(x) is the prior probability of predictor.

After the validation of the created lexicon, the machine learning algorithm naive

Bayes is implemented to learn those terms. In this work we experimented with naive

Bayes classifier because it is easy to build and particularly functional for large datasets,

and it is known to outperform even highly sophisticated classification methods. In
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view of the fact that naive Bayes is a supervised learning algorithm, it leads to bet-

ter results when compared to unsupervised methods (Nahili and Rezeg, 2018, Ray,

2015).

FIGURE 3.7: Sequence diagram of the proposed approach for sentiment analysis of
tweets.

3.4 Implementation and Experimental Results

A system called TweetEcho has been established as the physical implementation of

the lexicon-based approach presented previously. Our system is able to identify both

the sentiment orientation and at the same time its strength from text, utilising a man-

ually developed sentiment lexicon. The proposed system conducts fine-grained (i.e.

multi-class) sentiment analysis on tweets at sentence level. It can not only process

and analyse single opinionated text but also mixed opinion text. The system pro-

vides an enhanced way to capture phrases or multi-word expressions in text based

on a sentiment lexicon in order to yield more context from text. The proposed ap-

proach shown in Figure 3.8 illustrates the basic inputs, outputs and components of

the TweetEcho system.

3.5 Experimental setup

The proposed lexicon-based approach was implemented using the following envi-

ronment (Table 4.1), we created a setup with the following system requirements.
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FIGURE 3.8: Inputs, outputs and key components of TweetEcho.

We tested our application ’TweetEcho’ (Figure 3.8) on Windows platform. We used a

Dell XPS 13 with Windows 10 core-i5 (64 bit) machine equipped with 8GB of RAM.

The general requirements shown are in Table 4.1 below.

TABLE 3.6: General system requirements for our lexicon-based approach for SA of
Twitter data.

Component Type

Operating system Windows 10

Processor Intelcore-i5 (64 bit)

Memory (RAM) 8GB

Software and Third-party tools Excel, NLTK, Spyder, Matplotlib

The tools and technology used as follows:

Python 3.65 (implementation language): Python is a general purpose, interpreted

high level programming language whose design philosophy emphasises code read-

ability. Its syntax is clear and expressive. Python has a large and comprehensive

standard library and more than 25 thousand extension modules.

5https://www.python.org/
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Spyder 3.6.46 (development environment): is a powerful scientific environment writ-

ten in Python, for Python, and designed by and for scientists, engineers and data

analysts. It offers a unique combination of the advanced editing, analysis, debug-

ging, and profiling functionality of a comprehensive development tool with the data

exploration, interactive execution, deep inspection, and beautiful visualization ca-

pabilities of a scientific package.

NLTK 3.4.5 7 (language processing modules): The Natural Language Processing Tool-

kit is an open source language processing module of human language in python.

Created in 2001 as a part of computational linguistics course in the Department of

Computer and Information Science at the University of Pennslyvania. NLTK pro-

vides in-built support for easy-to-use interfaces over 50 lexicon corpora. NLTK was

designed with four goals in mind:

1. Simplicity: Provide and intuitive framework along with substantial building

blocks, giving users a practical knowledge of NLP without getting bogged down

in the tedious house-keeping usually associated with processing annotated lan-

guage data.

2. Consistency: Provide a uniform framework with consistent interfaces and data

structures, and easily guessable method names.

3. Extensibility: Provide a structure into which new software modules can eas-

ily by accommodated, including alternative implementations and competing

approaches on the same task.

4. Modularity: Provide components that can be used independently without need-

ing to understand the rest of the toolkit.

Matplolib 3.1.38 (plotting): It is a Python 2D plotting library which produces publi-

cation quality figures in a variety of hard copy formats and interactive environments

across platforms. Matplotlib can be used in Python scripts, the Python and IPython

shells, the Jupyter notebook, web application servers, and four graphical user inter-

face toolkits.
6https://www.spyder-ide.org/
7https://www.nltk.org/install.html
8https://matplotlib.org/
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3.6 Data collection

3.6.1 Twitter API

APIs to access Twitter data can be classified into two types based on their design and

access method: REST API is based on the REST architecture now popularly used for

designing Web APIs. For data retrieval the pull strategy is used, in which a user is

required to explicitly request the API to collect information. However, the streaming

API grants a continuous stream of public information from Twitter. For data retrieval

the push strategy is used. Once a request for information is granted, the streaming

API provides a continuous stream of updates with no need for further input from

the user. In view of the fact that in this research, our goal is proposing a real-time

Twitter sentiment analysis system we used the streaming API. In order to acquire

Twitter data programmatically, we needed to create a Twitter developer application

which is used to interact with Twitter’s streaming API. This API can be accessed only

via authenticated requests. Twitter applies "open authentication" and each request

must be identified with valid Twitter user credentials which were generated when the

developer application was created following the subsequent steps:

• Create a Twitter account or sign into an existing account;

• Using a Twitter account, sign into the Twitter Developers;

• Navigate to My Applications;

• Create a new application;

• Fill out the new application form;

• Scroll down and click on Create my access token button;

• Record Twitter access keys and tokens;

• Install and load Tweepy python packages;

• Create and Store Twitter Authenticated Credential Object;

• Authorize Twitter application to use the account;

• Extract tweets;
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FIGURE 3.9: Python code to access/fetch twitter API.

Additionally, to access the streaming API and stream tweets, we installed the Python

package Tweepy due to the fact that it is pretty straightforward to use and the Fig-

ure 3.9 below illustrates the python code needed to fetch the API. For our approach,

since the developed lexicon is specific to social media text and is destined to help im-

prove the decision making process for organisations, we prioritise a list of different

selection of random keywords (terms) to retrieve tweets, these terms must specify an

entity that can be a product such as smartphone brands or laptops.

3.7 Data pre-processing

Data pre-processing is a crucial step when performing any sentiment analysis task

since with the proper selection of pre-processing methods, the classification accu-

racy can be enhanced (Haddi, 2015, Parikh and Movassate, 2009). As explained in

section 3.2, Twitter data has its own characteristics, thus we apply both Twitter spe-

cific and standard pre-processing on the collected data (tweets) via the streaming API

(Figure 3.10). The specific pre-processing is primarily important for tweets, due to

the fact that Twitter community has developed its own unique phrases and forms to

write and share posts (tweets). Furthermore, user-generated content in social media

commonly caters slang, in addition to frequent grammatical and spelling mistakes

(Petz et al., 2013). Therefore, with Twitter-specific data pre-processing we try to deal

with these properties of the Twitter language and improve the performance of our

proposed lexicon-based approach. To do so, we consider the following steps for the

pre-processing task in our proposed system:
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FIGURE 3.10: The different steps for the pre-processing task of our system.

3.7.1 Standard pre-processing

Standard pre-processing involves the succeeding tasks:

1. Remove numeric and empty texts;

2. Remove punctuation from texts;

3. Convert words to lower case;

4. Tokenisation: is the process of converting the text sequence of 280 charac-

ters composing the tweets, into a sequence of words (tokens), in the proposed

framework for Twitter sentiment analysis only the tweets containing matching

terms (words) from the predefined selection of sentiment words specific to the

social media domain (Chapter 3) are extracted and stored for further process-

ing. In simple terms, tokenisation means dividing a given text into smaller and

meaningful elements like words (Nahili and Rezeg, 2018, Andrew and Markus,

2016).

