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Introduction

Measurement of the dependence between two or more random vari-
ables is a widely used statistical approach. Several more different

measurements of random variable dependency have been considered, in-
cluding the Pearson correlation coefficient, Kendall’s tau, and Spearman’s
rho. Although these measures are easier to evaluate, they are not able
to detect all types of independence, so another solution to this problem
needed to be found. This issue was overcome by creating a copula func-
tion, which has the advantage of completely modeling dependence be-
tween variables.

The term Copula comes from the Latin word " copũlae ", which means a
bond, link, or union, their use in statistics is a relatively new phenomenon
that dates up to the end of the 1950. The concept of copula functions also
had other names different writers in the 1970s, they are called "uniform
representation" by Kimeldorf and Sampson (1975) [53], "dependency func-
tion" by Deheuvels (1979) [19], or even "the standard form" by Cook and
Johnson (1981) [17].

In the mathematical sense, a copula is a function that serves as the pri-
mary link between the multivariate distribution function and its univariate
margins. Regardless of the shape of the margins, the action of the copula
is to represent the characteristics of dependence that are associated with
each of the random variables. In 1959, the term copula was first used in
the theory of multidimensional distributions, thanks to Sklar (1959) [84],
who has shown in his theorem (2.1.3), under certain conditions that there
is a unique copula function C, which is given by:

F (x1, ..., xn) = C(F1 (x1) , ..., Fn (xn))

where F is the joint distribution of X = (X1, ..., Xn) and F1 (x1) , ..., Fn (xn)
are the margins, these margins could be of different distributions.

For a variety of reasons, the copula was chosen to model dependence
rather than the correlation coefficient, where we discovered that the latter
has various limitations including as, if for example the two-order moments
of random variables are not completed, the correlation coefficient is not
defined. Also, for heavy-tailed distributions with infinite variances, this
is not an adequate measure of dependence. More plainly and broadly
correlation is a measure of dependence that does not provide us with
all of the information we need about the structure of dependency.

In copula approaches viewpoint and concerning their estimate, if the
margins F1, ..., Fn are known, then we bring to classic statistical inference
methods. But, because the margins are generally unknown, mainly two
approaches can be adopted for its estimations parametric and nonpara-
metric. Nevertheless, in the first approach we estimate the margins para-
metrically, i.e., the resulting estimate of C will be entirely parametric, we
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Introduction

suppose that the marginal belongs to a family indexed by a parameter,
so to estimate the margins, it suffices to estimate their parameter. This
type of parameter estimation was established in the literature, namely the
concordance approaches, also known as tau-inversion and rho-inversion,
which are based on Kendall’s tau and Spearman’s rho rank correlation
coefficients respectively.

Although in the other approach the margins will estimate non-
parametrically, i.e., we do not assume that the margins belong to any fam-
ily, then it will be a semi-parametric copula estimation. We quote the semi-
parametric estimation method for copula based on this approach and we
mention the methods of moments, L-moments and T.Lmoments, recently
developed by Brahimi et al (2012) [7], which proposed an estimator of a
parametric copula by the method of moments. As a logical continuation
of the method of moments Benatia et al (2011) [6], have proposed also
a new estimator, using the same classical procedure but for L-moments.
After truncation of extreme values, using the T.L-moments introduced by
Elamir and Seheult (2003), Chine and Benatia (2017) [15], have proposed a
new unbiased and asymptotically normal estimator, whose advantage is to
be valid even for non-existent or infinite moments distributions (Cauchy,
beta ...).

