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0Abstract

The main aim of this thesis is to deploy and develop a new estimator
for the mean that is based on the famous paper by Peng, 2001. Our case
focuses on dealing with data when it becomes incomplete with a particular
interest in the case of right-truncated, an asymptotic estimator is proposed
and its behavior examined in a simulation study. We treat throughout
our study two branches: Survival Analysis and Extreme Value Theory
which has emerged as one of the most important statistical disciplines
for the applied sciences over the last 50 years.

The �rst objective of this thesis is to collect and simplify what has been
done in the study of extreme values theory. This branch is interested in
rare events and the causes of all disasters we know and of all economic
crises. In addition, the second objective is to present an introduction
that is devoted to the basic notions of survival analysis. Furthermore,
we present two cases of incomplete data (censored and truncated) with
giving the non-parametric estimator of the mean for each case.

Keywords: Asymptotically normality, Extreme value Theory, Extreme
value index, Lynden-Bell estimator, Random variation, Heavy-tails, Ran-
dom truncation
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0Appendix A: Abbreviations and Notations

The di�erent abbreviations and symbols used throughout this thesis are
explained below:

(S,A,P) :Probability space
A{ :random variable
- :rv de�ned on (S,A,P), population
(-1, ..., -=) :samples of size n from -(
-1,=, ...-=,=

)
:order statistics pertaining to (-1, ..., -=)

-8,= :8th order statistics (8 = 1, =)
-1,= :minimum of (-1, ..., -=)
-=,= :maximum of (-1, ..., -=)
� [- ] :expectation of (or mean of - )
+0A (- ) :variance of -
?35 :probability density function
3 5 :distribution function
5 :pdf of -
� :df of -
�= :empirical df
�← :generalized inverse of F, quantile function

ix



0.B :almost sure
�!) :Central limit theorem
�>{ (-,. ) :covariance between - and . .
D(.) :domain of attraction
4.6 :for example
i.e. :in other words
EVI :extreme value index
EVT :extreme value theory
��+� :extreme value distribution
�%� :generalized Pareto distribution
1� :indicator function of set A
iid :independent identically distributed
inf � :in�mum of set A
"! :maximum likelihood
"!� :maximum likelihood estimator
'"(� :root mean squared error
= :integer number greater than 1
ℕ :set of non-negatives integers
ℝ :set of real numbers
∃ :exist
ℝ+ set of positive real numbers

x



& :quantile function, generalized inverse of �
&= :empirical quantile function
sup� :supermum of set �
N(`, X2) :normal or Gaussian distribution
N(0, 1) :standard normal or standard Gaussian distribution
> (.) :5 (G) = > (6(G)) as G → G0 : 5 (G)/6(G) → 0 as G → G0
$ (.) :5 (G) = $ (6(G)) as G → G0 : ∃" > 0, |5 (G)/6(G) | ≤ " as G → G0
0.B→ :a.s converge
3→ :convergence in distribution
?
→ :convergence in probability
∧ :0∧1 = min(0, 1)
∨ :0 ∨ 1 = max(0, 1)
[G] :integer part of a real number G
(= :the partial sum -

- :arithmetic mean of -
∀ :∀G i.e. for any G
RVU :regular variation at∞ with index U
RV0

U :regular variation at 0 with index U
∈ :belongs
log :logarithm
exp or 4 :exponential
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1 Introduction

“The essence of mathematics is not to make simple things complicated
but to make complicated things simple”

(.�D334A

In statistical analysis the main data or the overage behavior of any
phenomenon was the only element of interest. But we could face in
many cases extreme situations; For example, Since 12 July 2021 several
European countries have been e�ected by �oods, some were catastrophic
causing deaths and wide spread damage, besides to the virus that has
swept the world and represented as an extreme situation caused millions
of deaths around the world Like �ooding most of extreme events such
as Fires [Algeria(Khenchla, Annaba,..); Turkey..],earthquakes, volcanoes,
severe weather conditions (extremely high or low) in order to reduce
severe damage and for facing the above extreme situations Extreme Value
Theory could give a great help.

Figure 1.1: Ger-
man Floods Kill at
Least 133 in 15 july
2021.

the particularity of the extreme value theory is
that it focuses on the tail of distribution that gener-
ate the studied various extreme phenomenon. it is
developed for the estimation of the probability of
rare events and make it possible to obtain reliable
estimates of the extreme values for which there are
few observations. EVT or EVA ( Extreme Value
Analysis ) is mainly based on limit distributions
of the extremes and their domain of attractions
however there are two models:

• Generalized Extreme Value Distributions.

• Generalized Pareto Distributions.

1



Chapter 1 Introduction

Thus, it all started with the authors Fisher and
Tippett, 1928 ,when they were studying resistance. They stated a funda-
mental theorem with the creation of three domains of attractions: Fréchet,
Gumbell and Weibull. This interesting theorem refers to a parameter
called the tail index which gives the shape of the distribution tail. Indeed,
if the tail index is positive we are in the presence of Fréchet’s domain
of attraction; then if it’s negative, domain of Weibull attraction on the
other hand if the index is zero then Gumbel domain. von Mises, 1936,
Jenkinson, n.d., gathered the distributions of these three domains in one
writing. It is at this time that several authors have focused on estimating
of the extreme value index. We can cite Hill, 1975, in the case where
the index is positive. Pickands III, 1975 in the same year proposed an
estimator of the index of extreme values in the general case. On the other
hand, Dekkers et al., 1989. have generalized Hill’s estimator, referred to
as the Moments estimator, Beirlant et al., 2016. presented in turn, the
estimator of the extreme value index generated at from the Hill estimator
and the quantile function.

Figure 1.2: Forest �res in
Khenchela in 08 july 2021.

the second peculiarity of this analysis,
and that it is very common to be found in
faced with the problem of missing data, i.e.
survival data are not fully observed, they
are incomplete. Censorship and truncation
are both the most common causes of this
problem. Censorship is a mechanism that
prevents the exact observation of the time
of occurrence of interest. We know well
that this deadline belongs to a certain time
interval. Truncation of an object can be detected only if its value is greater
or less than some number, and the value is completely known. In this
case, the classic techniques do not adapt correctly to incomplete data. The
literature is much richer in censorship than the truncation, which is more
recent. For full details on censorship and survival analysis, the reader
might check the books: Cox and Oakes, 1984, Kalb�eisch and Prentice,
2011 ,Lee and Wang, 2003 ,Klein and Moeschberger, 2005 , Wienke, 2010

2



Introduction Chapter 1

.In 1951, Weibull designed a parametric model in the �eld of reliabil-
ity; at this e�ect, it provides a new probability distribution which will
subsequently be frequently used in survival analysis: Weibull’s law.In
1958, Kaplan and Meier, 1958 presented important results concerning
the estimation non-parametric of the survival function, of the resulting
estimator, they study expectation, variance and asymptotic properties.
Asymptotic behavior of the Kaplan and Meier estimator Kaplan and Meier,
1958 are used the interest of a large number of authors including Bres-
low and Crowley, 1974 who are the �rst to deal with convergence and
the asymptotic normality of the Kaplan and Meier, 1958 estimator.In
this thesis we deal essentially with the case of right-truncation For full
details on truncation the reader back to the books: Woodroofe, 1985, Ben-
chaira et al., 2015,Gardes and Stup�er, 2015,and Lynden-Bell, 1971 etc...

Figure 1.3: Coronavirus
disease (COVID-19).

Our thesis is organized into two parts We
start as preliminary chapters: 2,3 and 4 then
the second part present our main results.the
content of each chapter is presented as fol-
lows:

Chapter 2
This chapter contains some mathemati-

cal preliminaries (the asymptotic properties
of the sum of iid rv’s; order statistics and
distributions of upper order statistics), also
contains a derivation of the three families of classical Gnedenko limit
distributions for extremes of iid variables and an account of regular vari-
ation and its extensions and domains of attraction. So, this chapter gives
you an introduction to the mathematical and statistical theory underlying
EVT.

Chapter 3
This chapter is devoted to the basics of survival analysis, we begins

with a few reminders on basic concepts such as fdr, the three survival
functions and the equivalence relationship between these three functions
is discussed.

The more we talk about the laws of large numbers and properties

3



Chapter 1 Introduction

asymptotic of the sum of the iid values (TCL). with giving the di�erent
estimators for the mean in each case of �nite and in�nite second moment.

Chapter 4
Contains the essential de�nitions and results of incomplete data, with

the main basic concepts on truncated data and some important and useful
results existing in the literature for the random right truncation model. In
this chapter, we start by censored data, which can be further classi�ed into
three categories: right censoring, left censoring, and interval censoring.it
worth to mention that we present the di�erent work in estimating the
mean in this case. Afterward, we will be interested in the truncated data.
Which in turn has three types as follows: right truncation, left truncation,
and interval truncation, but in the present thesis, we are concerned with
data that are right truncated.

Chapter 5
The chapter deals with the estimation of the mean under random

truncation. The main objective of this chapter is to propose a method
for estimating the mean of this type of distribution in the presence of
random right truncation, its asymptotic normality established and its
performance evaluated on simulated data.

4
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Preliminary Theory





2 Extreme Value theory

Much statistical analysis study the main body of data, and look at its
behavior in terms of means in many cases however, the extreme value in the
data is more interested in example; if we were studying river level over time
then the only values we really care about are those that are really high or
really low; if they are too low then the river could dry out. For this spot, an
extreme value of some random variable is often either their maximum or
their minimum; we could analogously come up with some results for their
minimum as well will just assume it’s their maximum, In this chapter, we
have made a general overview on the theory of extreme values, mentioning
the di�erent characteristics and the basics which are very useful for the
estimation of the extreme quantiles and the truncated data that we will
discuss in the next chapter. A very good variety of textbooks and books
is devoted to Extreme Values Theory (EVT) for example: Resnick, 1987 ,
De Haan et al., 2006, Embrechts et al., 1997b and Leadbetter et al., 2012 and
we don’t forget to mention Meraghni, 2008 etc.

2.1 Order statistics

Order statistics or (OS) play an increasingly important role in the the-
ory of extreme values because they provide information about the tail
distribution (right). for a long time, we face OS when we study survival
analysis (truncation or censored) but recently the order statistics appeared
in the research for robust methods. We start in this section, by giving
the de�nitions and some properties of the statistics order, then we study
their exact and asymptotic distributions. For more detailed presentations
in this area, we can cite, for example, the books of Reiss, 1987 and Coles

7



Chapter 2 Extreme Value theory

et al., 2001, Arnold et al., 2008, and David and Nagaraja, 2004. Which
covered virtually all the topics of order statistics.

I De�nition 2.1 (Order statistics). Let (-1, ..., -=) = iid random vari-
able with a common distribution � and density 5 . We call statistics of
order (increasing) the sequence of random variables (-1, ..., -=) which
are ordered by ascending order, either:

-1,= ≤ ... ≤ -=,= .

J

I Remark 2.2. For 1 ≤ : ≤ = the variable -:,= is known under the
name of the :Cℎ order statistic or : order statistic. Two order statistics
are particular-interesting for the study of extreme events. These are the
order statistics extremes which are given by the following de�nition. J

Extreme order statistics are de�ned as terms of the maximum and
minimum of = random variables (-1, ..., -=) :

• the variable -1,= is the smallest statistic of order (or statistic of the
minimum) and -1,= := min(-1, ..., -=).

• the variable -=,= is the greatest statistic of order (or maximum
statistic) -=,= := max(-1, ..., -=) .

I Remark 2.3. We can �nd in other books the next notation for
extreme order statistics (minimum and maximun) as follow:

"= := max(-1, ..., -=) and <= := min(-1, ..., -=).

J

8



Order statistics Section 2.1

2.1.1 Empirical distribution function and order
statistics

– �= (G) is the proportion of the = variables which are less than
or equal to G .

– �= (G) is the proportion of the = variable which are greater or
equal to G .

– the empirical df (or sample df) of the sample (-1, ..., -=) is
de�ned by:

�= (G) := 1
=

=∑
8=1

1(-8 ≤ G) , G ∈ ℝ. (2.1)

– The functions �= (G) and �= (G) are written by using order
statistics as follows:

�= (G) :=


0 if G ≤ -1,=
8−1
=

if -8−1,= ≤ G ≤ -8,= for 8 = 2, =
1 if G ≥ -=,=

�= (G) :=


1 if G ≤ -1,=
1 − 8−1

=
if -8−1,= ≤ G ≤ -8,= for 8 = 2, =

0 if G ≥ -=,=

2.1.2 Distribution function and density of the
maximum

I Proposition 2.4 (Balakrishnan & Nagaraja). – The distri-
bution function (df) �-=,=of -=,= is given by:

∀G ∈ ℝ, �-=,= (G) = % (-=,= ≤ G) = �= (G). (2.2)

9



Chapter 2 Extreme Value theory

– If - is absolutely continuous of density 5 , then the density
function 5-=,=of -=,= is given by:

∀G ∈ ℝ, 5-=,= (G) = =�=−1(G) 5 (G). (2.3)

J

2.1.3 Upper end point

We denote by G� (resp G∗
�
) the upper extreme point (resp. Lower)of

the distribution � (i.e. the greatest possible value for -:,= which
can take the value +∞(resp −∞) in the sense that:

G� := sup{G : � (G) < 1} ≤ ∞

and :
G∗� := inf{G : � (G) > 0}.