For example, let us consider the following product review: "The battery of the

iPhone is awful and the display as well". After tokenisation is applied, the sen-

tence will provide the following tokens: "The", "battery", "of", "the", "iPhone",

"is", "awful", "and", "the", "display", "as", "well" (Nahili and Rezeg, 2018)

5. Stopwords removal: Twitter data is by nature noisy seeing that natural language

is used, therefore, very basic and rudimentary cleanup was performed using

the predefined stopword list from the nltk Python package;

6. Text normalization: It consists of two techniques: stemming and Lemmatisa-

tion, which is an important step in order to get better performance for the pro-

posed lexicon, and it is basically preparing the tweets for further processing.
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Similar to stopwords removal, to stem and lemmatise words and sentences, we

used the Python nltk package which is the Natural Language Toolkit package

provided by Python for natural language processing tasks.

FIGURE 3.11: Unprocessed tweets samples from accessing the streaming API using
’xiomi’ as keyword.

3.7.2 Twitter specific pre-processing

As presented in Chapter 3 a tweet has its own structure, which is composed of dif-

ferent properties such as retweet symbol "RT", emoticons, special characters, hash-

tags "#" and words that start with "@" character known as username and finally

links/URL. But for the purpose of our study, all these components were removed

since we found no significance for them in our score based approach, in addition

duplicated tweets were also removed. Last, retweeted tweets with no "RT" symbol

were also removed. After the pre-processing phase the clean tweets are stored in a

comma-separated values ’result.csv’ file for further processing.

FIGURE 3.12: Tweet example highlighting its different components (features).
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Let us take the following tweet with ’Xiomi’ as a keyword to fetch Twitter’s streaming

API. The first tweet shows the tweet before pre-processing and the second one shows

the tweet after pre-processing.

Before pre-processing: "b’Amazing.. We love x e2 x9d xa4 Xiaomi devices... #ILoveX-

iaomi #Xiomi xe2 x9d xa4 #RedmiNote8Pro #RedmiK20Pro"

After pre-processing phase the above tweet example would look like the following:

"amazing love xiaomi device"

Where: ’amazing’ and ’love’ as sentiment terms from the lexicon, ’xiaomi’ as the key-

word to fetch the streaming API and ’device’ as a domain dependent term from the

lexicon.

3.8 Feature selection

Feature selection is necessary in any NLP task in order to improve accuracy. We carry

out our analysis implementing several feature selection algorithms, one using our

built dictionary, the others using already implemented features from the nltk Python

package. Due to the fact that we are analysing tweets the used features were re-

garding words or sequence of words, therefore, we used tf-idf, POS tagging (Part Of

Speech), negation, stemming and stopwords to extract useful features from text.

FIGURE 3.13: The different phases of our TweetEcho system.
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3.8.1 Part of speech tagging

POS tagging is a linguistic feature that refers to those features incorporating rich lin-

guistic annotation. This key feature is always implemented in most studies (Turney,

2002, Montejo-Ráez et al., 2014, Kouloumpis et al., 2011, Mohamad et al., 2017). Such

features usually rely on highly accurate taggers (and parsers). This feature processes

a sequence of words, and attaches a part of speech tag to each word. Given the fol-

lowing tweet "Everything is all about politics.", the Part-of-Speech tagging is shown

below:

Input: Everything is all about politics.

Output: [(’Everything’, ’NN’), (’is’, ’VBZ’), (’all’, ’DT’),(’about’, ’IN’), (’politics’, ’NNS’),

(’.’, ’.’)]

Where: NN: noun, singular ’desk’

VBZ: verb, 3rd person sing. present takes

DT: determiner

VBZ: verb, 3rd person sing. present takes

IN: preposition/subordinating conjunction

NNS: noun plural ’desks’

3.8.2 TF-IDF (Term Frequency-Inverse Document Frequency)

The TF-IDF feature is by far the most used feature both in natural language process-

ing and sentiment analysis tasks (Pang et al., 2002, Alomari et al., 2017, Tripathy et al.,

2016, Wiebe et al., 2004, Li and Liu, 2010). TF-IDF stands for term frequency-inverse

document frequency. This feature is a statistical measure used to evaluate how im-

portant a word is in a given text (document). The importance increases proportion-

ally to the number of times a word appears in the document but is offset by the fre-

quency of the word in the corpus (Wu et al., 2008). In simple language, TF-IDF can

be defined as follows: A high weight in TF-IDF is reached by a high term frequency

(in the given document) and a low document frequency of the term in the entire se-

lection of documents.
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FIGURE 3.14: Activity diagram of the proposed approach for sentiment analysis of
tweets.

3.9 Experimental results

The approach can be applied using any product as keyword and several products

can be considered for sentiment analysis, for instance "Samsung S10" and the num-

ber of tweets to be extracted can be set by the user. In Figure 3.15, we collected 1000

tweets from Twitter via its API. Our proposed lexicon-based framework does not only

perform binary-class sentiment analysis (i.e. positive/negative) of tweets but it takes

into consideration the intensity of sentiment orientation with our score assignment

as explained in Chapter 3, thus, it performs multi-class sentiment analysis (strong
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positive, positive, weak positive, neutral, weak negative, negative ans strong nega-

tive). When performing sentiment analysis using TweetEcho, the system generates

two types of output:

FIGURE 3.15: The output of TweetEcho after analysing the latest 1000 tweets using
’Samsung S10’ as keyword (product) to fetch the streaming API.

1) A general report which is the result of the AVG equation (equation 3.2) used to cal-

culate the average reaction (feedback) of users for a specific product (smartphone

brand, laptop brand. . . ). To illustrate how our system TweetEcho analyses and clas-

sifies tweets we take the smartphone brand ’Samsung’ and as an example the key-

word ’Samsung S10’. The output of this report can be weakly/strongly positive, weak-

ly/strongly negative or neutral. The average reaction of users is calculated as follows:

AV G −pol ar i t y = Pol ar i t y

Number o f t weet s
(3.2)

• AVG-polarity: The average polarity of users.

• Polarity: The determined polarity after assigning each tweet to its class.
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• Number of tweets: The number of collected tweets.

2) A detailed report which is the result of the polarity classification of each extracted

tweet to a specific class depending on the polarity interval (Chapter 3 subsection

3.3.9). After determining the percentage of each class, the generated detailed report

includes seven sentiment categories including the percentage of each class (see Fig-

ure 3.15).

In order to make more sense out of the results, we used the Matplotlib Python 2D

plotting library which produces publication quality figures in a variety of hard copy

formats and interactive environments across platforms. Matplotlib can be used in

Python scripts, the Python and IPython shells, the Jupyter notebook, web application

servers, and for graphical user interface toolkits (Nahili and Rezeg, 2018). The below

figure displays the output of the proposed TweetEcho system performing sentiment

analysis of tweets using ’Samsun S10’ as keyword. We used color coordination to

illustrate different sentiment categories.

3.10 Conclusion

In this chapter an innovative approach for sentiment analysis of Twitter data was

proposed and described in detail. The chapter has also provided the justification

and explanation for each component, in order to achieve the aim and objectives of

this thesis (see Chapter 1). In order to examine and experiment with this theoreti-

cal approach, a sentiment analysis application called TweetEcho was developed as

the physical implementation of our lexicon-based approach. Our system is able to

determine the sentiment polarity from tweets in addition to its strength. It is also ad-

equate at handling online text aspects such as negation, intensification, mixed opin-

ionated text and slang language primarily from the constructed sentiment lexicon.

Although our proposed lexicon-based approach for sentence level sentiment analy-

sis had bridged a few gaps based on the reported results, it still has some drawbacks.

For instance, collecting and manipulating Twitter data, additionally evaluating/re-

fining the created lexicon require human effort which is time consuming, therefore,

in view of proposing a fully automated classification process we move towards a deep

learning approach which will be presented in the next chapter.