In statistics, the study of the copula and its applications is a relatively
modern phenomenon. Copulas are mathematical objects that fully cap-
ture the structure dependence between random variables and continue to
gain popularity in several fields of mathematics, such as finance, actuarial
science, hydraulics, biology, insurance, and reliability theory. Currently,
they have become a necessary tool for market and credit models, risk ag-
gregation, portfolio selection, etc. Nelsen (2006) [67], and others describe
a variety of copula functions that can be used to fit a wide variety of
dependence types. Several multivariate survival models taking into ac-
count, the dependence between random variables are based on the notion
of copulas, because of the advantages of using this function to model a
dependency structure between multivariate variables. We can claim that
among these advantages that the copula allow the construction of multi-
dimensional distribution models, they also model dependency structure
properties, and it is able to measure the dependence for heavy-tailed dis-
tributions.

In the survival analysis area, a multivariate distribution can be con-
structed through the use of copulas in a survival setting. Survival analysis
is a branch of statistics that attempts to model the time T before an event
occurs. Since its origins in the 17th century, survival modeling have pro-
gressed. This modeling can be done with data where for all individuals
the survival is known. In this case, we are talking about complete data.
However, due to the end of the study, withdrawal from the study, or loss
of follow-up, only a part of the individuals are known to have survived.
In this case, we are dealing with incomplete data and unknown survival
observations are said to be censored. The probability that an individual
is alive or unscathed beyond time t is given by the survival function, and
when several events are involved simultaneously, we speak of multivariate
survival. The modeling of bivariate or multivariate data in survival anal-

2
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ysis has been discussed by several authors. Many approaches have been
introduced for this modelisation, including Archimedean copula models
([4], [16], [46], [47], [62], [85], [95]), for reasons of dependency modeling
and its approaches, even their application particularly in actuarial science
and financial risk management. The following is the key reason for con-
centrating on this class:

1. they are easy to construct.

2. have interesting properties that further facilitate the modeling of de-
pendency structures.

3. a large variety of copula families belonging to this class.

This family of Copula is often characterized by a generator, which is
a function, thus reducing the search for a large dimensional distribution
function. Archimedean copula models arise naturally from bivariate frailty
models [71], in which the two failure times have given unobserved frailty
W and each follows the proportional hazards model in W. However, in
this aspect, an Archimedean copula is presented by:

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)),

where ϕ is a continuous, convex and decreasing function called the gen-
erator of C, defined on I = [0, 1]→ [0, ∞] and verifies ϕ(1) = 0.

The primary aim of this thesis is to extend the Copula theory results
via semi-parametric estimating methods, which are presented in two in-
teresting parts. Specifically, we propose an alternative estimation method
of a survival copula C̃, based on a semi-parametric estimation of the clas-
sical moments method due to its simple mathematical form, given (T1; T2)
as singly or doubly right-censored. The asymptotic normality of the em-
pirical survival copula was established for the two cases of censoring. The
dependence structure between the bivariate survival times was modeled
under the assumption that the underlying copula is Archimedean. A sim-
ulation study follows, which sheds light on the behavior of the process
estimation method. The methodology of the proposed estimator is also
illustrated by using lifetime data from the Diabetic Retinopathy Study,
where its efficiency and robustness are observed.

In another part of the thesis, we are interested by Copula modeling
and its applications in the analysis of multivariate survival data. We have
implemented the frailty model for bivariate survival data by considering
Archimedean copulas. Our main idea in this chapter focused on introduc-
ing the dependence between the survival times T1, ..., Td, using an unob-
served random variable W, called frailty model with variable latent. The
frailty variables considered here are latent variables that are not observed,
are nevertheless one-dimensional. In the example presented, this variable
characterized the effect of the individual on the recurrence time. Then we
looked at Clayton-Oakes copulas in particular, and even the model with
gamma-type frailty. The applications for health-related survival data were
next examined.
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So, this thesis is a blend of two statistical branches: the survival anal-
ysis and the Copula theory. We firstly provide a summary of the various
definitions and fundamental properties of these two domains of statistical,
and then we present our result that we talked about just previously. This
thesis is organized as follows:

Chapter 1 : We present some basic notions, we start with foundations
definitions like the distribution function, the empirical distribution func-
tion, the survival function... etc. Thus, we present the basic notion of or-
der statistics, H-volume, and 2-increasing functions, in order that we can
leverage them in the next.