2.1.4 �antile function

I De�nition 2.5 (Quantile function). The quantile function of
df � is generalized inverse function of � de�ned by: For all 0 < B < 1

& (B) := �←(B) := inf{G : � (G) ≥ B}. (2.4)

with the convention that inf (∅) = ∞ . J

I Remark 2.6. For all 0 < B < 1 the distribution function F is
strict-increasing and continues. J

10



Order statistics Section 2.1

2.1.5 Empirical quantile function

I De�nition 2.7 (Empirical quantile function). The empirical
quantile function of the sample (-1, ..., -=) is de�ned by For all
0 < B < 1:

&= (B) := inf{G : �= (G) ≥ B}

&= can be expressed as a simple function of order statistics concern-
ing the sample (-1, ..., -=) So we have:

&= (B) = -8,= for 8 − 1
=

< B ≤ 8

=
, 8 = 1, =

note that for 0 < ? < 1; - [=?]+1,= is the sample quantile of order ? ,
where [=?] denote the integer part of =?, if B = 1/2 then one also
speaks of the sample median. J

2.1.6 Tail quantile and emperical tail quantile
function

I De�nition 2.8 (Tail quantile function ). denoted by U and
called tail quantile function is used quite often; it is de�ned by:

U(C) :=& (1 − 1/C) = (1/� )←(C), 1 < C < ∞

the corresponding empirical function is:

U= (C) :=&= (1 − 1/C), 1 < C < ∞

J

I Proposition 2.9 (Quantile transformation). Let (U1, ...,U=)
be a sample from the standard uniform rv U and (U1,=, ...,U=,=) be
the corresponding ordered sample. J

11



Chapter 2 Extreme Value theory

(i) For any df � , we have:

-8,= = �
←(*8,=), 8 = 1, .., = (2.5)

(ii) When F is continuous, we have:

� (-8,=) = *8,=, 8 = 1, .., =. (2.6)

In this case the rv’s � (-1), ..., � (-=) are iid standard uniform.

2.1.7 Distributions of order statistics

I Proposition 2.10 (Maximum and minimum distributions).
Let (-1, ..., -=) be = rv independent identically distributed of distri-
bution function � , the exact distribution of the maximum -=,= is
simply given by the following formula:

∀G ∈ ℝ, �-=,= (G) = [� (G)]= .

The exact distribution of the minimum is given by:

∀G ∈ ℝ, �-1,= (G) = 1 − [1 − � (G)]= .

J

I Proposition 2.11 (Distribution function of the k th upper
order statistic). These are important special cases of the general
result of �:,= denote the df of-:,= where : = 1, ..., = which it is given
by:

– �:,= (G) :=
∑:−1
A=0

(
=

A

)
�
A (G)�=−A (G).

12



Distribution of extreme values Section 2.3

– if � is continuous; then

�:,= (G) :=
∫ G

−∞
5:,= (I)3� (I),

Where

5:,= (G) := =!
(: − 1)!(= − :)!�

=−: (G)�:−1(G);

i.e. 5:,= is a density of �:,= with respect to � .

Proof. see e.g Embrechts et al., 1997b page 183. J

J

2.2 Distribution of extreme values

Now suppose there is a sequence (0=)=∈ℕ∗ srictly real numbers posi-
tive and a sequence (1=)=∈# of real numbers such as the sequence of
normal maxima

{
1
0=

(
-=,= − 1=

)
, = ∈ ℕ∗

}
converges in distribution

to a random variable non degenerate of distribution function H ,
i.e.

∀G ∈ ℝ, lim
=→∞

%

(
-=,= − 0=

1=
≤ G

)
= lim
=→∞

�= (0=G + 1=) = H(G) .
(2.7)

IDe�nition 2.12. The sequences {0= > 0, = ≥ 1} and {1=, = ≥ 1}are
called sequences of normalization, the constants 0= ∈ ℝ∗+ and
1= ∈ ℝ are called constants of normalization and the random vari-
able 1

0=

(
-=,= − 1=

)
is called the normalized maximum. J

13



Chapter 2 Extreme Value theory

2.3 Limit distributions

In the central limit theorem, we have de�ned only possible limit
laws for the sequence of sums, normalized by independent and
identically distributed random variables when = tend to∞, we have
a similar notion in extreme value theory called max-stable law.

I De�nition 2.13 (Embrechts & Mikosch). The random vari-
able, non-degenerate, - or the probability law of - or, again the
distribution function � of - is said to be max-stable, if there are
constant 0= ∈ ℝ∗+ and 1= ∈ ℝ such that for all = ∈ ℕ∗.

"=
3
= 0=- + 1= .

Or, which is equivalent, if there are constants for all = ∈ ℕ∗ and
G ∈ ℝ

�= (0=G + 1=) = � (G).

J

I Theorem 2.14 (Fisher & Tippett). Let (-8)8≥1 be a sequence
of = independently distributed random variables with distribution
function � . If there are two real normalizing sequences (0=)=≥1 > 0
and (1=)=≥1 ∈ ℝand a non-degenerate law of distributionH such
that

lim
=→∞

%

(
-=,= − 1=

0=
≤ G

)
= lim
=→∞

�= (0=G + 1=) = H(G) . (2.8)

H is the distribution of extreme values. So except for a translation
and a change of scale, the distribution function of the limit is of the

14
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type of the following three classes:

�A4́2ℎ4C : QU (G) = exp(−G−U )1G>0.
�D<14; : L(G) = exp(−4−G ), G ∈ ℝ
,481D;; : RU (G) = exp(−(−G)U )1G<0.

J

Proof. For a proof of this theorem, the reader can refer to the fol-
lowing work: Resnick, 1987. �

I Remark 2.15. To distinguish the three distributions, we gen-
erally use the notation:L for the Gumbel distribution ,QU for the
Fréchet distribution andRU for the Weibull distribution J

We can choose the normalization constants according to the follow-
ing theorem.

I Theorem 2.16. We have (0=)=≥1 > 0 and (1=)=≥1 ∈ ℝ such that:

�-=,= (0=G + 1=)
=→∞→ H(G),

1= = 0, 0= = �
−1(1 − 1

=
) ifH =Q

1= = �
−1(1), 0= = �

−1(1) − �−1(1 − 1
=
) ifH =R

1= = �
−1(1 − 1

=
), 0= = �

−1(1) − �−1(1 − 1
=
) ifH =L.

J

I Proposition 2.17 (Density function of extremevalues). The
density functions of the distribution of standard extreme values
and the di�erent types of extreme distribution, are as follows:

�A4́2ℎ4C : qU (G) = UG−U−1 exp(−G−U )1G>0.
�D<14; : _(G) = exp(−{G + 4−G }), G ∈ ℝ
,481D;; : kU (G) = U (−G)−U−1 exp(−(−G)U )1G<0.

15



Chapter 2 Extreme Value theory

J

2.4 Generalized extreme values
distributions (GEVD)

As we have just seen, the three types of extreme distributions
Fréchet, Weibull and Gumbel have di�erent behaviors that corre-
spond to di�erent behaviors of the function of tail � of the random
variable - . This resulted in the �rst applications of extreme value
theory, to adopt one of these three types for data analysis. But this
method has drawbacks because,

– �rst, we must have a technique to choose which of the three
distribution extremes are more appropriate to the data that
we have.

– secondly, once such a decision is made, subsequent deduc-
tions con�rm that our choice is correct and does not take into
account the uncertainty that such a selection implies,

although this uncertainty attitude can be substantial. A better
analysis is o�ered thanks to the work of von Mises, 1936 and Jenk-
inson, n.d. who showed that the three extreme types of distribution
Fréchet, Weibull and Gumbel can be combined into a single type
of distribution called a "type of generalized extreme values distri-
bution (GEVD) ”or“ type of distribution of extreme values of Von
Mises-Jenkinson ”

I De�nition 2.18 (Embrechts & Mikosch). Let W ∈ ℝ, We call
the distribution of standard generalized extreme values any dis-
tribution function HW or any probability law which has HW as a
function of distribution such that for W ∈ ℝ and 1 + WG > 0 where

16
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the parameter W is called the index of extreme values. such that:

HW (G) :=
{

exp
{
−(1 + WG)−

1
W

}
, if W ≠ 0.

exp{− exp(−G)}, if W = 0.
(2.9)

J

I Proposition 2.19 (Ferreira (2006)). LetHW (W ∈ ℝ)be the gen-
eralized extreme value distribution and L,QU andRU the distribution
of standard extreme values with U > 0 we have :

HW (G) :=


Q 1

W
(1 + WG) , if W > 0

R− 1
W
{−(1 + WG)} , if W < 0

L(G) , if W = 0
; (2.10)

∀G ∈ ℝ such that 1 + WG > 0. J

This proposition gives us a very important result, in the applications
of the theory of extreme values, which make it possible to classify
the three types of extreme distributions Fréchet, Weibull and Gum-
bel in a single type which is the type of generalized extreme value
distribution. Indeed, we have the following proposition:

I Proposition 2.20. Let HW (W ∈ ℝ)be the generalized extreme
value distribution and L, QU andRU the distribution with U > 0 ,
the types of extreme value distribution which are,respectively, of
Fréchet , of Weibull and of Gumbel , then we have:

HW :=


Q 1

W
, if W > 0

R− 1
W

, if W < 0
L , if W = 0

. (2.11)

J

17



Chapter 2 Extreme Value theory

Figure 2.1: Densities of the standard extreme value distributions. we chose
U = 1 for the Fréchet and the Weibull distribution

I Remark 2.21. �W,`,f (G) is a general form for non-centered and
unreduced variables, so for

(
1 + W ( G−`

f
) > 0

)
the distribution�W,`,f (G)

is written as follows:

�W,`,f (G) :=
{

exp
{
−(1 + W ( G−`

f
))−

1
W

}
, if W ≠ 0.

exp
{
− exp(−( G−`

f
))

}
, if W = 0.

(2.12)

- in which the shown paramters are : for localization ` ∈ ℝ and a
scale parameter f > 0. J
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2.5 Generalized Pareto Distribution
(GPD)

As mentioned in the previous section, the distribution of generalized
extremes is very useful in application of extreme value theory,
because it is the one and only law of probability which models the
behavior of the maximum of a sample. To estimate its parameters,
statisticians often use methods which are:

– The block maxima (BM) method:

statistical inference about rare events is linked to observations
which are extreme in some sense. Di�erent ways to de�ne such
observations lead to di�erent approaches to statistics of univariate
extreme (SUE). Sometimes, only yearly or block maxima which
consists in constructing a sample of maximums from a sample data
in block format of the same size. This method has a major draw
back which leads to a loss of certain information, in particular,
some blocks may contain more than one extreme value, while other
blocks may not contain any.

– The peaks over threshold (POT) approach:

The POT approach is also popular to SUE, in a certain sense parallel
to the MEV model, and was introduced Smith, 1987. Our attention is
restricted to the observations that exceed a certain high threshold
D, this method allows to take into account much more data to
ensure much more precision in the estimation of the parameters
of the distribution of extreme values generalized, in particular, the
index of extreme values W ∈ ℝ. Indeed based on Generalized Pareto
Distribution (GPD) Balkema de haan-Pickands theorem, consists
in studying the behavior not of the maximum data that we have
but all data that greater a high threshold D , and more precisely,
the di�erences between these data and the threshold D , called
"excess"i.e

% (- − D ≤ ~ | - > D)
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Chapter 2 Extreme Value theory

Figure 2.2: The data -1, -2, ..., -= and their corresponding : excess beyond the
Dthreshold .1, .2, ..., .= (: ≤ =).

I De�nition 2.22 (excess). We call excess of the random variable
- beyond a threshold D < G� the random variable . , which takes
its values on ]0, G� − D [, de�ned by :

. = - − D | - > D, D < G� .

We call the distribution of the excesses of the random variable -
with respect to a thresholdD < G� the probability law of the random
variable . excess of - beyond the threshold D < G� , given by its
distribution function �D , which we call the distribution function
excess, following:

�D (~) = % (-−D ≤ ~ | - > D) =


0 , if ~ ≤ 0,
1 − 1−� (D+~)

1−� (D) , if 0 < ~ < G� − D,
1 , if ~ ≥ G� − D.
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the mean function of the excesses of the random variable - with
respect to the threshold D < G� , and we denote it by 4 (D), the
expectation function of the random variable . excess of - beyond
the threshold D < G� , de�ned by:

∀D < G� , 4 (D) = � (- − D | - > D) = 1
� (D)

∫ G�

D

� (C)3C .

J

I De�nition 2.23 (Generalized Pareto Distribution). Let W ∈
ℝ. standard generalized Pareto distribution any function distri-
bution �W or any probability law which has GW as a distribution
function such as : ∀G > 0 and 1 + WG > 0;

GW (G) :=
{

1 − (1 + WG)−
1
W , if W ≠ 0,

1 − 4−G , if W = 0.
(2.13)

J

I Remark 2.24. – We can give a more general form to the
distribution function GW given in the de�nition above, that
we denote by GW,`,f (G) a parameter is shown of localization
` ∈ ℝ and a scale parameter f > 0 for

(
1 + W ( G−`

f
) > 0

)
and

∀G > ` as follows:

GW,`,f (G) :=
{

1 −
[
1 + W

(G−`
f

) ]− 1
W , if W ≠ 0,

1 − exp
(G−`
f

)
, if W = 0.

(2.14)

– The parameterW ∈ ℝ that we can therefore see the generalized
Pareto distribution is a shape parameter called "tail index".

J
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2.6 Regularly Varying distributions

In this section, we treat the class � of functions that appear in a
large number of applications in the whole of mathematics. Here,
we will de�ne some generalities on these functions with some of
their most important properties. Those who are interested in the
theory of regular variation can consult for example: Teugels et al.,
1987, Klüppelberg and Mikosch, 1997.

IDe�nition 2.25 (Regularly varying and slowly varying func-
tions). A measurable function + : ℝ+ → ℝ+ is regularly varying
at∞ with the index d , and we denote by + ∈ RVd , if:

lim
G→∞

+ (CG)
+ (G) = Gd ,C > 0. (2.15)

d is the variation exponent or the regular variation index.
A measurable function ; : ]0, +∞[ → ℝ+ with (C > 0) is said slowly
varying at in�nity, if:

lim
G→∞

; (CG)
; (G) = 1 ,C > 0.

A function with regular variation of index d ∈ ℝ can always be
written under the following form: J

I Example 2.26. The following table content some examples for
slowly varying functions and not:

regularly varying not regularly varying
Gd exp(G)

Gd log(1 + G) sin(G + 2)
(G log(1 + G))d exp(log(1 + G))

J

we give some elementary properties, functions with slow variations:
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I Proposition 2.27 (Slowly varying function properties). –
RV0 is closed under addition, multiplication and division.

– If ; is slowly varying,

lim
G→∞

log(; (G))
log(G) = 0.

– If ; is slowly varying, then the ;U is slowly varying for any
U ∈ ℝ.

– If ; is slowly varying and d > 0.

lim
G→∞

Gd; (G) = ∞ and lim
G→∞

G−d; (G) = 0.