Chapter Four

Proposed deep learning approach for

sentiment analysis of movie reviews

4.1 Introduction

In the previous chapter, a lexicon-based approach for sentiment analysis of Twitter

data was proposed and described thoroughly. Based on the results, several draw-

backs have also been spotted. In order to solve the encountered issues and move this

research to the next level, a deep learning approach following the supervised learning

classification framework is proposed. To do so, a new CNN model with an embed-

ding layer emb-CNN is presented in this chapter (Nahili et al., 2019). This chapter

begins by introducing a detailed layer architecture of our proposed convolutional

neural network specifically designed to predict the sentiment of movie reviews. Af-

terwards, the chapter continues with the implementation and experimental setup of

our model followed by the results along with the discussion.

4.2 Deep learning based approach for text analytics

Convolutional Neural Networks (CNN) are a form of artificial neural networks that

can detect information in different positions with excellent accuracy. This model

has solved several problems in image processing and automatic natural language

processing such as opinion analysis, question answering, text summarization. It is

characterized by a particular architecture to facilitate learning. A convolutional neu-

ral network is a multilayer network, where the output of one layer will be the input

80
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of the next layer. It is usually composed of an input, one to several hidden layers

and an output. Recently, the biggest reason to adopt convolutional neural networks

in natural language processing, sentiment analysis, text, topic and document clas-

sification is due to the following key reasons; - CNN can extract an area of features

from global information; - it is able to consider the relationship among these fea-

tures (Kim, 2014); -Text data features are extracted piece by piece and the relation-

ship among these features, with the consideration of the whole sentence, thus, the

sentiment can be understood correctly.

It is stated that convolutional neural networks proved to be successful for classifi-

cation tasks like sentiment classification since sentiment is usually determined by

some key terms and phrases. In this work, we propose emb-CNN a corpus-based

convolutional neural network with an embedding layer for text analytics on large

scale dataset in order to predict sentiment orientation of movie reviews. Our model’s

strength characteristics are its efficiency regarding training time and accuracy (Nahili

et al., 2019). The proposed model was trained, tested and validated on the publicly

available dataset IMDb. In the following section a detailed description of the pro-

posed emb-CNN model is given. Subsequently, sentiment analysis is applied using

the model, the results and experimental setup are explained in detail along with the

dataset being used for training, testing and validation.

4.2.1 Proposed emb-CNN model

With the aim to automate the process of text classification, several studies have been

conducted in different fields like semantic parsing, sentence modeling and senti-

ment analysis (Ouyang et al., 2015, Houshmand, 2017, Mikolov et al., 2013, Kalch-

brenner et al., 2014, Yih et al., 2014). In this work, we propose a convolutional neural

network to perform binary-class (i.e. positive or negative) sentiment analysis. In or-

der to do so, we first train the proposed network on data from the IMDb dataset, then

we evaluate the model using test data to predict the sentiment of movie reviews. For

data representation, we use word2vec as an embedding layer to improve the feature

set, hence the model’s performance. An overview of the model is shown in Figure

4.1 which represents the process that takes place throughout the sentiment analysis

process which is divided into two sub-processes: the learning process which is a typ-

ical learning process for any given model, where we train and test and validate the

emb-CNN model. Later on, the classification process where basically binary-class
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sentiment analysis is applied using the trained emb-CNN model. As illustrated be-

low in Figure 4.1; First, the IMDb dataset is collected then before any further analysis

of the data, pre-processing is needed, afterwards text vectorization is applied using

word2vec as a resource. Last, sentiment classification is conducted using the trained

model.

FIGURE 4.1: Global architecture of our deep learning approach for sentiment anal-
ysis of movie reviews.

FIGURE 4.2: The layer architecture of the proposed emb-CNN model.

4.2.1.1 Input layer

Instead of image pixels, the input to most natural language processing tasks is sen-

tences or documents represented as a matrix. Each row in the matrix corresponds to

one token, typically a word, but it could be a character (Krizhevsky et al., 2012). That

is, each row is a vector that represents a word. Typically, vectors in deep learning are

basically numerical attributes from which anyone can perform some mathematical

operation (Nahili et al., 2019, Gibson and Patterson, 2017). In order to convert string
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features into numerical features, several methods have been proposed such as Bag-

of-Words (BoW), n-grams model and Term Frequency-Inverse Document Frequency

(TF-IDF). These are only useful as a lexical resources, but their main drawback re-

sides on the fact that they cannot capture semantics like word embedding. In our

work we experiment with word2vec published by Google in 2013, which is a neural

network implementation that learns distributed representations for words (Mikolov

et al., 2013). Prior to word2vec, other deep or recurrent neural network architectures

had been proposed (Ouyang et al., 2015, Kalchbrenner et al., 2014) for learning word

representations. The major problem with previous attempts was the long time re-

quired to train the models while word2vec learns quickly compared to these models.

In order to create meaningful representations word2vec does not need labels. Since

most data in the real world is unlabelled, this feature is very useful. If the network is

trained on a large dataset, it produces word vectors with interesting characteristics.

As result, words with similar meanings appear in clusters, and clusters are spaced

such that some word relationships, such as analogies, can be reproduced using vec-

tor math (Nahili et al., 2019). For example let us generate a sentence matrix with a

5-dimensional embedding of the following sentence: ’I like this movie very much’.

We can see that it is composed of six words as result we would have a 6x5 matrix as

input. That is our input sentence matrix (image) to the network.

4.2.1.2 Embedding layer (word2vec)

As input to our proposed model the first layer is an embedding layer which is de-

fined as the first hidden layer and its role is to transforms words into real-valued

feature vectors known as embeddings. These vectors are able to capture morpholog-

ical, syntactic and semantic information about words. It must specify the following

arguments: top words appearing in a given review, embedding vector length and the

maximum review length. In this work, we truncate the reviews to a maximum length

of 1600 words and we only consider the top 10,000 most commonly occurring words

in the movie reviews dataset, and we used an embedding vector length of 300 di-

mensions. This is an important step in the proposed network architecture because it

leads to initialise the parameters at a good point of our CNN model.

https://code.google.com/p/word2vec/
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4.2.1.3 Convolutional layer

The convolution layer aims to explore the combination between the different word-

s/sentences from the reviews, using word2vec. The output of the embedding layer

is a 2D vector (None, max-review-length, embedding-vector-length) with one em-

bedding for each word in the input sequence of words (Nahili et al., 2019). Some

modification is applied to the basic convolutional operation (layer) where padding

is used to conserve the original size of the input sentence matrix, therefore, no loss

of information. Since we are working with text data in order to connect the dense

layer (fully connected layer) to the 2D output matrix a flatten layer was added to the

network in order to convert the output.

4.2.1.4 Flatten layer

The last stage of a convolutional neural network (CNN) is a classifier. It is called a

dense layer or fully activated layer. At this stage the classifier needs individual fea-

tures, just like any other classifier. This means it needs a feature vector. Therefore,

we need to convert the output of the convolutional part of the emb-CNN into a 1D

feature vector, to be used by the last layer. This operation is called flattening. It gets

the output of the convolutional layers, flattens all its structure to create a single long

feature vector to be used by the dense layer for the final classification.

4.2.1.5 Regularisation

Regularisation is managed through several functions that organise a complex neural

network to avoid overfitting that impacts the performance of deep learning models.

With approximately 7 million trainable parameters, the proposed CNN model is very

powerful. However, overfitting is a serious problem in large networks making them

slow to use and thus difficult to deal with overfitting by combining many different

predictions at test time. Dropout is a technique that prevents this problem and it

refers to dropping out units (hidden and visible) in a neural network (Lai et al., 2017).