Chapter 2 : The second chapter is mainly devoted to the design of
copulas and their properties. We introduce the notion of the copula, a
bivariate case, and also the relationship between copulas and pairs of ran-
dom variables. By the way, we carried out a synthesis of the main copulas
properties, the most important of which is given by Sklar’s theorem, the
founder of copulas. Following that, we devote a section for different types
of copulas, namely the usual copulas, the family of Archimedean copu-
las, and the copulas of extreme values. Then, we present a multivariate
generalization of the copula notion for all bivariate cases.

Chapter 3 : In this chapter, we give some relations existing between
some dependency measures and copula seen in Chapter 2 as well as an
order of concordance. We explore ways in which copulas can be used in
the study of dependence or association between random variables.

Chapter 4 : This chapter is devoted to the basics of survival analysis,
the semi-parametric and non-parametric estimation methods. In section
(4.1), we start with a few reminders on the basic concepts of survival time
notion. We present the following two cases of incomplete data: censored
and truncated in section (4.2). In section (4.3), We present some approaches
for estimating copulas models from a sample, including semi-parametric
and parametric estimation methods. Whose following, we have presented
two non-parametric estimation methods for a right-censored model (the
most famous non-parametric estimators), known by the Kaplan-Meier es-
timator for the survival function [51], and the Kernel estimator for the
density function [25]. At the end of this chapter, we introduce the non-
parametric estimate for a mixed-censored model, known by the Patilea
and Rolin estimator [75].

Chapter 5 : We consider a general framework of right-censoring, which
includes all the concepts treated in the preceding chapters. In this chapter,
we have introduced a new copula estimator for censored bivariate data
based on the classical estimation method of moments, presented in a semi-
parametric estimation framework. This chapter is divided into two parts
the first focuses on the estimation of this new estimator when the data
are doubly right-censoring, i.e. the two variables are right-censored at the
same time. In the second part, we present this estimator and all results
obtained in part one, when only one of two variables is right-censored as
singly right-censoring. This chapter is structured as follows:

In part one we have presented the theoretical results of the estimator
proposed, general formulas were proved with analytical forms of the ob-
tained estimators. Taking into account Lopez and Saint Pierre’s (2012) [72],
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Gribkova and Lopez’s (2015) [39], results, the asymptotic normality of the
empirical survival copula was established. A semiparametric estimation
method based on the classical moments method illustrated a conditional
distribution on C̃. The dependence structure between the bivariate sur-
vival times was modeled under the assumption that the underlying cop-
ula is Archimedean. Accounting for various censoring patterns (singly or
doubly censored), a simulation study was performed to enlighten the be-
havior of the procedure estimation method, showing the efficiency and
robustness of the new estimator proposed.

As a logical continuation of results established by N.IDIOU et al (2021)
[68], presented in part one of the chapters, a particular case of right-
censoring has well detailed in part two of the chapter, as well as the empir-
ical survival copula has also been evaluated in this case of singly-censored
data. As an application, two Archimedean Copula models have been cho-
sen to illustrate our theoretical results. A simulation study follows, which
sheds light on the behavior of the process estimation method showing that
the proposed estimator performs well in terms of relative bias and RMSE.
The methodology of the proposed estimator is also illustrated by using
lifetime data from the Diabetic Retinopathy study, where its efficiency and
robustness are observed.