J

I Lemma 2.28 (Inverse of regular variation function). – if
5 is a regular variation at in�nity with index U > 0, then 5←
is regular variation at in�nity with index 1

U
> 0.

– if 5 is regular variation at in�nity with index U < 0, then 5←
is regular variation at in�nity with index 1

U
< 0.

J

Proof. the proof of this lemma could be found in Bingham et al.,
1989 . �

I Theorem 2.29 (Kramata representation ). – every slowly
varying function ; (i.e ; ∈ RV0) if and only if can be repre-
sented as:

; (G) = 2 (G) exp
{∫ G

1

A (G)
C
3C

}
, G > 0.

J

23



Chapter 2 Extreme Value theory

where 2 (.), A (.) are two measurable functions, and

lim
G→∞

2 (G) = 20 ∈ [0,∞[ and lim
C→∞

A (C) = 0.

if the function 2 (.) is a constant, then we said ; is normalised.;

– A function + : ℝ+ → ℝ+ is regularly varying at ∞ with the
index d if and only if + has the representation:

+ (G) = 2 (G) exp
{∫ G

1

d (C)
C
3C

}
, G > 0.

limC→∞ d (C) = d

Proof. See Resnick, 1987, Corollary 2.1; page 29 �

2.6.1 First Order Regular variation Assumption

For a df function � and U the tail quantile function, the following
assumptions are equivalent:

– � is regularly varying at in�nity with index −1/W

lim
I→∞

� (GI)
� (I)

= G−1/W , G > 0.

– & (1 − B) is regularly varying at in�nity with index −W

lim
B→∞

& (1 − BG)
& (1 − B) = G−W , G > 0.

– * is regularly varying at in�nity with index W

lim
I→∞

* (GI)
* (I) = GW , G > 0.
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– � is heavy-tailed.

2.6.2 Second Order Regular variation
Assumption

We say that F is second order regularly varying at in�nity if it
satis�es one of the following conditions:

– there exist some parameter d ≤ 0 and a function�∗, such that
for all G > 0

lim
C→∞

� (CG)/� (C) − G−1/W

�∗(C) = G−1/W G
d − 1
d

.

– there exist some parameter d ≤ 0 and a function �∗∗, such
that for all G > 0

lim
B→∞

& (1 − BG)/& (1 − B) − G−1/W

�∗∗(B) = G−W
Gd − 1
d

.

– there exist some parameter d ≤ 0 and a function �, such that
for all G > 0

lim
C→∞

* (CG)/* (C) − GW
�(C) = G−1/W G

d − 1
d

.

where �∗, �∗∗ and � are regularly varying functions with

�∗(C) = �(1/� (C)) and �∗∗(C) = �(1/C).

Their role is to control the speed of convergence in First order
regular variation condition.

If d = 0; interpret (Gd − 1)/d as logG .
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2.6.3 Third Order Regular variation Assumption

There exist a positive real parameter W, negative real paramters d
and V ; functions 1 and 1̃ with 1 (C) → 0 and 1̃ (C) → 0
for C →∞, both of constant sign for large value of C ; such that:

lim
C→∞

ln* (CG)−ln* (C)−W lnG
1 (C) − Gd−1

d

1̃ (C)
=

1
V

(
Gd+V

d + V −
Gd − 1
d

)
, for G > 0

Where
���1̃��� is regularly varying of index V.

2.7 Domain of a�raction

In this section, we shall determine a su�cient and necessary condi-
tions on the distribution function � that ensure the membership of
this distribution to a domain of attraction. Basically, these condi-
tions due to von Mises, 1936, require the existence of one or two
derivative of � . Next we present a de�nition of domain of attrac-
tion and the following theorem states a su�cient conditions for
belonging to domain of attraction the conditions called von Mises
condition.

I De�nition 2.30 (Domain of attraction). We say that a dis-
tribution � belongs to the domain of attraction of the maximum
of the distribution HW , and we denote by � ∈ D(HW ), if there
are two normalizing sequences (0= > 0)and (1= ∈ ℝ) such that the
condition holds:

lim
=→∞

%

(
-=,= − 1=

0=
≤ G

)
= lim
=→∞

�= (0=G + 1=) = HW (G), ∀G ∈ ℝ.
(2.16)
J
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I Theorem 2.31. Let � be a distribution function and G� its right
endpoint. Suppose �´́(G) exists and �´(G) is positive for all x in some
left neighborhood of G� . If

lim
C→G�

(
1 − �
�´

)´
(C) = W (2.17)

or equivalently

lim
C→G�

(1 − � (C))�´́(C)(
�´(C)

)2 (C) = −W − 1

then F is in the domain of attraction ofHW . J

I Theorem 2.32. J

1. (W > 0) suppose G� = ∞ and �´ exist. If

lim
C→∞

C�´(C)
1 − � (C) =

1
W
,

for some positive W , then � is in the domain of attracttion of
HW .

2. (W < 0) suppose G� < ∞ and �´ exist for G < G� . If

lim
C→G�

(G� − C)�´(C)
1 − � (C) = −1

W
,

for some negative W , then � is in the domain of attracttion of
HW .

For the proofs and more details on this issue, one my consult De
Haan et al., 2006, please check page 15.

I Theorem 2.33. the distribution function � is in the domain of
attraction of the extreme value distribution D(HW ) if and only if
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1. for W > 0 : G� is in�nite and

lim
C→∞

1 − � (CG)
1 − � (C) = G

− 1
W . (2.18)

for all G > 0. this means that the function 1 − � is regularly
varying at in�nity with index − 1

W
.

2. for W < 0 : G� < ∞ and for all G > 0

lim
C↓0

1 − � (G� − CG)
1 − � (G� − C)

= G
− 1
W . (2.19)

3. for W = 0 : here the right endpoint G� may be �nite or in�nite
and

lim
C↑G�

(1 − � (C + G 5 (C)))
1 − � (C) = 4−G . (2.20)

for all real G , where 5 is a suitable positive function.if equa-
tion (2.20) holds for some 5 then

∫ G�

C
(1 − � (B))3B < ∞ for

C < G� and equation (2.20) holds with:

5 (C) =
∫ G�

C
(1 − � (B))3B
1 − � (C) .

J

Characterization of domain of a�raction

Di�erent characterizations of three domain of attraction of Fréchet,
Weibull and Gumbel have been proposed in Resnick, 1987, De Haan
et al., 2006 and Embrechts et al., 1997b. So According to the sign of
W , we can distinguish three domain of attraction:

– If W > 0, we say that � ∈ D(QW ) , and � has an in�nite right
end point (G� = +∞), this domain of attraction of heavy-tailed
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distributions,that is, which have a polynomial decay survival
function.

– If W < 0 , we say that � ∈ D(RW ) , and � has a �nite right
endpoint (G� < +∞). This domain of attraction of survival
functions whose support is bounded above.

– If W = 0 we say that � ∈ D(L) the end point G� can then be
�nite or not.This domain of attraction of distributions with
light tails, that is to say which have an exponentially decaying
survival function.

We indicate here the most used criteria, that is to say, the condi-
tions on the fdr for which belongs to one of the three domains of
attraction which are de�ned previously.

I Theorem 2.34 (Characterization ofD(�" )). The fdr belongs
to the domain of attraction of Fréchet’s law with parameter U > 0
if and only if :

� (G) = G−U; (G). (2.21)

where the function ; is slowly varying. In particular G� = +∞
moreover if � ∈ D(QU ) ,with 0= = �−1(1 − 1

=
) and 1= = 0, the

sequence
(
0−1
= -=,=

)
=≥1converges in law to goes from fdrQU when

= → +∞. J

Proof. See Embrechts et al., 1997a , Theorem 3.3.7, page 13 �

I Theorem 2.35 (Characterization ofD( " )). The fdr belongs
to the domain of attraction of the Weibull law with parameter U > 0
i� G� < +∞and:

� (G) =
(
G� −

1
G

)
= G−U; (G) (2.22)

where the function ; is slowly varying. Moreover if � ∈ D(RU ) with
0= = G�−�−1(1− 1

=
) and1= = G� the sequence

(
0−1
=

(
-=,= − G�

) )
=≥1converges

in law to goes from fdrRU when = → +∞. J
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Proof. The proof of this theorem is similar to that of the previous
theorem, See Embrechts et al., 1997a , Theorem 3.3.7, page 131. for
the converse. �

The results concerning the domain of attraction of Gumbel’s law
are more delicate, since there is no simple representation for the
laws belonging to the domain attraction of Gumbel

I Theorem 2.36 (Characterization of D(�)). The fdr belongs
to the domain of attraction of Gumbel’s law if and only if :

� (G) = 2 (G) exp
{
−

∫ G

I

6(C)
0(C)3C

}
, I < G < G� . (2.23)

where 2 and 6 are two satisfying measurable functions 2 (G) →
2 > 0 and 6(G) → 1when G → G� and 0 is a positive, absolutely
continuous function (with respect to the Lebesgue measure) with
the density 0′ having limG→G� 0

′ (G) = 0. In this case, a choice
possible for the standardization sequences is:

0= = G� − �−1(1 − 1
=
) and 1= =

1
� (0)

∫ G�

0=

� (~)3~,

J
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Distributions � (G) W

U[0, 1] 1 − G −1

inverse Burr(V, g, _, Gg )V, g, _ > 0
(

V

V+(Gg+G)−g
)_
− 1
_

Table 2.1: Some distributions associated witha negative index

Distributions � (G) W

Pareto(U), U > 0 G−U , G > 0 1
U

Burr(V, g, _), V > 0, g > 0, _ > 0
(

V

V+Gg
)_ 1

_g

Fréchet
( 1
U

)
, U > 0 1 − exp(−G−U ) 1

U

log gamma(<, _), _ > 0,< > 0 _<

� (<)
∫ ∞
G
(logD)<−1D−_−13D 1

_

loglogistic(U, V), U > 0, V > 0 1
1+VGU

1
U

Table 2.2: Some distributions associated with a positive index

I Example 2.37. The following tables give di�erent examples of
standard distributions in these three domain of attraction: J

Distributions � (G) W

Gamma(<, _), _ > 0,< ∈ ℕ _<

� (<)
∫ ∞
G
D−<−1 exp(−_D)3D 0

Gumbel (`, V), V > 0, ` ∈ ℝ exp
(
− exp(−G−`

V
)
)

0
Logistic 2

1+exp(G) 0
log gamma(`, f), ` ∈ ℝ, f > 0 1√

2c

∫ ∞
1

1
`

exp
(
− 1

2f2 (logD − D)2
)
3D 0

Weibull(_, g), _ > 0, g > 0 exp(−_Gg ) 0
Table 2.3: Some Distributions Associated with a Null Index
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2.8 Estimation of the extreme value
index

We focus in this section on the tail index parameter, we give study
for di�erent estimators with some of their statistical properties
Perhaps the two most popular estimators in the literature are the
estimators from Hill 1975 and Pickands 1975.
we shall mention that the case of W > 0 has got more interest
because data sets in most real life applications exhibit heavy-tails.
We denote by

(
-1,=, ..., -=,=

)
the order statistics associated with the

sample (-1, ..., -=), i.e. say that we classify (-1, ..., -=) in ascending
order so that:

-1,= ≤ -2,= ≤ ... ≤ -=,= .

Consider the : largest (or smallest) values. : depends a priority on
=, even if we will not mention it in the notation: the idea is to have
: →∞ when = →∞, but without taking "too many" values from
the sample, which leads to impose :

=
→ 0. Incidentally, this implies

that we will ask ourselves the question of the optimal choice of :
.Indeed, it is essential to calculate this estimator on the tails of the
distribution. Choosing too high a : generates the risk of taking into
account values which are not extreme my conversely, too small sub
sample does not allow the estimators reach their level of stability.
Finally, it will be noted that the non parametric approach is only
possible if one has a large number of observations: if the samples
are small,we will turn to the parametric approach.

2.8.1 Pickand’s estimator

The Pickands estimator was introduced in 1975 by James Pickands
III, 1975 for any W ∈ ℝ.
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I De�nition 2.38 ( Pickand’s estimator). Either (-1, ..., -=) =
iid random variable � ∈ D(Q 1

W
), where W ∈ ℝ. Let : = :=a series of

integers with 1 < : < =, the Pickand estimator is de�ned by:

Ŵ? = Ŵ? (:) := 1
log(2) log

[
-=−:+1,= − -=−2:+1,=
-=−2:+1,= − -=−4:+1,=−

]
, (2.24)

J

The author demonstrates the weak Convergence of his estimator.
Strong convergence as well that asymptotic normality have been
demonstrated by Dekkers and De Haan, 1989. Of improvements
of this estimator were introduced in particular by Drees, 1995 .Un-
der certain conditions on the entire sequence : and the fdr � , the
estimator of W has good asymptotic properties, they are grouped
together in the following theorem

I Theorem2.39 (asymptotic properties of $̂p). Let � ∈ D(HW )
,W ∈ ℝ, : →∞, :

=
→ 0,when = →∞

– Convergence in probability:

Ŵ?
?
→ W when = →∞.

– Strong convergence (almost sure): If :/log log(=) → ∞ when
= →∞ , then

Ŵ?
?.B
→ W when = →∞.

– Asymptotic normality: We suppose that * admits positive
derivatives * ′ and that ±C1−W*

′ (C) (with one or the other
choice of sign) is regularly varying at in�nity with the auxil-
iary function0. If: = 0(=/6−1(=)) (= →∞) ,6(C) = C3−2W (* ′ (C)/0(C))2,
then :
√
:
(
Ŵ? − W

) !→ N(0, f2) when = →∞
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and f2 =
W2(22W+1 + 1)
(2(2W − 1) log 2)2 .

J

2.8.2 Hill’s estimator

Research has mainly focused on when the EVI is positive
(
W = 1

U
> 0

)
because data sets in most real applications , which corresponds to
the distributions belonging to the domain of attraction of Fréchet
� ∈ D(Q 1

W
), that is, when the distribution tail has a Pareto shape.

the best known estimator of W is the estimator proposed by Hill is
given by the next de�nition:

I De�nition 2.40 (Hill estimator $̂N ). Let-1, ..., -= be = iid ran-
dom variable � ∈ D(Q 1

W
) , where W ∈ ℝ . Let : = := a series of

integers with 1 < : < = the Hill estimator is de�ned by.