By dropping a unit out, we mean temporarily removing it from the network, along

with all its incoming and outgoing connections. In our model we use two dropout

layers with (0.2), and the choice of which units to drop is random.
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4.2.1.6 Fully activated layer (Dense)

In deep learning models, activation functions can be basically divided into two types;

linear activation functions and non-linear activation functions (Glossary, 2018). In

our work, we experiment with the proposed model to apply binary-class sentiment

analysis using IMDb dataset where we used the sigmoid activation function. The

main reason why we used sigmoid function is because it exists between (0 to 1).

Therefore, it is adequate for our model since we have to predict the probability as

an output.

FIGURE 4.3: Sequence diagram of the proposed deep learning approach for senti-
ment analysis of IMDb reviews.

4.2.1.7 Optimization

Optimization is used in training deep learning algorithms for updating the model pa-

rameters (weights and bias values) across iterations. There are different optimization

strategies that calculate appropriate and optimum values for these parameters such

as Stochastic Gradient Descent (SGD) (LeCun et al., 2012, Bottou, 2010) or Adap-

tive Moment Estimation (Adam) (Kingma and Ba, 2015). SGD is the classical non-

adaptive optimization algorithms used to optimize deep learning networks that use

a single learning rate which does not change during training. For optimizing our

emb-CNN model we use Adam which is an extension method of SGD that uses an

adaptive learning rate to optimize the networks that converges very quickly and out-

performs SGD (Kingma and Ba, 2015).
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FIGURE 4.4: Activity diagram of the proposed deep learning approach for sentiment
analysis of IMDb reviews.

FIGURE 4.5: Use case diagram of the proposed deep learning approach for senti-
ment analysis of IMDb reviews.
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4.3 Implementation and experimental results

4.3.1 Proposed Model: CNN and word2vec for sentence-level SA

In this work, the IMDb dataset is used to illustrate how our proposed emb-CNN

model can be used for binary-class sentiment classification. Thus, we propose the

following architecture composed of these main three parts, which are described in

more detail below in Figure 4.6.

Pre-processing part: In this stage, data cleansing and pre-processing are performed.

Then, data representation using word2vec embeddings is applied to prepare the data

for the convolution part. The resulting vector is passed as an input to the next stage.

Convolution part: In this stage, convolution layers are applied for feature extraction

to extract high level features. The output of this stage is the input of the next stage.

Fully connected part: In this stage, fully connected layers are applied for sentiment

classification of IMDb reviews. The output of this stage is the final classification of

the review (as positive or negative).

FIGURE 4.6: General architecture of our emb-CNN model.
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4.3.2 Data collection

The IMDb dataset is a set of movie reviews from the Internet Movie Database. Each

of these movie reviews is classified as either being ’positive’ or ’negative’. The dataset

was downloaded from IMDb. It is contained in a gzipped, tab-separated-values (TSV)

formatted file in the UTF-8 character set. The first line in each file contains headers

that describe what is in each column. A "/N" is used to denote that a particular field

is missing or null for that title/name. This dataset consists of 50k movie reviews. It

provides a set of 25,000 highly polar movie reviews for training, and 25,000 for testing.

There is additional unlabelled data for use as well (Maas et al., 2011). The original rat-

ings on the IMDb dataset are 1-10 star ratings, these are linearly mapped to [0,1] to

use document labels when training the model. A "1" indicates a positive review and

"0" a negative review.

4.3.3 Data pre-processing

Pre-processing the data is the process of cleaning and preparing the text for classi-

fication (Haddi, 2015). It is necessary to normalise the text for any natural language

processing task. Similar to tweets online text data especially reviews is often rep-

resented in a cryptic and informal way, thus contain lots of noise and non-relevant

parts such as HTML tags, scripts and advertisements.

FIGURE 4.7: A sample of some unprocessed reviews from the IMDb dataset.

https://datasets.IMDBws.com/
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The main advantage of having the data properly pre-processed: to reduce the dimen-

sionality, enhance the accuracy of the proposed classifier and speed up the classifi-

cation process, hence aiding in real-time sentiment analysis. Oppositely to the pro-

posed system for sentiment analysis of tweets, in which two types of pre-processing

were needed; Twitter specific pre-processing and standard pre-processing were per-

formed, here only basic pre-processing was applied. In this step, words in each re-

view were tokenised (separated) and punctuation was removed. Afterwards, we used

the in-built Python nltk package for stemming, lemmatising and stopwords removal

from each review. This phase consists on preparing the data for further processing

following these steps:

1. Remove numeric and empty texts

2. Remove punctuation from texts

3. Convert words to lower case

4. Remove stopwords: as demonstrated in example 1 the dataset used obviously

contain a lot of non relevant data (noise). Therefore, very basic and rudimen-

tary cleanup needs to be performed. Arbitrary characters and other useless

information such as punctuation, stop words, special characters and finally

links/URL were removed since we found no significance in our classification

approach.

Example 1 "I was blessed to have seen this movie last night. It made me laugh,

it made me cry and it made me love life. This movie is a great movie that depicts

a love of a father for his son. Will Smith did an incredible job and deserves every

accolade available to him. His son also did a fantastic job. There is a great

lesson that is learned in this movie and it truly shares the struggles of everyday

life. This movie was heart felt and touching. It was truly an experience worth

having. Thank you for making this movie and I look forward to seeing it again."

"blessed night made laugh made cry made love life great depicts love father son

incredible job deserves accolade son fantastic job great lesson learned shares

struggles everyday life heart felt touching experience worth making forward"

5. Stemming and Lemmatisation: are text normalization (or sometimes called

word normalization) techniques. In our work as shown below in example 2 in
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order to stem and lemmatise words and sentences we used the publicly avail-

able Python nltk package which is the Natural Language Toolkit package pro-

vided by Python for NLP tasks (Nahili et al., 2019)

Example 2 "Data science is an interdisciplinary field that uses scientific meth-

ods, processes, algorithms and systems to extract knowledge and insights from

data in various forms, both structured and unstructured,[1][2] similar to data

mining."

Stemmed sentence: "data scienc is an interdisciplinari field that use scientif

method, process, algorithm and system to extract knowledg and insight from

data in variou form, both structur and unstructur, [1][2] similar to data mine."

4.3.4 Feature selection

Feature selection is necessary when building a model in order to reduce overfitting,

improve accuracy and reduce training time. We carry out our sentiment analysis

proposal implementing several feature selection algorithms, one using the data rep-

resentation method word2vec as a lexical resource (Chapter 2 subsection 2.8.3), the

others building features using our training data with some additional variations. We

use uni-grams, tf-idf, negation, stemming and stop words to extract useful features

from the review corpus and build a feature vector for each review. Since we are train-

ing, testing and comparing the performance of our model against models from previ-

ous work on sentiment analysis of text. The used features were regarding words or se-

quence of words from these reviews. The use of uni-grams has been quite successful

on reducing dimentiality in previous research (Wang et al., 2011, Mesnil et al., 2014,

Tiwari et al., 2017), therefore, they were used as a feature in the proposed model.

The advantage of uni-gram model is; each unique word in the pre-processed review

corpus is considered as a feature, therefore, building a feature vector for a review is

straightforward. First, a dictionary of all the words occurring in the review corpus is

created. Then the frequency of occurrence of a word in a review is determined and

stored in a word-review matrix. Finally, we apply the TF-IDF weighting technique to

this matrix to obtain the final feature matrix.