Chapter 6 : In this chapter, we are interested by Copula modeling and
its applications in the analysis of multivariate survival data. We have used
the frailty model for bivariate survival data by considering Archimedean
copulas. Our main idea is this chapter focused on introducing the depen-
dence between the survival times T1, ..., Td, using an unobserved random
variable W, called frailty model with variable latent. We then focused on
the particular cases of Clayton-Oakes copulas and the model with frailty
gamma-type. For each of these two models, the copulas used for the bivari-
ate survival functions are the same. However, the marginal survival func-
tions are modeled in different ways. The variables of frailty, considered
here, are latent, not observed, but one-dimensional. In the example pre-
sented, this variable characterized the effect of the individual on recovery
time currency. These individuals could come from several hospitals. The
differential effect, not observed, of these centers would then be a latent
variable. This chapter ended with an application presented on bivariate
survival data in biostatistics fields, analyzed by the Copula procedure of
the SAS software.
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In In this chapter we define some of the basic conceptions, in order that
we can leverage them in the next.
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Chapter 1. Preliminary

1.1 Foundations definition

Definition 1.1.1 (The distribution function) The distribution function of a real random variable
(r.v) X, is a function that is generally noted by FX, defined from R in [0; 1],
where x in R associates:

FX(x) = P (X ≤ x) = P (]−∞; x]) (1.1.1)

FX is known as an increasing function, continuous to the right with a limit to
the left at any point in the sense that:

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

Definition 1.1.2 (The empirical distribution function) Let the sample X1, ..., Xn of a positive
r.v X, for n ≥ 1 size, with the distribution function F. The empirical distribution
function Fn is defined by:

Fn =
1
n

n

∑
i=1

I{Xi≤x}, ∀ x ≥ 0 (1.1.2)

where I{B} is the indicator function of the set B. So we can conclude that Fn
is the proportion of the n variables which are less than or equal to x.

Definition 1.1.3 (The density function) A probability distribution has a density f , if f is a
function defined on R, positive and Lebesgue-integrable, such that the probability
of the interval [a, b] , is given by: ∫ b

a
f (x) dx,

A probability density is also allowed to represent a distribution function FX
in the form of integrals as:

F(x) =
x∫

−∞

f (t) dt

Definition 1.1.4 (The survival function) The survival function called also the survival time,
often noted S or F̄, of a positive and continuous r.v X, is given generally by:

S (x) = F̄ (x) = P (X > x) (1.1.3)

= 1− F (x) , x ≥ 0

In terms of distribution, we have:

S(x) =
+∞∫
x

f (t) dt

we can also write S′ (x) = −F′ (x) = − f (x), where S′ is the derivative of
S. We are also aware of:

- S (x) is a non-increasing function.
- lim

t→0
S (x) = 1 and lim

t→∞
S (x) = 0.

7
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Definition 1.1.5 (The empirical survival function) Let the sample X1, ..., Xn of a positive r.v X
and of n ≥ 1 size, where S its a survival function. The empirical survival function
noted by Sn, is given by:

Sn = 1− Fn =
1
n

n

∑
i=1

I{Xi>x}, ∀ x ≥ 0 (1.1.4)

So Sn is the proportion of observations that exceeds x.

Definition 1.1.6 (The quantile function) Let X be a r.v defined in R, and FX its distribution
function. We call the quantile function of X the function, denoted by QX, from
]0; 1[in R, who has 0 < u < 1 associate:

QX (u) = F−1
X (x) = inf {x : FX (x) ≥ u} ,

where FX is a continuous and monotonous function and F−1
X represents its

generalized inverse.
As is typical, we can say that a quantile function of a r.v is the inverse of its

distribution function FX. When this distribution function is strictly increasing,
its inverse is defined without ambiguity. By convention, QX (0) is the smallest of
the possible values for X and QX (1) is the largest.

Definition 1.1.7 (The empirical quantile function) Let the sample X1, ..., Xn, of an independent
and identically distributed r.v. The empirical quantile function Qn (u) of a sample
X1, ..., Xn are defined for all u ∈ ]0; 1[ by:

Qn (u) = inf {x : Fn (x) ≥ u}

= inf

{
x :

1
n

n

∑
i=1

I{Xi≤x} ≥ u

}
,

where Fn is the empirical distribution function defined by (1.1.2).