Ŵ� = Ŵ� (:) := 1
:

:∑
8=1

log
[
-=−8+1,=
-=−:,=

]
. (2.25)

J

The construction of this estimator is given in the book by De Haan
et al., 2006 and in the book by Beirlant et al., 2016. Other TI esti-
mators have been proposed in particular by Beirlant et al., 2016
who use an exponential regression model base to the Hill estimator
and by Csorgo et al., 1985 who use a kernel in the Hill estimator. A
large number of theoretical works have been devoted to the study
of the properties of the Hill estimator. The weak consistency was
established by Mason, 1982, and the strong consistency was estab-
lished in 1988 by Deheuvels et al., 1988 and more recently by Necir,
2006.
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I Theorem2.41 (asymptotic properties of $̂N ). Let � ∈ D(HW )
,W ∈ ℝ, : →∞, :

=
→ 0,when = →∞

– Convergence in probability:

Ŵ�
?
→ W when = →∞.

– Strong convergence (almost sure): If :/log log(=) → ∞ when
= →∞ , then

Ŵ�
?.B
→ W when = →∞.

– Asymptotic normality: We suppose that � satisfying the sec-
ond order Condition if

√
:�(:/=) → _ when = → ∞. then

: √
:

(
Ŵ� − W

)
!→ N( _

1 − g ,W
2) when = →∞

J

In the general case of the Fréchet domain, the survival function
has the form � (G) = G−

1
W ; (G)with ; a slowly varying function. This

induces a signi�cant bias on the Hill estimator, which is therefore
in practice a delicate handling in the general case.

2.8.3 Optimal sample fraction selection

The number : of the order statistic is di�cult to choose. The results
concerning the estimators of the extreme value index are asymptotic
when : → ∞ and:

=
→ 0. As in practice, we only have a �nite

number of observations = , it is to choose : so that we have enough
statistical data while remaining in the distribution queue.
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Graphic method

It is the simplest method for the determination of : It consists in
tracing the graph

(
:, Ŵ�

:=,=

)
with := = : a sequence of integers and

1 < : < = .and take the value where
(
:, Ŵ�

:=,=

)
becomes horizontal.

this estimator is valid only in the Fréchet domain of attraction,
i.e.W > 0. for generalize to other domain of attraction, di�erent esti-
mators have been proposed, among others the Pickands estimator.

Analytical method

It is necessary to give precision to the estimator
(
:, Ŵ�

:=,=

)
calculate

the root mean square error (RMSE), it is a function of :

'"(�
(
Ŵ:=,=

)
= '"(�

(
Ŵ:=,= − W

)2

= 1808B2(Ŵ:=,=) −+0A (Ŵ:=,=).

The optimal choice of : , corresponds to minimize MSE. Regarding
the Hill estimator for functions belonging to the domain of maxi-
mum attraction of Fréchet, of Haan and Peng in 1998 proposed to
retain the number of observations :>?C which minimizes the root
mean square error of the Hill estimator which is

:>?C =

 1 + 2
2W

( 2W+12W )
[
(W+1)2

2W

] 1
2W+1

, if 0 < W < 1
2= 2

B , if W > 1.
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Numerical method

There are several algorithms to �nd an estimator :̂>?Cof :>?C

:̂>?C

:>?C
→ 1 when = →∞.

then Ŵ
:̂>?C ,=

converges asymptotically to W:>?C ,=

I Remark 2.42. – If : is small, Ŵ:,= uses little observation and
has a large variance.

– if : is large, the bias is large, the variance is small
J
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3 Survival Analysis

The statistical analysis or what is variously referred to as lifetime
survival time or failure, time is an important brunch that deals with
analyzing the expected duration of time until one event occurs, for
example in the biological organisms the event is death same event
when it comes to mechanical systems.

This topic is very signi�cant in many areas such as; biomedical, social
sciences; which is called event history analysis, in engineering is
named by reliability theory or reliability analysis and in the economy,
it’s known as duration analysis or duration modeling. Some methods
of dealing with lifetime data are quite old, but starting from 1970 the
�eld had known a rapid extend with respect to methodology and �elds
application. Since the importance of this brunch in our work; and
in order to make this thesis easier to read, this chapter is concerned
about giving some basic concepts and de�nitions, please check thesis of
Soltane, 2017 who’s deal with survival analysis for more information.

3.1 Basic concepts and definitions

Consider a probability space or probability triple (S,A, P) such
that:

(i) S : a set of all possibles outcomes (a sample space ).

(ii) A: a set of events A.

(iii) P: a probability function, which assigns each event in the event
space a probability, which is a number between 0 and 1.
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Chapter 3 Survival Analysis

Let - be a random variable (rv), de�ned on some probability space
(S,A, P) representing the survival time. there are three basic condi-
tions for survival time must be de�ned precisely which are :

– Time origin: must be speci�ed such that individuals are as
much as possible on equal footing. For example if the survival
time of patients with particular type of cancer is being studied
the time origin could be chosen to be the time point of diagnosis
of that type of cancer.

– End point: or event of interest should be appropriately speci�ed,
such that the times considered are well de�ned. In the above
example this is could be death due to the cancer studied.

– Length of time: From the time origin to the end end point could
be calculated.

The distribution of X could be characterized by the following functions:

* Survival function,
* Density function,
* Hazard function.

Before talking about those functions; we de�ne the distribution func-
tion (fdr or fd) of - :

IDe�nition 3.1 (Distribution function). The distribution func-
tion or df is an application � de�ned on ℝ+ to [0, 1] by:

� (C) := % (- ≤ C) (3.1)

J

– � also called the distribution function or cumulative distribution
function.
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Figure 3.1: Cumulative distribution function

– The function � is a right continuous monotonic increasing func-
tion such as:

lim
C→0

� (C) = 0 and lim
C→∞

� (C) = 1.

I De�nition 3.2 (Survival function). Mathematically a survival
function is quite obviously a function of time. Survival function
can be also interpreted as the probability that a certain object of
interest will survive beyond a certain time so; then the survival
function of rv -can be represented as:

( (C) := � (C) = 1 − � (C) = % (- > C). (3.2)

J

– The survival function of a rv - is left monotonic decreasing
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Chapter 3 Survival Analysis

continuous such as:

lim
C→0

( (C) = 1 and lim
C→∞

( (C) = 0.

I De�nition 3.3 (Probability density function). The probabil-
ity density function 5 (C) is the frequency of events per unit-time
can be represented as:

5 (C) := 3� (C)
3C

= lim
3G→∞

% (C < - < C + 3G)
3G

. (3.3)

J

I De�nition 3.4 (Hazard function). The Hazard function is the
instantaneous rate at which events occur for individual which are
surviving at the time; so if - is a positive continuous variable
representing a duration . The hazard function denoted by ℎ(C); is
de�ned by:

ℎ(C) := lim
3G→∞

% (C < - < C + 3G | - > C)
3G

, (3.4)

Recall that cumulative Hazard function of distribution � is de�ned
by:

L(C) :=
∫ C

0
ℎ(G)3G =

∫ C

0

5 (G)
1 − � (G)3G ; (3.5)

it is clearly easy that the two di�erent notions had a relation be-
tween them for example 3.5 implies that:

L(C) = − log(� (C)).

also we can write:

� (C) = − exp(−L(C)) = − exp
{
−

∫ C

0

5 (G)
1 − � (G)3G

}
.
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Laws of large numbers Section 3.2

J

3.2 Laws of large numbers

The law of large numbers, in probability and statistics, states that
as a sample size grows, its mean gets closer to the average of the
whole population. These Laws of two kinds describe the asymptotic
behavior of the sample mean. the weak law is about the convergence in
probability or consistency of-= while the strong low, due to Klongorov,
concerns the a.s converge or the strong converge of -=; i.e converge
with probability.

I De�nition 3.5 (Sum and arithmetic mean). Let -1, -2, ... be
a sequence of iid rv with common df F. for an integer = ≥ 1, de�ne
the partial sum and the corresponding arithmetic mean respectively
by:

S= :=
=∑
8=1

-8 and -= := S=
=
,

In what follows (-1, -2, ..., -=)will considered as a sample from
rv - de�ned on probability space(S,�, %), -=is called the sample
mean or empirical mean. J

I De�nition 3.6 (Empirical distribution and survival func-
tions). Let -1, -2, ..., -= a sample of size = ≥ 1 of a positive rv -
fdr � and a function of survival ( . the empirical distribution and
survival functions; �= and (= are respectively de�ned by:

�= (C) := 1
=

=∑
8=1

1(-8 ≤ C) and (= (C) = 1−�= (C) =
1
=

1(-8 ≥ C). ∀C ≥ 0,

we can write �= and (= in terms of the value statistics order as
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follows:

�=


0
8
=

1

8 5 C < -1,=,
8 5 -8,= < C < -8+1,=,
8 5 t ≥ -=,= .

(=


1

1 − 8
=

0

8 5 C < -1,=,
8 5 -8,= < C < -8+1,=,
8 5 C ≥ -=,= .

J

I Theorem 3.7 (Laws of large numbers). if (-1, -2, ..., -=) is a
sample from a rv - such that � (- ) < ∞, then

-=
?
→ ` as = →∞; Weak law,

-=
0.B→ ` as = →∞; Strong law.

where ` := � (- ). J

applying this Strong law of large numbers on �= (G) yield the following
result:

I Corollary 3.8.

�=
0.B→ � as = →∞; for every G ∈ ℝ.

J

I Theorem 3.9 (Glivenko-Contelli).

sup
G∈ℝ

����= (G) − � (G)��� 0.B→ 0 as = →∞.

J
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Laws of large numbers Section 3.3

Figure 3.2: The empirical mean for a sample of the uniform distribution on
[0, 1] with = = 1000

For more details and proofs please check any standard textbook of
probability theory such as Billingsley, 1995.

I Theorem 3.10 (CLT). Let (-=, = ∈ # ∗) be a sequence of inde-
pendent, random variables and identically distributed de�ned on
the same probability space (S,�, %) with mean ` and �nite variance
f2 suppose that: ∀8 ∈ # ∗ ,� (- 2) < ∞.

then
√
=
((= − =`)

f

3→ N(0, 1) as = →∞.
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3.3 Estimating the mean of a
heavy-tailed distribution

3.3.1 Estimating the mean of a heavy-tailed
distribution in the case of finite second moment

The most fundamental problem of statistics is that estimating the
expected value ` of random variable - :

I De�nition 3.11. Let - be a random variable with a distribution
function � . we call the mathematical expectation of - , which we
denote by: � [- ] or ` that it is de�ned by :

� [- ] :=
∫
ℝ

G3� (G) :=
∫
ℝ

G 5 (G)3G, (3.6)

where 5 is the density function of � . J

I De�nition 3.12. we could give another formula of the mean by
using the quantile function if we set C = � (G) with change of limit
condition of integral we �nd that � [- ] de�ned by:

� [- ] :=
∫ 1

0
& (C)3C .

J

IRemark 3.13. The moment of order: is� [-:] where: > 0. J

The obvious choice of an estimator for the mean is of course, the
empirical mean:

- := 1
=

=∑
8=1

-8 .
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There are two methods to estimate any parameters of a population:
empirical distribution and the quantile empirical; even in this
case there two method for estimating the mean which are :

– Empirical distribution: after de�nition 3.6 we have:

� [- ] := ` :=
∫
ℝ

G3� (G);

̂̀ :=
∫ 1

0
G3�= (G) =

1
=

=∑
8=1

-8,

̂̀ := - .

– Empirical quantile: as we de�ned the other formula for the
expectation of - by:

� [- ] := ` :=
∫ 1

0
& (C)3C,

̂̀ :=
∫ 1

0
&= (C)3C,̂̀ := - .

3.3.2 Estimating the mean of a heavy-tailed
distribution in the case of infinite second
moment

Peng, 2001 proposed an estimator for the mean of a heavy tailed
distribution with the tail index U > 1 the sample mean is not good
estimator of the population mean. Peng, 2001 de�ned his estimator
as the sum of mean estimates for the tail and non-tail regions.

Let -1, ..., -= iid random variables with the common distribution
function �,with regularly varying tails and indexU > 1 that satis�es
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following conditions

lim
C→∞

1 − � (CG) + � (−CG)
1 − � (C) + � (−C) = G−U ;G > 0 (3.7)

lim
C→∞

1 − � (C)
1 − � (C) + � (−C) = ? ∈ [0, 1] .

this is implies when:

U−value The domain attraction of � .
1 < U < 2 domain attraction of a stable law.
U ≥ 2 domain attraction of a normal distribution.

To obtain a consistent estimator of the sample mean for any U > 1
Peng, 2001 partitioned the population mean � [- ] into:

� [- ] =
∫ 1

0
& (C)3C =

∫ :/=

0
& (C)3C +

∫ 1−:/=

:/=
& (C)3C +

∫ 1

1−:/=
& (C)3C .

= `
(1)
= (:) + ` (2)= (:) + ` (3)= (:).

where & (C) := inf{G : � (G) ≥ C}, 0 ≤ C ≤ 1; denote the inverse
function of � and the sample fraction extremes : , is equal to num-
ber of observation in the upper tail with : := : (=) satisfying the
following condition:

: →∞ and :

=
→ 0 as = →∞;

Then the ` (1)= , `
(2)
= and ` (3)= are estimated separately; for more details

please check Peng, 2001. and with uses of extreme value theory the
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mean for right tail is estimated as follow

̂̀(3)= (:) := :

=
-=−:,=

Û

Û − 1
,

note that Ŵ = 1
Û

. The new estimator is ̂̀(1)= (:) + ̂̀(2)= (:) + ̂̀(3)= (:)
where ̂̀(1)= (:) is the simple average of all observation excluding
observation in the right tail; This estimator has normal distribution
presented on the following theorem.

I Theorem 3.14 (Peng 2001). Assume that conditions holds for
U > 0 and V > 0 :

lim
C→∞

1 − � (CG) + � (−CG)/1 − � (C) + � (−C)
A(C) = G−U

G−V − 1
−V ;G > 0

lim
C→∞

1 − � (C)/1 − � (C) + � (−C) − ?
A(C) = @.

where: • A(C) :=function with constant sign.

• @ ∈ ℝ.