Experimenting with an existing resource in the feature set offers a huge advantage

in training time because there is no looping over the dataset. In addition, word2vec

learns quickly compared to other models for it consists exclusively of two-layer neu-

ral networks that are trained to reconstruct linguistic contexts of words with no need
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for labels. The disadvantage resides on the fact that the features used are not ex-

tracted from the dataset, thus, there is a possibility of including insignificant features

while significant features are not selected. For example, text reviews are known for

containing words that are spelled wrong, but still hold sentiment information. As re-

sult of using such a small set of features it may cause the problem of high bias. The

feature set was built using training data results in a larger feature set. It is more effi-

cient as it selects only relevant features from the IMDb dataset itself, and therefore,

improves the performance significantly. However, when manipulating large datasets

such as IMDb; - going through the training set in a loop to select relevant features can

be slow when the training size becomes large; - if we use a small training set though,

the features selected are not representative of the entire dataset because they might

have high bias;- the problem of high variance with a large feature set; in other words,

while the training error reduces with a larger training set, the test error remains high.

4.4 Experimental setup

Our approach was implemented using the following environment (Table 4.1), we cre-

ated a setup with the succeeding system requirements. We tested our proposed emb-

CNN model on Windows platform. We used a Dell XPS 13 with Windows 10 core-i5

(64 bit) machine equipped with 8GB of RAM. The general requirements shown in

Table 4.1 below. The tools and technology used as follow:

TABLE 4.1: General system requirements for our deep learning approach for sen-
tence level sentiment analysis of IMDb movie reviews.

Component Type

Operating system Windows 10

Processor Intelcore-i5 (64 bit)

Memory (RAM) 8GB

Software and Third-party tools Spyder,NLTK,scikit-learn,Numpy,Matplotlib,TensorBoard

Python 3.61 (implementation language): Python is a general purpose, interpreted

high level programming language whose design philosophy emphasises code read-

ability. Its syntax is clear and expressive. Python has a large and comprehensive

standard library and more than 25 thousand extension modules.

1https://www.python.org/
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Spyder 3.6.42 (development environment): is a powerful scientific environment writ-

ten in Python, for Python, and designed by and for scientists, engineers and data

analysts. It offers a unique combination of the advanced editing, analysis, debug-

ging, and profiling functionality of a comprehensive development tool with the data

exploration, interactive execution, deep inspection, and beautiful visualization ca-

pabilities of a scientific package.

NLTK 3.4.5 3 (language processing modules): The Natural Language Processing Tool-

kit is an open source language processing module of human language in python.

Created in 2001 as a part of computational linguistics course in the Department of

Computer and Information Science at the University of Pennslyvania. NLTK pro-

vides in-built support for easy-to-use interfaces over 50 lexicon corpora. NLTK was

designed with four goals in mind:

1. Simplicity: Provide and intuitive framework along with substantial building

blocks, giving users a practical knowledge of NLP without getting bogged down

in the tedious house-keeping usually associated with processing annotated lan-

guage data.

2. Consistency: Provide a uniform framework with consistent interfaces and data

structures, and easily guessable method names.

3. Extensibility: Provide a structure into which new software modules can eas-

ily by accommodated, including alternative implementations and competing

approaches on the same task.

4. Modularity: Provide components that can be used independently without need-

ing to understand the rest of the toolkit.

Scikit-learn 0.22.14(building the model): The scikit-learn library is an open source

machine learning library that supports supervised and unsupervised learning. It also

provides various tools for model fitting, data pre-processing, model selection and

evaluation, and many other utilities.

NumPy v1.185 (data manipulation): It is the fundamental package for scientific

computing in Python. It is a Python library that provides a multidimensional array

2https://www.spyder-ide.org/
3https://www.nltk.org/install.html
4https://scikit-learn.org/stable/
5https://numpy.org/doc/1.18/reference/index.html
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object, various derived objects (such as masked arrays and matrices), and an assort-

ment of routines for fast operations on arrays, including mathematical and much

more. We use Numpy data structures because it performs better in terms of: Size -

Numpy data structures take up less space; Performance - they have a need for speed

and are faster than lists; Functionality- SciPy and NumPy have optimized functions

such as linear algebra operations built in.

TensorBoard 2.1.06 (tracking experiment metrics): is a tool for providing the mea-

surements and visualisations needed during the machine learning workflow. It en-

ables tracking experiment metrics like loss and accuracy, visualizing the model graph,

projecting embeddings to a lower dimensional space, and much more.

Matplolib 3.1.37 (plotting): It is a Python 2D plotting library which produces publi-

cation quality figures in a variety of hard copy formats and interactive environments

across platforms. Matplotlib can be used in Python scripts, the Python and IPython

shells, the Jupyter notebook, web application servers, and four graphical user inter-

face toolkits.

4.5 Experimental results and discussion

The proposed emb-CNN model is powerful in terms of feature extraction, which

is very interesting in sentiment analysis, especially when dealing with long reviews

where the extraction of its features remains difficult. The data was split evenly with

25,000 reviews intended for training and 25,000 for testing. Moreover, each set has

12,500 positive and 12,500 negative reviews. The model was configured as follows:

• The maximum length of vectors that can be created from a review was 300;

• The maximum review length in the convolutional neural network was 1600;

• We only consider the top 10,000 most commonly occurring words in the dataset;

1. Embedding layer: this is an important step in the proposed network architec-

ture because it leads to initialise the parameters at a good point. It specifies the

following arguments as input: top-words, embedding-vector-length and max-

review-length.

6https://pypi.org/project/tensorboard/
7https://matplotlib.org/
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2. The three convolution layers were as follows:

• The first one applies a number of convolution kernels of size 64 with a

filter-length of 3 and padding equal to "same"

• The second one applies a number of convolution kernels of 32 with filter-

length of 3 and padding equal to "same"

• The third one applies a number of convolution kernels of 16 with filter-

length of 3 and padding equal to "same"

In order to preserve information and conserve the original size of the input

sentence matrix, we used padding in every convolution layer.

3. Flatten layer: converts the output of the convolutional layers into a 1D vector,

to be used by the fully activated layer (dense) for the final classification.

4. Regularisation was applied with a dropout of (0.2)

5. There was a fully connected layer.

6. The "sigmoid" activation function allowed linking the obtained results with the

appropriate class.

7. The loss function is indispensable for compiling the "binary-cross-entropy"

model. We used the binary one as there are two classes in integer and cate-

gorical format (positive and negative).

8. The optimizer was "Adam".

9. We used accuracy as an evaluation metric (See subsection 2.8.4). Accuracy

refers to the proportion of correct predictions made by the model.

Accur ac y = Pr edi ct i ons

Tot alPr edi ct i ons
(4.1)

We benchmark the proposed emb-CNN model for sentiment analysis against prior

models from the related work using the same IMDb dataset. Despite the large size of

the dataset and the number of parameters in the network (Table 4.3) our model’s

strengths are its accuracy and training time which takes around fifteen to twenty

minutes as shown in Figure 4.8.



Proposed deep learning approach for sentiment analysis of movie reviews 95

FIGURE 4.8: The variation of loss and accuracy functions in each epoch during train-
ing.

FIGURE 4.9: Training history of the model where 25k reviews were used for training
and only top 10,000 most commonly occurring words in the dataset were used.

TABLE 4.2: The different configurations used to train and test our emb-CNN model.

Word embedding Regulariser Epoch Batch-size Optimizer Accuracy

word2vec Dropout 3 32 Adam 85.99%
word2vec Dropout 3 64 Adam 85.80%
word2vec Dropout 5 32 Adam 84.49%
word2vec Dropout 5 64 Adam 85.98%
word2vec Dropout 8 32 Adam 85.33%
word2vec Dropout 8 64 Adam 85.46%

We compared the performance of our model under different configurations (see Ta-

ble 4.2) for processing and analysing reviews text. Thus, the accuracy was computed

according to three different iterations (i.e., 3, 5 and 8 epochs respectively), between

two values of the batch-size (i.e., 32 and 64), and the optimizer Adam (Table 4.4,

the highest value is highlighted in bold). The emb-CNN model gave the best per-

formance under the configuration (3 epochs, batch size 32, and optimizer "Adam")

that reached 85.99% in terms of accuracy (Table 4.4). Although convolutional neural

networks extract high-level features in image analysis, our model performs well in

2D problems and trains in a short amount of time as shown in Figure 4.8.
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TABLE 4.3: Total number of trainable parameters in the proposed emb-CNN model.