1.2 Basic notions

1.2.1 Order statistics

Definition 1.2.1 (Order statistics) Let the sample X1, ..., Xn of an independent and identi-
cally distributed r.v of the same distribution function F. The order statistics of
X1, ..., Xn is the increasing rearrangement of the previous sample, noted:

X(1,n) ≤ ... ≤ X(n,n).

In particular, the random variable X(i,n) is the ith order statistics for 1 ≤ i ≤ n.

Definition 1.2.2 (Extreme order statistics) The extreme order statistics noted by X(1,n) and X(n,n)
are defined respectively by:

X(1,n) = min X(i) and X(n,n) = max X(i)

Definition 1.2.3 (Extreme order statistics distributions) The distributions FX(1,n) and FX(n,n) of
the extreme order statistics X(1,n) and X(n,n) are respectively defined by:{

FX(1,n) (x) = 1− [1− F (x)]n

FX(n,n) (x) = [F (x)]n

8
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1.2.2 H-volume notion, 2-increasing functions

Consider R the extension of R in [−∞;+∞] . A rectangle in R
2 is a Carte-

sian product B of two closed intervals B = [x1, x2]× [y1, y2] . The vertices
of rectangle B are the points (x1, y1) , (x1, y2) , (x2, y1) , and (x2, y2) . A real
function H with two variables is a function of domain DomH, a subset of
R

2 including all images of rank RanH is a subset of R.

Definition 1.2.4 Let S1 and S2 two non-empty subsets of R and consider H a two-dimensional
function such that DomH = S1 × S2. The H-volume of B is given by:

VH(B) = H (x2, y2)− H (x2, y1)− H (x1, y2) + H (x1, y1)

Notice that if we define the first order difference of H on the rectangle B
by:

∆x2
x1

H(x, y) = H (x2, y)− H (x2, y)

and ∆y2
y1 H(x, y) = H (x, y2)− H (x, y1)

Then the H-volume of rectangle B is the second-order difference of H in
B:

VH(B) = ∆y2
y1 ∆x2

x1
H(x, y)

Definition 1.2.5 A two-dimensional real function H is said to be 2-increasing if VH(B) ≥ 0 for
any rectangle B whose vertices are included in DomH. When H is 2-increasing,
the H-volume of the rectangle B is sometimes presented as a measure of B.

The next lemmas will be very useful for establishing the continuity of
sub-copulas and copulas in the subsequent. The first comes as a direct
result of the definitions (1.2.4) and (1.2.5).

Lemma 1.2.1 Let A and B two non-empty subsets of R and H a 2-increasing function of domain
DomH = A× B.
Let x1, x2 of S1 where x1 ≤ x2 and y1, y2 of S2 where: y1 ≤ y2, then the
function t → H (t, y2) − H (t, y1) is non-decreasing on A and the function
t→ H (x2, t)− H (x1, t) is non-decreasing on B.

Definition 1.2.6 Assume that A and B be 2-non-empty subsets of R and H be a real function of
2-variable 2-increasing such that DomH = A× B. Let a be the smallest element
of A and b be the smallest element of B. We say that H is "grounded" if:

H (x, b) = 0 = H (a, y) ∀ (x, y) in A× B

Lemma 1.2.2 Let A and B two non-empty subsets of R and H a 2-increasing function grounded
of a domain A× B then H is non-decreasing with respect to each of his arguments.

Proof. Let a and b two minimums of A and B respectively, taken x1 = a
and y1 = b. Assuming that A admits a maximum b1 and a maximum b2 for
S2. The function H of S1× B is said to admit the two marginal functions F
and G in R, given by:

DomF = A and F (x) = H (x, b2) for all x in A
DomG = B and G (y) = H (b1, y) for all y in B

9
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We ended this chapter with the following lemma concerning 2-increasing
functions with marginals.