Let : = : (=) denote an intermediate integer sequence satisfying
: = > (=2V/(U+2V))then:
√
=

f (:/=)

(̂̀(1)= (:) + ̂̀(2)= (:) + ̂̀(3)= (:) − � [- ]) 3→ N(0, 1+
{
(2 − U) (2U2 − 2U + 1)

2(U − 1)4 + 2 − U
U − 1

}
1(U<2) .

J

Proof. For those who interested in proof of the theorem please
check the paper of Peng, 2001, pages from 259 to 264 J
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3.3.3 Kernel-type estimator of the mean for a
heavy tailed distribution

aforementioned in the previous section that the classical mean
estimator introduced by Peng, 2001 which is based under the second
order regular variation. in this section we introduce the work of
Rassoul, 2015 who de�ned a kernel type estimator for the mean and
proposed a reduced bias estimator with asymptotic distributional
properties.
Let the non-negative and independent and identically distributed
(iid) random variables -1, -2, ..., -= with the cdf � and let -1,= <

-2,= < ... < -=,= be the corresponding order statistics in this case
we shall mention that � (G) = 0 for G < 0 and % = 1 in Peng, 2001
condition 3.7.
To obtain the kernel type estimator Rassoul, 2015 work with some
assumptions about the kernel:
Conditions (K): let K be a function de�ned on (0, 1]

Condition 01: K(B) ≥ 0 whenever 0 < B < 1 and K(1) = 0;
Condition 02: K(.) is di�erentiable, non increasing and right continuous on

(0, 1];
Condition 03: K and K´ are bounded;
Condition 04:

∫ 1
0 K(D)3D = 1;

Condition 05:
∫ 1

0 D
−1/2K(D)3D < ∞.

where K is a kernel integrating to one the proposed kernel-type
estimator for the mean de�ned by:

̂̀K= (:) :=
∫ 1−:/=

0
&= (B)3B +

(:/=)-=−:,=
(1 − ŴK= (:))

; (3.8)

Csorgo et al., 1985 extended Hill estimator into estimator into a
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kernel class of estimation ŴK= (:) :

ŴK= (:) := 1
:

:∑
8=1
K

(
8

: + 1

)
/8,: ; (3.9)

where

/8,: = 8
(
log-=−8+1,= − log-=−8,=

)
, 1 ≤ 8 ≤ : < =.

I Remark 3.15. the Hill estimator corresponds to the particular
case where K = K := 1(0,1) J

Asymptotic results for the mean estimator

Obviously the asymptotic normality if ̂̀K= (:)is related to ŴK= (:) to
prove that type of results in the extreme value framework we need a
second order condition on the tail quantile function* , with second
order parameter d ≤ 0 if there exists a function A(C) which does not
change its sign in a neighbourhood of in�nity with limC→∞A(C) = 0
such that:

lim
C→∞

log* (CG) − log* (C) − W log(G)
A(C) =

Gd − 1
d

(3.10)

I Theorem 3.16 (Asymptotic results for themean estimator).
Assume that � satis�es 3.10 with W ∈ (1/2, 1) if further (K) holds
and the sequence k satis�es

: →∞, :/= → 0 and if
√
:A(=/:) → _ ∈ ℝ, 0B = →∞,

we have
√
:

(:/=)U(=/:)

(̂̀K= (:) − `) 3→ N(_ABK (_, d),ACK (_, d)),
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Where:

ABK (_, d) =(
1

(W − 1) (W + d − 1) +
1

(1 − W)2
∫ 1

0

K(B)
Bd

3B

)
;

and

ACK (_, d) =(
W2

(1 − W)2(2W − 1) +
W2

(1 − W)4
∫ 1

0
K2(B)3B

)
.

J

I Remark 3.17. In the case of _ ≠ 0 and when we use the general
kernel instead of K ; the result of this theorem will be generalizes
theorem in Peng. J

I Theorem3.18 (Bias-correction for themean estimator). Un-
der the same assumptions of Theorem 3.16, and if d̂ is a consistent
estimator for d < 0, then we have :

√
:

(:/=)U(=/:)

(̂̀K,d̂= (:) − `
)

3→ N
(
0, ÃCK (_, d)

)
,

where :

ÃCK (_, d) = ACK (_, d) +
W2

d2 (1 − 2d) (1 − d)2AB2
K (_, d)

+ 2W2(1 − 2d) (1 − d)
d2(1 − W)2

×
(
1 − (1 − d)

∫ 1

0

K(B)
Bd

3B

)
ABK (_, d).
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J

Proof. For more details and proofs please check the paper of Rassoul,
2015. J
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4 Taxonomy of in-
complete Data

The key that distinguishes survival analysis from another area in
statistics is that survival data are usually incomplete in some way.
This Incomplete data are questions without answers or variables with-
out observations. Even a small percentage of missing data can cause
serious problems with the analysis leading to the drawing of wrong
conclusions and imperfect knowledge. There are many techniques
to overcome imperfect knowledge and manage data with incomplete
items, but no one is absolutely better than the others. To handle such
problems, researchers are trying to solve them in di�erent directions
and then propose to handle the information system. Since our work
deals with incomplete data; we choose to spot a light on some de�ni-
tions and examples of incomplete data i.e truncated or censored. the
famous thesis deal with this issue are the following: Djabrane, 2010,
Benchaira, 2017, HAOUAS, 2017, and Soltane, 2017.

4.1 Censoring

Since censoring is the most common phenomenon, encountered when
collecting survival data and as we mentioned the statistical techniques
for analyzing censored data sets are quite well studied In this section,
we will concentrate on talking about censored such that for a speci�c
individual 8 under study we assume that:

(a) its life time is: -8,

(b) its censoring time is: .8,

(c) the time actually observed: /8 .
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I De�nition 4.1. Censoring is when an observation is incomplete
due to some random case. The cause of the censoring must be
independent of the event of interest if we are going to use standard
methods of analysis. So, When a data set contains observations
within a restricted range of values but otherwise not measured. it
is called censored data set. J

4.1.1 Types of Censoring Mechanisms

There are three categories of censoring: The right, the left and interval
censoring we de�ne each one as follows:

Right censoring

I De�nition 4.2 (Right censoring). The variable of interest is
said to be right-censored if the individual concerned has no infor-
mation about his observation. Thus in the presence of the right
censoring the variables of interest are not observed at all. J

Type I of censoring Let . be a �xed value, instead of observing
the variable of interest -1, ..., -= we observe -8 is less than or equal
to Y (-8 ≤ . ), otherwise the only thing that we know is (-8 > . ), we
can use the next notation /8 = -8 ∧ . = min(-8, . ) which means we
observe the variable /8 where /8 = min(-8, . ) 8 = 1, .., =. This mecha-
nism of censorship is frequently encountered in industrial applications;
For example, we can test the lifetime of n identical objects (Lampes)
over a �xed interval of observation [0, D] . This type of censoring is
called Fixed censoring .

Type II of censoring This model is often used in reliability and
epidemiology studies it is present when we decide to observe the sur-
vival times of = patients up to that : of them died and stop the study
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at that time; Let-8,= and /8,= the order statistics of the variable-8 and
/8, the censoring date is therefore -:,= and we observe the following
variables:

/1,= = -1,=

.

.

.

/:,= = -:,=

/:+1,= = -:,=
/=,= = -:,=

For a general formula:{
/8,= = -8,= for 8 ≤ :,
/8,= = -:,= for 8 ≥ :.

This kind of censoring is known as Censorship waiting.

Type III of censoring Let -1, ..., -= be a sample of a positive rv
- , we say that is a random censoring of this sample if there exists
another random variable . of a sample .1, ..., .= we observe in this
case the couple of rv(/8, X8) :

/8 = -8 ∧ .8,

we can summarize the information that could be available to:

– the actual time observed /8,

– X8 = 1(-8≤.8 ) the indicator of censor, which determines when the
- has been censored or not

(8)X8 = 1 the variable of interest is observed (/8 = -8),
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(88)X8 = 0 it is censored (/8 = .8).

This type of censoring could named by random censoring and it is the most
common.

I Example 4.3 (Right censoring). Consider the following example
where we have 3 patients (A, B, C) enrolled in a clinical study that runs
for a period of time (Study end - Study start).
These 3 patients have three di�erent trajectories:

– Patient A: Experience a death before the study ends. we count
this as an event.

– Patient B: Survives past the end of the study.
– Patient C: withdraws from the study.

Patient A requires no censoring since we know their exact survival time
is the time until death.
Patient B however needs to be censored ( indicated with the + at the end
to the follow-up time ) since we don’t know the exact survival time of
the patient, we only know that they survived up to at least the end of
the study.
Patient C also needs to be censored since they withdrew before the
study ended. So we only know that they survived up to the time they
withdrew; but again we don’t exact the survival time of this patient. In
right censoring; the true survival times will always equal to or greater
than the observed survival time. J
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Figure 4.1: Example of Right Censoring Mode

Le� censoring

Left censoring is much rare. A lifetime- associated with a speci�c individual
in a study is considered to be left censored if it is less than a censoring time
. , that is, the event of interest has already occurred for the individual before
that person is observed in the study at time . . For such individuals, we know
that they have experienced the event sometime before time . , but their exact
event time is unknown. The exact lifetime - will be known if, and only if,
- is greater than or equal to . . The data from a left-censored sampling
scheme can be represented by pairs of random variables (/, X8), as in the
previous kind, where / is equal to - if the lifetime is observed and indicates
whether the exact lifetime - is observed (X = 1) or not (X = 0). Note that,
for left censoring as contrasted with right censoring, / = max(-,.; ).

I Example 4.4 (Left censoring). An example of a situation could be
for virus testing. For instance, if we’ve been following an individual and
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Figure 4.2: Example for Left Censoring Model

recorded an event when for instance the individual test’s positive for
a virus. But we don’t know the exact time of when the individual was
exposed to the disease. We only know that there was some exposure
between 0 and the time they were tested.

J

Interval censoring

As its name indicate and for more general type of censoring occurs when
the lifetime is known to occur only within an interval i.e we observe both
lower bound and upper bound of interest variable we found this model in
general in medical followup studies such interval censoring occurs when
patients in a clinical trial or longitudinal study have periodic follow-up and
the patient’s event time is only known to fall in an interval (!8, '8] where:
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– ! for left endpoint,

– ' for right endpoint of the censoring interval.

This type of censoring can be found in industrial experiments where there
is periodic and animal tumorigenicity experiments where there is periodic
insectation.

I Remark 4.5. Interval censoring is a generalization of left and right
censoring because, when the left end point is 0 and the right end point is
� we have left censoring by interval of type [0,�]and, when the left end
point is � and the right end point is in�nite, we have right censoring by
interval of type [�,∞] J

I Example 4.6. Using the virus testing example, if we have the situation
whether we’ve performed testing on the individual at some time point (C1)
and the individual was negative. But then at a time point further on (C2),
the individual tested positive. In this scenario, we know the individual
was exposed to the virus sometime between C1and C2, but we do not know
the exact timing of the exposure. J

4.1.2 Estimation under random right-censoring

In this section; we will place ourselves in the most frequent framework of a
type I of a random right censoring (RRC) the main estimators:

– The Kaplan-Meier estimator,

– The Nalson-Aalen cummulative risk estiamtor.

Kaplan-Meier estimator

This section deals with the non parametric estimation of the df by means of
the Kaplan–Meier estimator (also called the product–limit estimator) and
with the estimator for the mean. We start with remarks about the statistics
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Figure 4.3: Example for Interval Censoring Model

of extremes of randomly censored data. The topic was mentioned in Reiss
et al., 2007, Section 6.1, where an estimator of a positive extreme value index
was introduced, but no (asymptotic) results were derived. In the last decade,
several authors started to be interested in the estimation of the tail index
along with large quantiles under random censoring as one can see in Worms
and Worms, 2014, Beirlant et al., 2007, Einmahl et al., 2008 and Gomes
and Neves, 2011 also made a contribution to this estimator by providing a
detailed simulation study and applying the estimation procedures on some
survival data sets.

Let -1, .., -= be = ≥ 1 independent copies of a positive random variable - ;
de�ned over some probability space(S,�, %) with continuous cumulative
distribution function F.Rather then -1, .., -= , the variables of interest, one
observes

/8 = min(-8, .8) and X8 = 1-8≤.8 ; 1 ≤ 8 ≤ =.
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where .1, .., .= is another i.i.d. sequence from some (censoring) d.f. � being
also independent of the - ′s: This model is very useful in a variety of areas
where random censoring is very likely to occur such as in bio-statistics,
medical research, reliability analysis, actuarial science,...In the context of
this randomly right censored observations, the non parametric maximum
likelihood estimator of the survival distribution F is given by Kaplan and
Meier, 1958 as the product limit estimator de�ned by:

�= (G) = 1 −
∏
/8,=≤G

(1 − X8,=

= − 8 + 1 ) for G < /=;=;

where /8,= denote the order statistics associated to /1, .., /=and X8,=is the
concomitant of the ith order statistics, that is, X8,= = X 9 if /8,= = / 9 This
estimator may be expressed as follows:

�= (G) =
=∑
8=2
,8,=1{/8,=≤G} where 8 = 2, ..., =

,8,= =
X8,=

= − 8 + 1

8−1∏
9=1

(
= − 9

= − 9 + 1

)X 9,=
.

Estimating the mean under random censoring

In this section we are interested in estimating the mean of a distribution
under random censoring; as we have presented before the di�erent estimators
for the expectation of the - but in case Stute, 1995 introduced an estimator
called the Kaplein-Meire integral.

I De�nition 4.7. the non-parametric estimator of the mean under ran-
dom censoring is de�ned by:

˜̀= = =∑
8=2
,8,=/8,=, (4.1)
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where

,8,= =
X8,=

= − 8 + 1

8−1∏
9=1

(
= − 9

= − 9 + 1

)X 9,=
. (4.2)

J

Stute, 1995 showed that this estimator is asymptotically normal under the
two following conditions:

�1 =

∫ ∞

0
G2� 2

0 (G)3� 1(G) < ∞, (4.3)

�2 =

∫ ∞

0
G
©­­«
∫ G

0

3� 0(G)[
� (G)

]2
ª®®¬

1/2

3� (G) < ∞.

where � 0 and � 1 two functions de�ned as :

� 0(C) = % (/ ≤ C, f = 0) =
∫ C

0
� (G)3� (G), (4.4)

� 1(C) = % (/ ≤ C, f = 1) =
∫ C

0
� (G)3� (G).

with:

�1(G) =
∫ G

0

B�0(B)
� (B)

3� 1(B) and �2(G) =
∫ G

0

∫ ∞
B
C�0(C)3� 1(B)[
� (B)

]2 3� 0(C).