Layer type Input shape Parameter #

Embedding (word2vec) (none, 1600, 300) 3000000
Convolution layer-1 (none, 1600, 64) 57664
Convolution layer-2 (none, 1600, 32) 6176
Convolution layer-3 (none, 1600, 16) 1552

Flatten layer (none, 25600) 0
Dropout layer-1 (none, 25600) 0

Dense layer-1 (none, 180) 4608180
Dropout layer-2 (none, 180) 0

Dense layer-2 (none, 1) 181

With approximately 7 millions trainable parameters (Table 4.3) overfitting the train-

ing data is a serious problem, thus, dropout of (0.2) was applied. For reinforcing the

generalisation power, we disabled the network with holes during training; this way

the network is forced to build new paths and extract new patterns.

TABLE 4.4: Performance results of the proposed model compared to prior models in
terms of accuracy.

Author/year Dataset Highest accuracy

Ouayang et al. (2015) rottentomatoes dataset 45.4%
Tripathy et al. (2016) IMDb dataset 70.16%-86.23%
Houshmand (2017) SST dataset 40.5%-46.4%

Miedema (2018) IMDb dataset 86.74%
Our emb-CNN model IMDb dataset 85.99%

• Figure 4.10 and 4.11 under the configuration: regulariser "dropout", epochs=3,

batch-size=32, optimizer "Adam".

• Figure 4.12 and 4.13 under the configuration: regulariser "dropout", epochs=3,

batch-size=64, optimizer "Adam".

• Figure 4.14 and 4.15 under the configuration: regulariser "dropout", epochs=5,

batch-size=32, optimizer "Adam".

• Figure 4.16 and 4.17 under the configuration: regulariser "dropout", epochs=5,

batch-size=64, optimizer "Adam".

• Figure 4.18 and 4.19 under the configuration: regulariser "dropout", epochs=8,

batch-size=32, optimizer "Adam".
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FIGURE 4.10: Accuracy plot of the
emb-CNN model "3","32"

FIGURE 4.11: Loss plot of the emb-
CNN model "3","32"

FIGURE 4.12: Accuracy plot of the
emb-CNN model "3","64"

FIGURE 4.13: Loss plot of the emb-
CNN model "3","64"

• Figure 4.20 and 4.21 under the configuration: regulariser "dropout", epochs=8,

batch-size=64, optimizer "Adam".

FIGURE 4.14: Accuracy plot of the
emb-CNN model "5","32"

FIGURE 4.15: Loss plot of the emb-
CNN model "5","32"
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FIGURE 4.16: Accuracy plot of the
emb-CNN model "5","64"

FIGURE 4.17: Loss plot of the emb-
CNN model "5","64"

FIGURE 4.18: Accuracy plot of the
emb-CNN model "8","32"

FIGURE 4.19: Loss plot of the emb-
CNN model "8","32"

FIGURE 4.20: Accuracy plot of the
emb-CNN model "8","64"

FIGURE 4.21: Loss plot of the emb-
CNN model "8","64"
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Despite the strong empirical performance achieved by the proposed network with

86.74% in (Miedema, 2018), and the good performance of the proposed classifiers

(i.e. NB, ME, SGD, and SVM) in the work of (Tripathy et al., 2016), in addition to CNN

networks experimented with in both (Ouyang et al., 2015, Houshmand, 2017), sev-

eral conclusions were drown; First, based on the research of (Miedema, 2018), our

proposed emb-CNN model is more robust where it has 7,673,753 parameters to be

trained on, against only 373,301 in theirs. Also, the training time of our network is

around 15 to 20 minutes versus 1 hour for their model, which proves the efficiency of

our model. Other than this, there is no room for discussion nor comparison in terms

of performance, due to the fact that the author implemented a recurrent neural net-

work combined with LSTM architecture for sentiment analysis of IMDb reviews, and

we propose a CNN model with an embedding layer architecture (word2vec). Sec-

ond from the study of (Tripathy et al., 2016), they did not experiment with convolu-

tional neural networks for sentiment classification, however we can point out that

with an accuracy score of 85.99%, our emb-CNN model outperformed their SVM

(70.16%), ME (83.36%) and SGD (83.36%) classifiers consecutively. Additionally, on

one hand, in (Ouyang et al., 2015) their word2vec+CNN system for analysing online

movie reviews had no room for improvement because the corpus that was used to

conduct sentiment analysis was crawled from rottentomatoes movie reviews dataset

which does not contain enough data to train a robust model. Also, their model ob-

tained satisfactory results with 45.4% accuracy. In contrast, our proposed model was

trained, tested and validated using a large-scale corpus the IMDb dataset with 50k

reviews, besides with our emb-CNN network we were able to improve the accuracy

by 40%. On the other hand, in comparison with the reported results in (Houshmand,

2017), the performance of their CNN model varied from 40.5% to 46.4% in terms of

accuracy, while ours achieved 85.99%. Lastly, shuffling the training and testing sam-

ple sizes while experimenting with data representation methods like word embed-

dings, in our case word2vec significantly improved the network’s performance up to

86.48%.

4.6 Conclusion

This chapter was divided into two main sections: the first one being our proposed

deep learning approach by introducing a new convolutional neural network with an
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embedding layer using word2vec to predict the sentiment of movie reviews. The sec-

ond one consisted of a detailed presentation of the network which was composed

of several layers. We used word2vec as an embedding layer leading to initialise the

parameters at a good point of the network. The model was trained using different

features such as tokenisation, stemming and TF-IDF ..etc. Afterwards, the network

was trained, tested and validated on the IMDb dataset using accuracy as an evalua-

tion metric. We experimented with the proposed emb-CNN model under different

configurations where binary-class sentiment analysis was performed. The proposed

model has yielded better results as compared to previous networks. In summary, the

proposed model for sentiment analysis of movie reviews has shown promising results

during the evaluation phase. Consequently, it has provided supporting evidence for

the accuracy and reliability of the proposed deep learning approach.



Chapter Five

Conclusion

5.1 Synopsis of the Thesis

Consisting of five chapters, this thesis presents a comprehensive and thorough re-

search work in the field of sentiment analysis with main focus on the classification of

social media text, which seeks to provide two approaches: the first one is a lexicon-

based approach to conduct multi-class sentiment analysis by developing a sentiment

lexicon, the second one is a deep learning based approach for binary-class sentiment

analysis of IMDb movie reviews by proposing a novel convolutional neural network

with an embedding layer. These sentiment analysis approaches have been proposed

in order to answer the research questions and meet the objectives of this work. This

thesis has undertaken the phases of design science methodology for information sys-

tems and software engineering (Wieringa, 2014), which include problem identifica-

tion and objective definition as fundamental starting points (Chapter 3.3)

Chapter one has provided the research background and the growing demand for the

development of sentiment analysis applications. Chapter two gave an in-depth liter-

ature review about prior research on sentiment analysis along with what challenges

and problems were faced and why. By that, the problems encountered in the previ-

ous work and the research gaps have been identified, which also presented the mo-

tivation of this thesis. Lastly, research questions and goals have been defined. To

recap, the research questions were as follows:

1. How can online text data be automatically and accurately classified with respect

to their sentiments?