Lemma 1.2.3 Assuming that A and B are two non-empty subsets of R and H a function 2-
inccreasing, with marginals domain A× B. Let (x1, y1) ; (x2, y2) any two points
of A× B then:

|H (x2, y2)− H (x1, y1)| ≤ |F (x2)− F (x1)|+ |G (y2)− G (y1)|

Proof. From the triangular inequality we have:

|H (x2, y2)− H (x1, y1)| ≤ |H (x2, y2)− H (x1, y2)|+ |H (x1, y2)− H (x1, y1)| .

Assume that x1 ≤ x2, because H is a 2-increasing function admits
marginals then the lemmas (1.2.1) and (1.2.2) imply:

0 ≤ H (x2, y2)− H (x1, y2) ≤ F (x2)− F (x1) ,

a similar inequality applies when x2 ≤ x1, it follows therefore for all x1, x2
of A

|H (x2, y2)− H (x1, y2)| ≤ |F (x2)− F (x1)|

The same for all y1, y2 of B and we have:

|H (x1, y2)− H (x1, y1)| ≤ |G (y2)− G (y1)|

10



2Copula conseptions

Sommaire

2.1 Bivariate Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Copula and Sub-Copula . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Copulas and random variables . . . . . . . . . . . . . . . . 17

2.1.4 Fréchet-Hoeffding Boundaries . . . . . . . . . . . . . . . . 19

2.1.5 Survival and semi-survival copulas . . . . . . . . . . . . . 21

2.1.6 Copula properties . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Bivariate Copula families . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Usual Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Archimedean Copulas . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Extreme values Copulas . . . . . . . . . . . . . . . . . . . . 28

2.2.4 Bivariate extreme values distributions . . . . . . . . . . . . 30

2.3 Multivariate Copula . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Sklar’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 A multivariate copula’s properties . . . . . . . . . . . . . . 33

2.3.3 Multivariate parametric copula . . . . . . . . . . . . . . . . 33

The most important aspects of copula theory, will indeed be discussed
in this chapter. This is primarily a presumption for those unfamiliar

with the copula function to read this thesis. The main definition and char-
acteristics of this concept are presented, followed by a description of the
fundamental basic properties and an outline of some demonstrations to
help understanding. To make things easier, we start with a brief reminder
of bivariate copulas. Let’s say (X1, ..., Xd) is a random vector with Rd

values, of joint distribution function F and marginals Fi for i = 1, ..., d.

Sklar in (1959) [84], shows that, under certain conditions, there exists
a unique function denoted C (for copula), such that:

11
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H (x1, ..., xd) = C(F1 (x1) , ..., Fd (xd))

This representation translates the intrinsic relationships between the
components by reducing normalizing all variables to uniform variables.
This chapter introduces some concepts that will be necessary when dis-
cussing Copula. Then, focusing on the most important definitions, we
provide a brief summary of the main properties of copulas.



Chapter 2. Copula conseptions

2.1 Bivariate Copula

Consider a couple of random variables (X, Y) of marginal distribution
functions F1 (x) = P (X ≤ x) and F2 (y) = P (Y ≤ y) respectively and a
joint distribution F (x, y) = P (X ≤ x, Y ≤ y) . For each couple (x, y) we
can associate three numbers F1 (x) , F2 (y) and F (x, y) belonging to the
interval [0; 1]. In other words, for each pair of real numbers (x, y) corre-
sponds a point (F1 (x) , F2 (y)) in the unit square [0; 1]× [0; 1] and in turn,
this point corresponds to a real number F (x, y) belonging to the inter-
val [0; 1]. We will then show that this correspondence, which assigns the
distribution’s value to each pair of marginal distribution functions, is in
reality, a function (called a copula). In all that follows I will denote the
unit interval I = [0; 1].

2.1.1 Copula and Sub-Copula

Before moving on to the copulas, let’s define the sub-copulas first.

Definition 2.1.1 A two-dimensional sub-copula, already identified as a 2-sub-copula or obviously
a sub-copula C′, is a function with the following properties:

1. DomC′ = S1 × S2, where S1 and S2 are subsets of I containing 0 and 1,

2. C′ is grounded and 2-increasing,

3. For every u in S1 and every v in S2 we have :

C′ (u, 1) = u and C′ (1, v) = v.