(4.5)

I Theorem 4.8. Suppose 4.3 holds we have :˜̀− `
√
=
→ N(0, f2).

where f2 = +0A [/1�0(/1)X1 + �1(/1) (1 − X1) − �2(/1)] . J
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Proof. See Stute, 1995. J

4.2 Truncation

A second feature of many survival studies sometimes confused with censoring
is truncation, there are three categories of truncation are Right, left and
interval:

4.2.1 Right truncation

Right truncation occurs when only individuals with event timeless threshold
included in the study, that is we observed the survival time - only when
- ≤ . .
Right truncation arises, for example in estimating the distribution of stars
from the earth in that stars too faraway are not visible and right truncated.

The second example of a right truncated sample is a morality study based
on death records right-censored data is particularly relevant to studies of
AIDS.

4.2.2 Le� truncation

Here we only observe those individuals whose event time - exceeds the
truncation time . , i.e we observe - if and only if - > . . famous example of
left truncation is the problem of estimating the distribution of the diameters
of microscopic particles. The only particles big enough to be seen based on
the resolution of the microscope are observed and smaller particles do not
come to the attention of the investigator. In survival studies the truncation
event may be exposure to some disease, diagnosis of a disease, entry into
a retirement home, occurrence of some intermediate event such as graft-
versus-host disease after a bone marrow transplantation, etc. In this type
of truncation any subjects who experience the event of interest prior to the
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truncation time are not observed. The truncation time is often called a
delayed entry time since we only observe subjects from this time until they
die or are censored. Note that, as opposed to left censoring where we have
partial information on individuals who experience the event of interest prior
to age at entry, for left truncation these individuals were never considered
for inclusion into the study.

4.2.3 Interval truncation

Or doubly truncated failure-time arises if an individual is potentially ob-
served and only if its failure-time falls within a certain interval, unique to
that individual. Doubly truncated data play an important role in the statis-
tical analysis of astronomical observations as well as in survival analysis.

I Example 4.9. data on the luminosity of quasars in astronomy: One
of the main aims of astronomers interested in quasars is to understand
the evolution of the luminosity of quasars see Efron and Petrosian, 1999.
The motivating example presented in this paper concerns a set of mea-
surements on quasars in which there is double truncation, because the
quasars are observed only if their luminosity occurs within a certain
�nite interval, that is bounded at both ends, with the interval varying for
di�erent observations. J

4.3 Estimation under random truncated
model

4.3.1 Estimation the distribution function under
truncation model

In this section we will present the di�erent estimators of the distribution
function that will be presented in the case of incomplete data especially
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truncated one because when the empirical data is incomplete empirical
estimators will not produce good results. There are two famous estimators:

– Woodroofe estimator,

– Lynden-Bell estimator.

Lynden-Bell estimator

Let (X1, ...,X# )be independent copies of a non-negative random variable (rv)
X with cumulative distribution (cdf) F , de�ned over some probability space
(S,A,P), suppose that X is right truncated by sequences of independent
copies (Y1, ...,Y# ) of (rv) Y with cdf G, in the sense that -8 is only observed
when -8 ≤ .8 .
Let denote now by (-8, .8), 8 = 1, ..., = to be observed data, as copies of a
couple of rv’s (-,. ), corresponding to the truncated sample (X8,Y8), 8 =
1, .., # , where = = =# is a sequence of discrete rv’s by the weak law of large
numbers, we have

=

#
−→ ? = P(X ≤ Y) as # →∞.

we shall assume that ? > 0, otherwise nothing will be observed. the joint
P-distribution of on observed (-,. ) is given by:

� (G,~) = P(- ≤ G,. ≤ ~)

= P(X ≤ G,Y ≤ ~ | X ≤ Y) =?−1
∫ ~

0
F(min(G, I))3G(I),

The marginal distributions of the rv’s - and . respectively denoted by �
and � are de�ned by:

� (G) = ?−1
∫ G

0
G(I)3F(I) and � (~) = ?−1

∫ ~

0
F(I)3G(I),

� (G) = −?−1
∫ ∞

G

G(I)3F(I) and � (~) = −?−1
∫ ∞

~

F(I)3G(I).
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since right endpoint of F and G are in�nite and thus they are equal.From
Woodroofe, 1985 we may write :∫ ∞

G

3F(~)/F(~) =
∫ ∞

G

3� (~)/� (~)

where

� (I) := % (- ≤ I ≤ . | - ≤ . )
= ?−1� (G)� (G).

Di�erentiating the previous equation leads the following crucial equation

� (G)3F(G) = F(G)3� (G). (4.6)

For randomly truncated data; the truncation product-limit estimate is the
maximum likelihood estimate (MLE) for non-parametric models the
well-known non-parametric estimator of � in RRT model, proposed by
Lynden-Bell, 1971 de�ned by:

F(LB)
= (G) =

∏
8:-8>G

exp(1 − 1
=�= (-8)

).

where

�= (G) = =−1
=∑
8=1

1(-8 ≤ G ≤ .8) (4.7)

Woodroofe estimator

we can de�ne the solution of 4.6 by:

F(G) = exp
{
−

∫ ∞

G

3� (I)
2 (I)

}
,
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by replacing the df’s � and � by their respective empirical counterparts:

�= (G) := 1
=

=∑
8=1

1(-8 ≤ G) and �= (G) = =−1
=∑
8=1

1(-8 ≤ G ≤ .8),

this leads to non parametric estimator of df F;Wodroofe estimator given by
Woodroofe, 1985:

F(W)= (G) :=
∏
8:-8>

exp
{
− 1
=�= (-8)

}
,

4.3.2 Estimation Tail-index under truncation model

We assume that F and G are heavy-tailed in other words that F = 1 − F and
G = 1 − G are regularly varying (RV) at in�nity with respective negative
indices −1/W1 and −1/W2; we will use the notation: F ∈ RV(−1/W1) and
G ∈ RV(−1/W2) that is for any G > 0.

lim
C→∞

F(CG)
F(C)

= G
− 1
W1 0=3 lim

C→∞
G(CG)
G(C)

= G
− 1
W2 ,

being characterized by their heavy tails, these distributions play a prominent
role in extreme value theory. After making use of the proposition B.1.10 in
De Haan et al., 2006 for regularly varying functions F and G, we may show
that both � and �

are regularly at in�nity as well, with respective indices W2 and W := W1W2
(W1+W2) .

For any G > 0,

lim
C→∞

� (CG)
� (C)

= G
− 1
W 0=3 lim

C→∞
� (CG)
� (C)

= G
− 1
W2 ,

The work of Gardes and Stup�er, 2015 addressed the estimation of extreme
value index W1 under random truncation. They used the de�nition of W to
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derive the following consistent estimator:

Ŵ1(:, :
′) := Ŵ (:)Ŵ2(:

′)
Ŵ2(: ′) − Ŵ (:)

,

Where Ŵ and Ŵ2 are the well-known Hill estimators of W and W2 de�ned by:

Ŵ (:) := 1/:
:∑
8=1

log
-=−8+1,=
-=−:,=

and Ŵ2(:
′) := 1/: ′

:
′∑

8=1
log

.=−8+1,=
.=−:,=

,

with -1,= ≤ ... ≤ -=,= and .1,= ≤ ... ≤ .=,= being the order statistics
pertaining to the samples

(
-1,=, ..., -=,=

)
and

(
.1,=, ..., .=,=

)
respectively. The

two sequences : = := and :
′
= :′= of integer rv’s, respectively represent the

numbers of top observations from truncated and truncation data satisfying
the following conditions:

1 < :, :
′
< =, min(:, : ′) → ∞ and max(:/=, : ′/=) → 0 as = → 0.

by exploiting the work of Gardes and Stup�er, 2015 and starting from the
�rst-order condition of regular variation Benchaira et al., 2015 construct
a new estimator with the situation : = :

′
for the shape parameter of a

right-truncated heavy-tailed distribution. and they prove the its asymptotic
normality by use the tail Lynden-Bell process for which a weighted Gaussian
approximation is provided:

Ŵ1(:) := Ŵ1 := 1/:
∑:
8=1 log -=−8+1,=

-=−:,=

∑:
8=1

.=−8+1,=
.=−:,=∑:

8=1 log -=−:,=.=−8+1,=
.=−:,=-=−8+1,=

.

Proof. See Benchaira et al., 2015.
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5 Estimating the mean of a heavy tailed
distribution under random truncation

The main aim of this chapter is to introduce an alternative estimator for the
mean of heavy-tailed distribution when it comes to the right truncated and
study its asymptotic normality this work inspired by L. Peng’s work in the
case of completed data. A simulation study is executed to evaluate the �nite
sample behavior on the proposed estimator.

5.1 Introduction

Let (X1, ...,X# )be independent copies of a non-negative random variable (rv)
X with cumulative distribution (cdf) F , de�ned over some probability space
(S,A,P), suppose that X is right truncated by sequences of independent
copies (Y1, ...,Y# ) of (rv) Y with cdf G, throughout this chapter, we assume
that F and G are heavy-tailed in other words that F = 1−F and G = 1−G are
regularly varying (RV) at in�nity with respective negative indices −1/W1
and −1/W2; we will use the notation: F ∈ RV(−1/W1) and G ∈ RV(−1/W2)
that is for any G > 0.

lim
C→∞

F(CG)
F(C)

= G
− 1
W1 and lim

C→∞
G(CG)
G(C)

= G
− 1
W2 , (5.1)

The statistical literature on such problems of extremes events is very extensive,
one of those problems is for the estimation of the mean E(- ), this problem
was already treated by Peng, 2001 in the case of complete data, nevertheless
in numerous survival practical applications, it happens that one is not able to
observe a subject entire lifetime. the subject may leave the study may survive
to the closing data, or may enter the study at some time after its lifetime has
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started, the most current forms of such incomplete data are censorship and
truncation. As we mention our aim is to propose an asymptotically normal
estimator for the mean of - :

` = E(- ) =
∫ ∞

0
F(G)3G . (5.2)

Whose existence requires that W1 < 1, The sample mean for censored data is
obtained and equal to:

˜̀= = =∑
8=2

X [8:=]
= − 8 + 1

8−1∏
9=1

(
= − 9

= − 9 + 1

)X [ 9 :=]
/8,=. (5.3)

the asymptotic normality of ˜̀= is established by Stute, 1995. The model
studied here is based on the random right truncated (RRT ) data, in the sense
that the rv of interest X8 and the truncated rv Y8 are observable only when
X8 ≤ Y8, whereas nothing is observed if X8 > Y8 .We denote (-8, .8),8 = 1;=
to be observed data as copies of a couple of rv’s (-,. ) corresponding to the
truncated sample (X8,Y8)1≤8≤# , where = = =# is a sequence of discrete rv’s
by the weak law of large numbers, we have

=

#
−→ ? = P(X ≤ Y) as # →∞.

we shall assume that ? > 0, otherwise nothing will be observed. the joint
P-distribution of on observed (-,. ) is given by:

� (G,~) = P(- ≤ G,. ≤ ~)

= P(X ≤ G,Y ≤ ~ | X ≤ Y) =?−1
∫ ~

0
F(min(G, I))3G(I),

The marginal distributions of the rv’s - and . respectively denoted by �
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and � are de�ned by:

� (G) = ?−1
∫ G

0
G(I)3F(I) and � (~) = ?−1

∫ ~

0
F(I)3G(I),

� (G) = −?−1
∫ ∞

G

G(I)3F(I) and � (~) = −?−1
∫ ∞

~

F(I)3G(I).

For randomly truncated data; the truncation product-limit estimate is the
maximum likelihood estimate (MLE) for non-parametric models the well-
known non-parametric estimator of F in RRT model, proposed by Lynden-
Bell, 1971 :

F(LB)
= (G) =

∏
8:-8>G

exp(1 − 1
=�= (-8)

). (5.4)

Where �= (G) = =−1 ∑=
8=1 1(-8 ≤ G ≤ .8) the empirical counterparts of

� (I) = % (- ≤ I ≤ . ).Since F and G are heavy-tailed their right endpoints
are in�nite and thus are equal.

As we mentioned this problem has been studied by Peng, 2001 in the case of
sets of complete data from heavy-tailed distributions with a range of W1 ∈
(1/2, 1) we restrict ourselves on the case where W1 belongs to the following
range:

R =

{
W1 , W2 > 0 : W2

1 + 2W2
< W1 < 1

}
, (5.5)

To ensure that the mean is �nite and since we have applied both conditions
of Stute and Wang, 2008 paper:

�1 =

∫ ∞

1

i2(G)
G(G) 3F(G) �2 =

∫ ∞

1

3F(G)
G(G) , (5.6)

We �nd those conditions may be in�nite when we deal with heavy-tailed
distributions. Assumed that both of- and. are %0A4C> (W1) and %0A4C> (W2)
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respectively :

1−F(G) = F(G) = G−
1
W1 1−G(G) = G(G) = G−

1
W2 . with W1 > 0 , W2 > 0 and G ≥ 1.

we �gure out that the central limit theorem (CTL) established by Stute and
Wang, 2008 cannot be applied in the previous range when �1 = �2 = ∞. It
is worth to mention that in the case of non truncation we have W1 = W and
W2 = ∞ so R abbreviate to Peng’s range. To de�ne our new estimator we
introduce an integer sequences : = := representing a fraction of extreme
order statistics satisfying the following conditions:

1 < : < =, : −→ ∞ and :/= −→ 0 as = −→ ∞. (5.7)

So by decomposing ` as the sum of two terms

` =

∫ C

0
F(G)3G +

∫ ∞

C

F(G)3G (5.8)

= `1 + `2.