2. How can the intensity of sentiment in online text data be effectively captured?

101
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3. How can deep learning enhance the process of Data Analytics for companies so

they can improve their decision making?

In view of aiming to answer the above research questions, a sentiment analysis ap-

proach for fine-grained classification of tweets called TweetEcho has been proposed

in chapter three followed by an enhanced CNN model for sentiment analysis of IMDb

movie reviews. The sentiment classification task using TweetEcho is based on the

sentiment lexicon that is manually constructed from the social media domain. The

sentiment analysis task using the proposed emb-CNN model is carried out in a su-

pervised manner i.e., the dataset used for analysis is a labelled one. The training data

is used for training and based on this, the testing on testing data is carried out. The

text polarity is collected and compared to the original label to obtain the accuracy.

Moreover, in order to prove that the proposed approaches work, the sentiment anal-

ysis system, called TweetEcho, has also been implemented based on the theoretical

framework. The different phases of the proposed system were presented in chapter

four. Chapter four has also demonstrated how TweetEcho performs sentiment anal-

ysis and the resulting outputs. Following that, the proposed emb-CNN model was

built, trained and tested using IMDb dataset. In order to evaluate the model, we used

accuracy as an evaluation metric. Comparison of the obtained results in this study

with the reported performances in literature show that the model achieved better

accuracy than previous convolutional neural network models.

The reported results in the phase of evaluation indicate that the proposed approach

is able to automatically perform sentiment classification. The system is capable of

detecting the intensity of sentiment and primarily relies on the manually developed

sentiment lexicon, which has answered the first two research questions. Further-

more, the performance of the proposed deep learning approach has also been eval-

uated in chapter four. Each movie review from the IMDb dataset has been classified

using the trained emb-CNN model, which has obtained an overall accuracy of 85.99%

at sentence level analysis in this research, from which the third research question has

also been answered.
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5.2 Thesis contributions

In this section, the contributions that this thesis has made to the body of knowledge

on sentiment analysis are highlighted, which encompass theoretical and method-

ological contributions. From a theoretical standpoint, the contribution of this re-

search is the introduction and development of two approaches: (1) one for fine-

grained Twitter sentiment analysis, and (2) a new CNN model for text analytics. These

theoretical approaches have provided solutions to narrow the research gaps identi-

fied in prior studies (see Section 2.13). These approaches serve as a mechanism that

can automatically classify social media text in order to provide directions for strategic

decisions. Another theoretical contribution made by this research is that the lexicon-

based approach has brought a dynamic process that follows the cycle of evaluation

and refining (see Section 3.3.8), based on the design science methodology for infor-

mation systems and software engineering (Wieringa, 2014). It allows researchers to

refine the sentiment lexicon in order to improve the whole performance and take

into consideration more terms (words), which is the limitation of other automatic

generated sentiment lexicons.

As for the methodological contributions; the first methodological contribution is that

the research has provided an effective way to separate the mix-sentiment text with

text segmentation using the proposed lexicon-based approach, which is able to deal

with real-world reviews accurately. Another methodological contribution that needs

to be underlined is that the research has introduced an innovative way to process

multi-word expressions by using the built sentiment lexicon, which contains not only

adjectives, adverbs, but also includes nouns, verbs. Instead of treating text as a bag

of words, the proposed approach is able to process multi-word expressions to gain

more contextual information. A third methodological contribution of this research

worth mentioning is the solution to current challenges faced in social media text ana-

lytics in regards to handling the linguistic phenomena such as negation, intensifiers,

common misspellings and slang language by the addition multi-word terms to the

sentiment lexicon. A fourth methodological contribution is this thesis has provided

an efficient way to classify online text data using a deep learning approach by propos-

ing a novel convolutional neural network model with an embedding layer. The model

was built for analysing movie reviews and to do so, it was trained using a different se-

lection of features under various configurations. The network achieved good results

against the related work with 85.99% and, is able to identify the sentiment of real-

world reviews accurately. Moreover, the short training time despite the large size of
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the dataset and the number of trainable parameters in the network. Furthermore,

the source of data collection is also important. The dataset needs to be universally

accessible which large number of researchers often consider for their analysis. In

the present day scenario, Twitter data and movie reviews are an important source to

analyse reviews. Thus, in this research we adopted both.

5.3 Affect of the results

The contributions which have been detailed in the previous section can have a large

impact when applied in the real world. In the case of private and public enterprises,

businesses can gain an insight into the sentiments (positive or negative) of customers

and forecast their product or service by considering the sentiment analysis results.

Twitter analysis provides businesses with both the sentiments of customers regard-

ing a specific product and its strength, which offers these organisations detailed feed-

back about their own products and services or its competition. The positive insights

can be used as inputs for market positioning against the competitors, product man-

agement and development, targeted marketing strategies to ensure that these pro-

duct/service are not changed unnecessarily without great thought, which in return

should increase the revenue of that product/service. The negative insights can be

used as inputs to sales and strategy teams (e.g. pricing, what not to focus on in a

competitive situation) and also for product management, research and development

to understand the product or service, which their consumers were not satisfied with

and see as requiring improvements. Although this thesis has examined the usage of

sentiment analysis approaches in the domain of reviews (product and movie) and

businesses providing products and services, there is no barrier to using the same

approaches in other arenas, such as topic trending, collecting political sentiment

and track political movements in countries for example the Hirak movement or the

COVID19 pandemic in Algeria.
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5.4 Limitations and Future Research

5.4.1 Limitations

The research comes as an attempt to find effective solutions to deal with the large

volume of opinionated data automatically. First, a fine-grained sentiment analysis

framework has not only been proposed, but also has been evaluated via the imple-

mented system TweetEcho. Second, a deep learning approach was proposed based

on a CNN model built to classify movie reviews, which was trained , tested and vali-

dated using the publicly available IMDb dataset. Although this thesis has answered

the research questions , there are still some limitations in this work.

First of all, the development of the sentiment lexicon in this research requires human

effort. Despite the fact that a manually built lexicon can achieve better accuracy, it

is time-consuming. In this research, the number of sentiment terms in the current

lexicon is limited, and keeping track of all new coming/trending terms on the social

media domain is a challenging task because new words and expressions are created

everyday in the speed of light. On the other hand, the different scores of semantic

orientation that were manually assigned to the sentiment terms can be biased, which

is also the common drawback of the lexicon-based approach for sentiment analysis.

A second limitation of this research worth mentioning is that the research mainly fo-

cuses on the informal text that is close to the way people speak in real life. Because

the data that have been used in this research are tweets and movie reviews, which are

user-generated content. The product reviews from other sources can be written in a

formal way, such as professional critics or product reports from evaluative organisa-

tions are not taking into consideration in this work.

Another limitation would be regarding the fact that either approaches are imple-

mented for conducting sentiment analysis on social media text, in which different

reviews or comments contain symbols or images referred to as emoji’s like ’:)’, ’:(’

which help in expressing the sentiment, but these images were removed during the

pre-processing phase and thus, not taking into consideration for further analysis de-

spite the fact that they convey sentiments. Additionally in order to give stress on a

word, it is observed that some users often repeat some character in the word a num-

ber of times such as "greatttt, Fineee or amaaazing". These words usually do not have
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a proper meaning; but they may be considered and further processed to identify the

intensity of sentiment associated with the given sentence to be analysed.

5.4.2 Suggestions for Future Research

The research in the field of sentiment analysis have been very active in recent years

due to many challenging research problems and its practical applications. Although

this research has bridged few gaps, further work is required for additional improve-

ments. The most immediate enhancement for this research concerns the develop-

ment of the sentiment lexicon, since the number of sentiment terms in the current

lexicon is limited. Besides, the constructed sentiment lexicon is specific to online

product reviews, thus it cannot be used in other domains such as movie domain. In

addition, the techniques of generating lexicon automatically may be implemented

in the future in order to conquer the limitation of this research, which can save time

and human effort. Also, during this research it was noticed that the English language

is mostly used in the sentiment analysis field. This research has only handled the En-

glish language. Properly, many data sources are built for this language. There is still

lack of resources for the Arabic language. Even though the resources built for the Ara-

bic language are not yet complete and not found easily as an open-source. On one

hand, additional Algerian Arabic dialect sentiment lexicons can be developed, which

can used in turn for further research for instance topic trending and collecting polit-

ical sentiment towards the Hirak movement or the COVID19 pandemic in Algeria, so

that the boundaries of the studies in the field of sentiment analysis can be driven for-

ward. On the other hand, the proposed model can be adapted for sentiment analysis

of Arabic text, include attention to the complexity of the Arabic language and its own

characteristics to engineer useful features.

Another future work direction is to apply the proposed model architecture to other

NLP applications such as sarcasm and spam filtering. As a sophisticated form of

speech, sarcasm is always challenging in the field of sentiment analysis and NLP.

Researches display that sarcastic text is not very common in product reviews, but

more frequent in discussion related to other domains, such as politics (Liu, 2012).

Although, in this research reviews text were analysed therefore, the data contain few

sarcastic data, but still further research to explore this problem is still needed.

With the existence of a huge selection of supervised learning techniques in the fields

of sentiment analysis and natural language processing, an additional future work
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suggestion is to explore other algorithms and conduct other experiments using Re-

cursive Neural Network (RNN) with a Long Short-Term Memory (LSTM) architecture

for sentiment categorisation of text review. Additionally, to investigate other word

embeddings such as Glove (Pennington et al., 2014) and Fasttext (Bojanowski et al.,

2017).

Lastly, in light of the discussed research future directions Cloud computing has been

around for approximately two decades and Cloud adoption increases every year,

since companies realise that it offers them access to world-class enterprise technol-

ogy (Vedran, 2018). With aim of saving considerable amount of time for companies

to download the necessary packages to run the application, we plan on implement-

ing a Cloud solution and provide our application as a Software as a Service (SaaS) for

enterprises. Since companies recognise Cloud computing benefits and are aware of

its impact, they can utilise it to keep track of the impact of their products and services

and hence, improve their production, revenues and stay ahead of their competitors.
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Sentiment Lexicon

term score term score term score

abandon -2 amazing 2 admits -1
admits -1 attractive 2 anger -3

admitted -1 avoid -1 angry -3
adopt 1 awesome 4 angers -3
adopts 1 awful -4 annoy -2

adorable 2 awkward -2 annoys -2
adore 2 bad -3 annoyed -2
adores 2 badly -4 annoying -2
adored 2 bamboozle -2 applaud 2

advantage 2 bamboozled -2 applauded 2
advantages 2 banish -1 applauds 2

advantageous 2 banned -1 applauding 2
afraid -2 beautiful 4 appreciate 2

agonising -3 beautifully 3 appreciated 2
agonising -3 best 4 appreciating 2

agree 1 better 2 appreciation 2
amaze 2 big 1 approve 2

amazed 2 blah -2 approves 2
amazes 2 blurry -2 approval 2

abandoned -2 shame -2 abandons -2
admire 2 astonished 3 abilities 1

admired 2 astounding 3 ability 1
admires 2 astoundingly 3 abuse -2

admiring 2 attracted 2 abused -2
admit -1 attracting 2 abuses -2

abusive -2 accept 1 accepted 1
accepting 1 accepts 1 accident -2
accidental -2 accidentally -2 accidents -2

TABLE A.1: Terms in the sentiment lexicon for the social media domain.



Sentiment Lexicon

term score term score term score

accomplish 2 accomplished 2 accomplishes 2
admits -1 attractive 2 admitted -1
avoid -1 adopt 1 awesome 4

adopts 1 don’t love -4 awkward -2
adorable 2 stunned 4 don’t hate -3

advantage 2 very poor -3 extremely poor -4
advantages 2 banish -1 banned -1

advantageous 2 afraid -2 OMG 1
agonising -3 extremely beautiful 5 best 4
very big 2 agree 1 way better 3
amaze 2 big 1 much better 3

amazed 2 amazes 2 blurry -2
bored -2 boring -2 bother -2
bright 1 brightest 2 brightness 1

brilliant 4 broke -1 broken -1
calming 2 can’t stand -3 captivated 3

catastrophic -4 clean 2 clearly 1
complain -3 confuse -2 confused -2
confusing -2 cool 1 cool stuff 1

crap -3 crash -2 damn -3
damn it -3 dead -3 deception -3
defect -3 depressing -2 desirable 2
desire 2 destroy -3 destroyed -3

destroying -3 disappointed -3 disappointing -3
disappointment -3 disaster -5 dislike -3

dissatisfied -2 does not work -3 dont like -3
enjoy 2 enjoying 2 enjoyable 2

excellent 3 exiting 3 fail -2
failing -2 failure -2 fascinated 3

fascinating 3 favorite 2 favourite 2
fine 2 flop -2 fond 2

frustrated -2 frustrating -2 frustration -2
fun 2 god 1 gud 1

goddamn -3 good 3 great 3
greatest 3 ha 2 haha 3
hahaha 3 lol 3 happy 3

hate -3 hated -3 hoping 2
horrendous -3 horrible -3 horrific -3

huge 1 inconvenient -2 innovative 2
intelligent 2 interesting 2 joke 2

keen 1 lack -2 lags -2
lame -2 lmao 4 lmfao 4
love 4 loved 4 low -1

masterpiece 5 meaningless -2 mess -2

TABLE A.2: Terms in the sentiment lexicon for the social media domain.
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term score term score term score

nice 3 no fun -2 no good -4
not good -4 not working -2 perfect 5
perfectly 5 poor -2 popular 3
positive 2 prblm -2 regret -2

remarkable 2 sad -3 sadly -3
satisfied 2 scam -2 significant 2

stop -1 stops -1 success 2
successful 2 suck -3 sucks -3

terrible -4 terribly -4 unhappy -3
upset -2 want 1 waste -1
weak -2 win 3 wonderful 4
worse -3 wow 4 usable 2
froze -2 loose -3 like 3
work 1 extremely nice 4 desperately -3

outstandingly 5 outstanding 5 complaint -3
happiness 3 fail -2 damage -3

afraid -2 almost perfect 4 enjoys 2
amazing 4 barely usable -3 break -3

cannot install -4 cracked -3 damn good 5
don’t buy -3 extremely 3 extremely good 5

fragile -3 luv 4 no problem 1
not satisfied -2 not perfect -2 overheat -4
overpriced -4 worst -4 perfect 5
really bad -4 really love 5 really like 4

recommend 3 stunning 5 too bad -4
trash -3 ugly -4 very bad -5

best forgotten -2 can’t be happier 3 not bad 2
very good 4 very much 3 loves 4

missing -2 negative -2 neglect -2
affordable 1 afforded 1 affordability 1
goodness 3 sound 1 glad 3

pretty 2 nicely 3 oh 1
honestly 1 biggest 3 fast 2

faster 3 quick 2 quickly 2
quicker 3 loud 2 louder 3
loudest 3 dunno 1 nightmare 4
super 2 superb 3 poorly -3
cheap -1 cheapest -2 cheaper -1

flawless 4 ugh 1 ugliest -4

TABLE A.3: Terms in the sentiment lexicon for the social media domain.
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