Then we can estimate `8, 8 = 1, 2 separately, after integration `1 by parts
and after changing variables in `2 we may write:

`1 = CF(C)+
∫ C

0
G3F(G) and `2 = CF(C)

∫ ∞

1

F(CG)
F(C)

3G,

By replacing C by -=−:,= where -1,= < ... < -=,= denote the order statistics
pertaining to -1, ..., -=; and F by F(LB)

= we get that:

̂̀1 = -=−:,=F=
(LB) (-=−:,=)+

∫ -=−:,=

0
G3F(LB)

= (G),
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Hence from Woodroofe, 1985 we may write:

̂̀1 = -=−:,=F=
(LB) (-=−:,=)+

1
=

=−:∑
8=1

F(LB)
= (-8,=)
�= (-8,=)

-8,= . (5.9)

Back to `2 building on the Karamata theorem (De Haan et al., 2006, page
363) we may write :

`2 ∼
W1

1 − W1
CF(C) as = −→ ∞ 0 < W1 < 1, (5.10)

Notice to estimate (5.10) it is based on estimator of tail index W1, in view of
the history of the estimation of W1.Gardes and Stup�er, 2015 introduced an
estimator of W1 under random truncation. Benchaira et al., 2015 established
the asymptotic normality of this estimator under the tail dependence and
the second order conditions of regular variation . throughout this work we
use the estimation of Benchaira et al., 2015 . So that yield us to an estimator
to `2 : ̂̀2 =

Ŵ1
1 − Ŵ1

-=−:,=F=
(LB) (-=−:,=), (5.11)

Finally with (5.9) and (5.11). we build our estimator ̂̀ for the mean (5.2) as
follow:

ˆ̀ = -=−:,= F= (-=−:,=)
1

1 − Ŵ1
+ 1
=

=−:∑
8=1

F!�= (-8,=)
�= (-8,=)

-8,= .

The rest of this chapter is organized as follows. In the second section, we
state our main result. This is followed by a simulation study of our proposed
estimator where we discuss its behavior with a �nite sample.

77



Chapter 5 Estimating the mean of a heavy tailed distribution under random truncation

5.2 The assumptions and the main results

In extreme value analysis and in the second-order frame work( see,.e.g De
Haan et al., 2006), weak approximation are achieved. Consequently, it seems
quite natural to suppose that df’s F and G satisfy the well-known second-
order condition of regular variation we express in terms of the tail quantile
functions. That is we assume that for G > 0. we have

lim
C→∞

*F(CG)/*F(C) − GW1

AF(C)
= GW1 G

g1 − 1
g1

, (5.12)

and
lim
C→∞

*G(CG)/*G(C) − GW2

AG(C)
= GW2 G

g2 − 1
g2

, (5.13)

where g1,g2 < 0 are the second-order parameters and AF,AG are functions
tending to zero and not changing signs near in�nity with regularly varying
absolute values at in�nity with indices g1,g2 respectively.

I Theorem 5.1. Assume that (5.12 and 5.13) hold and
√
:A◦(=/:) =

$ (1) for

W2/(1+2W2) < W1 < 1. Let : = := denote an intermediate integer sequences
satisfying (5.7). then ˆ̀→ ` in probability:
√
: (̂̀− `)

F(-=−:,=)-=−:,=
= c1W(1)

+
∫ 1

0

{
c2B
− 2W1

W
+ W
W2
+1 + c3B

−W1+ WW2
+1 + c4 log(B) + c5

}
B
− W

W2
−1W(B)3B

+ (W1 + g1 − 1) (1 − W1) + (1 − g1)
(1 − g1) (W1 + g1 − 1) (1 − W1)

√
:A◦(=/:).

J
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I Corollary 5.2. Under the assumptions of Theorem 5.1 we suppose
that
√
:A◦(=/:) → _

√
: (̂̀− `)

F(-=−:,=)-=−:,=
→ N

(
_
(W1 + g1 − 1) (1 − W1) + (1 − g1)
(1 − g1) (W1 + g1 − 1) (1 − W1)

, f2
)
, as = →∞,

Where

f2 :=
? (1 − ?)

[
? (1 − ?) + 2W2

1
]

(1 − W1)2
+ ?3W1

1 − W1
+ 2?2(1 − ?)
(1 − W1) (−W1 + 2)

+ −2?4

(−2 + ?) (−4 + 3?) +
3?5W1

(−2 + ?) (−2 + W1? + 3?) +
−2W1?

3(1 − ?)
(−2 + ?) (−W1 + 2)

+ 3?5W2
1 (
?

2 −
1

4 − ? )
2 − 2?3W2

1 (1 − ?)
3? − 2

6 ( ?

1 + ? )
2

+
?2W1(? − 1) (1 − W1) − ?2W3

1
(−1 + ?) (−2 + ?) (1 − W1)

[
W1(−?3 + 4 − 6?) + ?2(W1 − 2) + 2

(−1 − ?) + W1(−? − 2)

]
+ 1 − 2?

?2 +
−2?2(1 − ?)2(1 − W1) + W2

1?

(1 − W1) (W1 + 2) (−W1 + ? + 1)2

+
2?2(1 − ?) (1 − W1) + W2

1?

(1 − W1)2

((
?

?2 − 1

)2
+

(
1

1 − ?

)2
)
.

and
? =

W2
W1 + W2

.

J

5.3 Simulation study

Themain purpose of this section is to study the execution of our new estimator̂̀ for that we generate the data as follows:

79



Chapter 5 Estimating the mean of a heavy tailed distribution under random truncation

– The interest and the truncated variable:

we generate two sets of truncated and truncation data both pulled for the
�rst hand from Fréchet model:

F(G) = 1 − exp(−G
1
W1 ), G(G) = 1 − exp(−G

1
W2 ) G ≥ 0.

and the other hand from Burr model:

F(G) = (1 + G 1
X )−

X
W1 , G(G) = (1 + G 1

X )−
X
W2 G ≥ 0 and X,W1, W2 > 0.

– The observed data :

for the proportion of observed data is equal to ? = W2/W1 + W2 we take
? = 70%, 80% and 90% we �x X = 1/4 and choose the values 0.6, 0.7 and 0.8
for W1. For each couple (W1, ?); we solve the equation ? = W2/W1 + W2 to get
the pertaining W2-value.

– We vary the common size # of both samples (X1, ...,X# ) and
(Y1, ...,Y# ) .

– We apply the algorithm of Reiss et al., 2007 page 137. to select
the optimal numbers of upper order statistics (:∗)used in the
computation of Ŵ1.

The performance of this new estimator named by ˆ̀ is evaluated in terms of
absolute bias (abs bias) root mean squared error (RMSE) which are summa-
rized in tables for Burr model in Tables: 5.1 for W1 = 0.6, 5.2 for W1 = 0.7, 5.3
for W1 = 0.8 and for Fréchet models Tables: 5.4 for W1 = 0.6, 5.5 for W1 = 0.7,
5.6 for W1 = 0.8.
After the inspection of all tables and as expected the sample size in�uences
the estimation in the sense that the large # gets the better the estimation is.

It is noticeable that the estimation accuracy of estimator decreases when the
truncation percentage increase and it is quite expected.

Moreover the estimator performs best for the larger value of the tail index
larger than 0.5 especially when truncation proportion is high.
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W1= 0.6 −→ ` = 2.371
? = 0.7 ? = 0.8 ? = 0.9

N abs bias RMSE k
∗ ˆ̀ n abs bias RMSE k

∗ ˆ̀ n abs bias RMSE k
∗ ˆ̀ n

300 0.002 0.130 27 2.374 198 0.008 0.180 10 2.380 244 0.005 0.040 4 2.406 268

400 0.069 0.858 31 2.440 278 0.008 0.119 16 2.379 318 0.006 0.028 7 2.406 361

500 0.072 0.257 39 2.300 355 0.001 0.174 27 2.372 399 0.003 0.067 8 2.374 445

1000 0.001 0.048 40 2.372 681 0.001 0.106 25 2.372 811 0.003 0.097 12 2.374 886

Table 5.1: Biases and RMSE’s of the mean estimator based on samples of Burr
models with W1 = 0.6

W1= 0.7 −→ ` = 3.218
? = 0.7 ? = 0.8 ? = 0.9

N abs bias RMSE k
∗ ˆ̀ n bias RMSE k

∗ ˆ̀ n bias RMSE k
∗ ˆ̀ n

300 0.016 0.634 25 3.234 215 0.021 0.178 18 3.239 246 0.005 0.028 19 3.223 268

400 0.008 0.067 34 3.227 290 0.002 0.306 23 3.221 319 0.000 0.134 21 3.218 368

500 0.008 0.063 58 3.226 3362 0.002 0.367 39 3.220 403 0.008 0.246 25 3.226 458

1000 0.004 0.023 88 3.222 701 0.001 0.193 52 3.219 788 0.002 0.049 37 3.220 896

Table 5.2: Biases and RMSE’s of the mean estimator based samples of Burr
models with W1 = 0.7

W1= 0.8 −→ ` = 4.896
? = 0.7 ? = 0.8 ? = 0.9

N abs bias RMSE k
∗ ˆ̀ n abs bias RMSE k

∗ ˆ̀ n abs bias RMSE k
∗ ˆ̀ n

300 0.000 0.152 73 4.896 207 0.106 0.613 55 5.002 239 0.094 0.962 67 4.990 275

400 0.029 0.070 75. 4.925 278 0.014 0.446 14 4.910 315 0.058 0.240 86 4.954 359

500 0.065 0.631 147 4.961 348 0.001 0.321 146 4.897 404 0.029 0.171 67 4.925 451

1000 0.013 0.302 228 4.919 697 0.030 0.039 173 4.926 810 0.006 0.041 187 4.902 894

Table 5.3: Biases and RMSE’s of the mean estimator based on samples of Burr
models with W1 = 0.8

81



Chapter 5 Estimating the mean of a heavy tailed distribution under random truncation

W1= 0.6 −→ ` = 2.218
? = 0.7 ? = 0.8 ? = 0.9

N abs bias RMSE k
∗ ˆ̀ n abs bias RMSE k

∗ ˆ̀ n abs bias RMSE k
∗ ˆ̀ n

300 0.155 0.537 28 2.373 170 0.259 0.263 17 2.475 178 0.010 0.084 5 2.228 180

400 0.153 0.186 25 2.371 217 0.031 0.598 40 2.249 241 0.009 0.185 11 2.218 231

500 0.004 0.065 32 2.222 284 0.066 0.222 33 2.284 293 0.004 0.052 19 2.222 314

1000 0.002 0.010 43 2.220 568 0.074 0.076 31 2.307 569 0.008 0.106 23 2.227 594

Table 5.4: Biases and RMSE’s of the mean estimator based on samples of Frechét
models with W1 = 0.6

W1= 0.7 −→ ` = 2.992
? = 0.7 ? = 0.8 ? = 0.9

N abs bias RMSE k
∗ ˆ̀ n abs bias RMSE k

∗ ˆ̀ n abs bias RMSE k
∗ ˆ̀ n

300 0.085 0.213 23 3.076 168 0.031 0.171 30 3.022 169 0.001 0.213 22 2.993 193

400 0.080 0.356 57 3.072 227 0.000 0.063 26 2.992 250 0.082 0.206 25 3.074 225

500 0.025 0.365 49 3.016 278 0.016 0.352 44 3.007 274 0.086 0.189 29 3.078 306

1000 0.020 0.385 58 3.011 564 0.001 0.122 48 2.993 598 0.000 0.257 40 2.992 584

Table 5.5: Biases and RMSE’s of the mean estimator based on samples of Frechét
models with W1 = 0.7

W1= 0.8 −→ ` = 4.591
? = 0.7 ? = 0.8 ? = 0.9

N abs bias RMSE k
∗ ˆ̀ n abs bias RMSE k

∗ ˆ̀ n abs bias RMSE k
∗ ˆ̀ n

300 0.084 0.720 15 4.675 164 0.267 0.282 12 4.857 173 0.222 0.301 37 4.813 172

400 0.185 0.604 42 4.776 225 0.131 0.147 29 4.722 222 0.128 0.283 72 4.719 256

500 0.001 0.037 52 4.591 297 0.044 0.045 41 4.635 306 0.057 0.576 70 4.648 302

1000 0.063 0.674 109 4.654 540 0.011 0.331 68 4.690 597 0.001 0.382 133 4.592 604

Table 5.6: Biases and RMSE’s of the mean estimator based on samples of Frechét
models with W1 = 0.8
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5.4 Proofs

5.4.1 Proof of Theorem 2.1

We begin by seting*8 = � (-8) and de�ne the corresponding uniform tail pro-
cess byU= (B) =

√
: (*= (B)−B), for 0 ≤ B ≤ 1where*= (B) = 1/:∑=

8=1 1(U8 ≤
: B
=
). The weighted weak approximation to U= (B) given in terms of either a

sequence of wiener processes (see, eg., Einmahl, 1992 and Drees et al., 2006 )
or a single Wienner process as in proposition 3.1 of Einmahl, 1992, will be
very crucial to our proof procedure.

In the sequel, we use the latter representation which says that: there exists a
Wiener process W, such that for every 0 ≤ [ ≤ 1

sup
0<B≤1

| U= (B) −W(B) |→ 0, as = →∞ (5.14)

Observe that ̂̀− ` = (̂̀1 − `1) + (̂̀2 − `2) and starting by:

̂̀1 − `1 =

∫ -=−: ;=

0
F= (G)3G −

∫ C

0
F(G)3G .

we consider the following decomposition:

̂̀1 − `1 = )=1 (G) +)=2 (G)

Where:

)=1 (G) =
∫ -=−: ;=

0

(
F= (G) − F(G)

)
3G

)=2 (G) =
∫ C

-=−: ;=

F(G)3G .
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it follows after changing variables that:

)=1 (G) = -=−:,=
∫ 1

0

F(0:G)
F(0:G)

F= (G-=−:,=) − F(G-=−:,=)3G

)=2 (G) = −-=−:,=
∫ C

-=−:,=

1
F(G-=−:,=)3G

In order to established the result of theorem we apply the results of Benchaira
et al., 2016, we have :

√
:

F= (G-=−:,=) − F(G-=−:,=)
F(0:G)

= G
1
W
W

W1
, (G−

1
W1 )+ W

W1 + W2
G

1
W1

∫ 1

0
B
− W

W2
−1W(G−

1
W1 B)3B,

After some elementary but tedious manipulations of integral calculus (
change of variables and integration by parts) and by making use of the
uniform inequality of the second-order regularly varying functions F ,

to )=1 (G) becomes :

√
:

)=1 (G)
-=−:,=F(0:)

=

∫ 1

0
(−WB−

2W1
W + WW1
(W1 + W2) (W1 + 1) B

− W

W2
−1 (5.15)

+ WW1
(W1 + W2) (W1 + 1) B

−W1)W(B)3B + >p(1)

Next we move to)=2 (G) which we may write it as follow after changing
variables :

√
:)=2 (G)

-=−:,=F(-=−:,=)
=

∫ C
-=−:,=

1

√
:

F(G-=−:,=)
F(-=−:,=)

− G−
1
W13G +

∫ C
-=−:,=

1
G
− 1
W13G

= I1 + I2
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For I1 we apply the results of Benchaira et al., 2016

√
:

F(G-=−:,=)
F(-=−:,=)

− G−
1
W1 = G

− 1
W1
G
− g1
W1 − 1
W1g1

√
:A◦(=/:) + >? (G−

1
W1
+(1−[)/W±Y)

This implies, almost surely, that∫ C
-=−:,=

1

√
:

F(G-=−:,=)
F(-=−:,=)

− G−
1
W13G =

∫ C
-=−:,=

1
G
− 1
W1
G
− g1
W1 − 1
W1g1

√
:A◦(=/:)3G,

Which is equal after simple calcul and by using the mean value theorem we
get I1 = >p(1), for the second step by similar argument and using the fact

that from Theorem 2.1 of Benchaira et al., 2015; we have
√
:

(
-=−:,=
C
− 1

)
−

WW(1) = >P(1) we get I2 = −WW(1) + >p(1), that yield to :
√
:)=2 (G)

-=−:,=F(-=−:,=)
= −WW(1) + >p(1) (5.16)

The two approximation 5.15 and 5.16 together give:

√
:

̂̀1 − `1

-=−:,=F(-=−:,=)
=

∫ 1

0
(−WB−

2W1
W + WW1
(W1 + W2) (W1 + 1) B

− W

W2
−1 (5.17)

+ WW1
(W1 + W2) (W1 + 1) B

−W1)W(B)3B

− WW(1) + >p(1)

Let us now treat term
√
: (̂̀2−`2)
CF(C) Consider the following forms of `2 and ̂̀2 :

̂̀2 =
Ŵ1

1 − Ŵ1
-=−:,=F= (-=−:,=) and `2 =

∫ ∞

C

F(G)3G
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̂̀2 − `2 =
Ŵ1

1 − Ŵ1
-=−:,=F= (-=−:,=) −

∫ ∞

C

F(G)3G

After changing variables we can obtain:

`2 =

∫ ∞

1
CF(CG)3G

= CF(C)
∫ ∞

1

F(CG)
F(C)

3G

and ̂̀2 =
Ŵ1

1 − Ŵ1
-=−:,=F= (-=−:,=)

F(-=−:,=)
F(-=−:,=)

so the previous equation leads to

̂̀2 − `2 =
Ŵ1

1 − Ŵ1
-=−:,=F= (-=−:,=)

F(-=−:,=)
F(-=−:,=)

− CF(C)
∫ ∞

1

F(CG)
F(C)

3G

if we devise this equation by CF(C) we can get:
√
:̂̀2 − `2

CF(C)
=
√
:

Ŵ1
1 − Ŵ1

-=−:,=
F= (-=−:,=)
CF(C)

F(-=−:,=)
F(-=−:,=)

−
√
:

∫ ∞

1

F(CG)
F(C)

3G

So after adding and Subtract some terms we can decompose
√
: (̂̀2−`2)
CF(C) into

the sum of:

I1 :=
√
:

Ŵ1
1 − Ŵ1

F= (-=−:,=)
F(C)

F(-=−:,=)
F(-=−:,=)

[
-=−:,=
C
− 1

]
I2 :=

√
:

F= (-=−:,=)
F(C)

F(-=−:,=)
F(-=−:,=)

[
Ŵ1

1 − Ŵ1
− W1

1 − W1

]
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I3 :=
√
:

W1
1 − W1

F(-=−:,=)
F(C)

[
F= (-=−:,=)
F(-=−:,=)

− 1
]

I4 :=
√
:

W1
1 − W1

[
F(-=−:,=)

F(C)
−

(
-=−:,=
C

)− 1
W1
]

I5 :=
√
:

W1
1 − W1

[(
-=−:,=
C

)− 1
W1
− 1

]
I6 :=

√
:

[
W1

1 − W1
−

∫ ∞

1

F(CG)
F(C)

3G

]

For, we have I1, Ŵ1 → W1 and -=−:,=/C → 1. Since F is regular variation
we obtain F(-=−:,=) = (1 + >P(1))F(C) . From remark 4.1 ofBenchaira et al.,
2015, we have F= (-=−:,=)/F(-=−:,=) → 1.So,

√
:I1 = (1 + >P(1))

√
:

(
-=−:,=
C
− 1

)

From Theorem 2.1 of Benchaira et al., 2015; we have

√
:

(
-=−:,=
C
− 1

)
− WW(1) = >P(1).

Then √
:I1 = (1 + >P(1))

W1W

1 − W1
W(1). (5.18)

For I2, by using a similar way of I1, we prove that:

√
:I2 = (1 + >P(1))

1
(1 − W1)2

√
: (Ŵ1 − W1). (5.19)
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From Theorem 3.1 of Benchaira et al., 2016, we have

√
: (Ŵ1 − W1) =

√
:A◦(=/:)
1 − g1

− WW(1) + W

W1 + W2

∫ 1

0
(W2 − W1 − W log B)B−

W

W2
−1W(B)3B

+ >P(1)

For I3, we have

√
:I3 = (1 + >P(1))

W1W

1 − W1

√
:

(
F= (-=−:,=)
F(-=−:,=)

− 1
)

From Theorem 4.1 of Benchaira et al., 2015, we have

√
:

(
F= (-=−:,=)
F(-=−:,=)

− 1
)
=

W2
W1 + W2

W(1)+ W1W2

(W1 + W2)2
∫ 1

0
B
− W

W2
−1W(B)3B+>P(1).

So,

√
:I3 = (1 + >P(1))

W1W2
(W1 + W2)

W(1) + (1 + >P(1))
W1W

2
2

(W1 + W2)2(1 − W1)

∫ 1

0
B
− W

W2
−1W(B)3B

(5.20)
+ >P(1) .

For I4, after the second-order condition of regular variation
√
:I4 = >P(1). (5.21)

For I5, using the mean value theorem with -=−:,=/C → 1, we get

√
:I5 = −(1 + >P(1))

1
1 − W1

√
:

(
-=−:,=
C
− 1

)
. (5.22)
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From Theorem 2.1 of Benchaira et al., 2015; we have

√
:

(
-=−:,=
C
− 1

)
− WW(1) = >P(1).

then √
:I5 = −(1 + >P(1))

W

1 − W1
W(1).

For I6, we have ∫ ∞

1
G−1/W13G =

W1
1 − W1

,

then

I6 =

∫ ∞

1
G−1/W13G −

∫ ∞

1

F(CG)
F(C)

3G .

Then, by applying the uniform inequality of regularly varying functions(see,
e.g., Theorem 2.3.9 in De Haan et al., 2006); page 48) together with the
regular variation of |A◦ |, we show that

√
:I6 ∼

√
:A◦(C)

(W1 + g1 − 1) (1 − W1)
. (5.23)

Summing up above equations, we get
√
: (̂̀2 − `2)
CF(C)

=

(
W1W2 − 2W (W1 + W2)
(1 − W1) (W1 + W2)

)
W(1) − W2

W1 + W2

∫ 1

0
B
− W

W2
−1
, (B) log B3B

(5.24)

+
W2

1W2(W2 − W1)
(W1 + W2)2(1 − W1)

∫ 1

0
B
− W

W2
−1W(B)3B +

√
:A◦(=/:)
1 − g1

+
√
:A◦(C)

(W1 + g1 − 1) (1 − W1)
.

Finally, Summing up equations 5.17 and 5.24 achieves the proof.
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5.4.2 Proof of Corollary 2.1

We set :
√
: (̂̀− `)

F(-=−:,=)-=−:,=
= J + (W1 + g1 − 1) (1 − W1) + (1 − g1)

(1 − g1) (W1 + g1 − 1) (1 − W1)
√
:A◦(=/:),

Where J = 21J1 + 22J2 + 23J3 + 24J4 + 25J5 with

J1 = W(1), J2 =

∫ 1

0
B
− 2W1

W W(B)3B, J3 =

∫ 1

0
B−W1W(B)3B

J4 =

∫ 1

0
B
− W

W2
−1 log(B)W(B)3B, J5 =

∫ 1

0
B
− W

W2
−1W(B)3B

After elementary but tedious computations, we �nd the following covariance
as asymptotic variance: ΓΣΓC

Where Γ = ( ? (1−?)1−W1
,−?W1, ? (1 − ?), W1?

2(1 − ?), ? (1 − ?) + W2
1?

1−W1
) and ΓC is

the transpose of Γ, O is the variance-covariance matrix:

Σ =


1 U1,2 U1,3 U1,4 U1,5
U1,2 U2 U2,3 U2,4 U2,5
U1,3 U2,3 U3 U3,4 U3,5
U1,4 U2,4 U3,4 U4 U4,5
U1,5 U2,5 U3,5 U4,5 U5


E(J2

1) = 1, U2 := E(J2
2) =

2?2

(−2 + ?) (−4 + 3?)

U3 := E(J2
3) =

(1 − 2?)
?4(1 − ?) ,

U4 := E(J2
4)=

1 − 2?
?4(1 − ?)2 −

2W1?

(1 − ?)3 −
2(1 − ?)−2

(−1 − ?) +
1

(1 − ?)2(2? − 1)2
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U5 := E(J2
5) =

4? − 3
−? (1 − ?)2(2? − 1) ,

U1,2 := E(J1J2)=
?

−2(1 − ?) ,

U1,3 := E(J1J3) =
1

−W1 + 2 ,

U1,4 := E(J1J4) = −
1
?2 ,

U1,5 := E(J1J5) =
1
?
,

U2,3 := E(J2J3)=
3?3

2(−2 + ?) (? − 1) (−2 + W1? + 3?) +
?

(−2 + ?) (−W1 + 2) ,

U2,4 := E(J2J4)=
3?2

2(? − 1)

(
?

2 −
1

4 − ?

)2
+ 3? − 2

6

(
?

1 + ?

)2
,

U2,5 := E(J2J5)=
−?3W1

2(−1 + ?) (−2 + ?) (−1 − ? + W1(−2 + ?)) +
1

−2 + ? ,

U3,4 := E(J3J4) =
−1

(W1 + 2) (−W1 + ? + 1)2+
1

(−W1 + 1)

[(
?

−1 + ?2

)2
+

(
1

1 − ?

)2
]
,

U3,5 := E(J3J5) =
1

(−W1 + 2) (−W1 + ? + 1) +
?3W3

1
(−W1 + 1) (−?W1 − ?W2

1 − ?2W2
1 − ? + 1)

,
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U4,5 := E(J4J5) =
(1 − ?)2

?W1(−W1 − 1) (2? − 1) +
1 − ?
?2 .
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5Conclusions & Outlook

In this thesis, we are interested in a recent problem in the theory of their
extremes, namely the presence of random truncation. This problem is very
common in several areas of socio-economic life where data are often ran-
domly censored on the right, such as medical insurance...

This thesis is broken down into two distinct parts to which is added an
introduction. In the introduction, we recalled the areas where we meet the
incomplete data (censored-truncated) with particular attention to truncated
data. To facilitate the reading of the document, we recalled the high light
points:

– Giving you an introduction to the mathematical and statistical
theory underlying EVT. contains some mathematical prelimi-
naries also contains a derivation of the three families of classical
Gnedenko limit distributions for extremes of iid variables and
an account of regular variation and its extensions and domains
of attraction.

– Beginning with a few reminders on basic concepts such as fdr,
the three survival functions, and the equivalence relationship
between these three functions is discussed. The more we talk
about the laws of large numbers and asymptotic properties of
the sum of the iid values (TCL).

– Moving to talk about incomplete data, with the main basic con-
cepts on truncated data and some important and useful results
existing in the literature for the random right truncation model.
In this chapter we start with censored data, which can be further
classi�ed Afterwards, we will be interested in the truncated data.
but in the present thesis, we are concerned with data that are
right truncated.
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– Last but not least we propose a method for estimating the mean
of this type of distribution in the presence of random right trun-
cation, its asymptotic normality established and its performance
evaluated on simulated data; Our outlook in this subject is pre-
sented in the following question what is the kernel type of our
estimator !.
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5Appendix B: So�ware R

R is a system, commonly known as language and software, which allows
statistical analyzes to be carried out. More particularly, it comprises means
which make possible the manipulation of the data, the calculations and
the graphical representations. R also has the ability to run programs stored
in text �les and includes a large number of statistical procedures called
packets. The latter make it possible to deal fairly quickly with subjects as
varied as linear models (simple and generalized), regression (linear and non-
linear), time series, classic parametric and non-parametric tests, the various
methods of data analysis. , ... Several packages, such ade4, FactoMineR,
MASS, multivariate, scatterplot3d and rgl among others are intended for the
analysis of multidimensional statistical data.

It was originally created in 1996 by Robert Gentleman and Ross Ihaka of the
Department of Statistics at the University of Auckland in New Zealand. Since
1997, an "R Core Team" has been formed which develops R. It is designed to
be used with Unix, Linux, Windows and MacOS operating systems.

A key element in R’s development mission is the Comprehensive R Archive
Network (CRAN) which is a collection of sites that provides everything
needed for the distribution of R, its extensions, documentation, source �les
and �les. binaries. The master site of CRAN is located in Austria in Vienna,
it can be accessed by the URL: "http://cran.r-project.org/". The other CRAN
sites, called mirror sites, are spread all over the world.

R is free software distributed under the terms of the "GNU Public License".
It is an integral part of the GNU Project and has an o�cial site at "http:
//www.R-project.org". It is often presented as a clone of S which is a high
level language developed by AT&T Bell Laboratories and more speci�cally
by Rick Becker, John Chambers and Allan Wilks. S can be used through
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the S-Plus software which is marketed by the company Insightful (http:
//www.splus.com/).
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