Noted that for every (u, v) in DomC′, 0 ≤ C′ (u, v) ≤ 1, so that RanC′

is also a subset of I.

Definition 2.1.2 A two-dimensional copula, also known as a 2-copula or simply a bivariate copula
C, is a function of I2 in I having the following properties:

1. For all (u, v) ∈ I2, the Copula C is grounded, i.e.

C (u, 0) = C (0, v) = 0

2. The margins are uniform, i.e.

C(u, 1) = u and C(1, v) = v, ∀u, v ∈ I. (2.1.1)

3. C is 2-increasing, in other terms: ∀ (u1, u2, v1, v2) ∈ I4 such that
u1 ≤ u2 and v1 ≤ v2, we have:

C(u2, v2)− C (u2, v1)− C (u1, v2) + C (u1, v1) ≥ 0 (2.1.2)

Thus, (2.1.2) gives an “inclusion-exclusion” type formula for the num-
ber assigned by C to each rectangle [u1, u2] × [v1, v2] in I2 and states
that the number so assigned must be nonnegative, where C(u, v) =
VC([u1, u2]× [v1, v2]). By the way, any copula is a distribution on I2 with
uniform marginal distributions on I. The definition of copulas is a special
case of sub-copulas, and they can be stated as follows:

13



Chapter 2. Copula conseptions

Definition 2.1.3 (Nelsen 2006[67]) A two-dimensional copula (or a a bivariate copula) is a two-
dimensional sub-copula whose support is I2.

The following theorem discusses one of the most important properties
of sub-copulas.

Theorem 2.1.1 Let C′ a sub-copula. Then for every (u, v) in DomC′ we have:

max(u + v− 1, 0) ≤ C′(u, v) ≤ min(u, v).

Proof. Let (u, v) an arbitrary point of DomC′.
Because C′(u, v) ≤ C′(u, 1) = u and C′(u, v) ≤ C′(1, v) = v, then

C′(u, v) ≤ min(u, v)

In addition VC′ ([u, 1]× [v, 1]) ≥ 0 indicates that C′(u, v) ≥ u + v− 1, as
well as C′(u, v) ≥ 0 given:

C′(u, v) ≥ max (u + v− 1, 0) .

Because each copula is a sub-copula, the previous theorem’s inequality
holds for the copulas as well. The bounds of this inequality are also cop-
ulas, noted the Fréchet-Hoeffding bounds as shown in Nelsen (2006) [67],
which are usually mentioned by:

M(u, v) = min(u, v),

and
W(u, v) = max(u + v− 1, 0),

thus for each copula C and all (u, v) in I2 we have:

W(u, v) ≤ C(u, v) ≤ M(u, v). (2.1.3)

This inequality is the copula version of the Fréchet-Hoeffding bounding
inequality. We call M and W the upper and lower bounds of Fréchet-
Hoeffding, respectively. Another important copula is the product copula
Π (u, v) = u.v, which characterizes the case of independence. The follow-
ing theorem establishes the continuity of sub-copulas.

Theorem 2.1.2 [Uniform continuity] Let a sub-copula C′, for all (u1, u2) , (v1, v2) in DomC′

we have: ∣∣C′ (u2, v2)− C′ (u1, v1)
∣∣ ≤ |u2 − u1|+ |v2 − v1|

As result, C′ is uniformly continuous in its domain.

Definition 2.1.4 Let a copula C and consider a as an arbitrary number I. The horizontal section
of C at a is the function from I in I given by t 7→ C (t, a) , the vertical section of
C at a is the function from I in I given by t 7→ C (a, t) , and the diagonal section
of C is the function δC from I in I define by δC (t) = C (t, t) .

The horizontal, vertical, and diagonal sections of copula C are all non-
decreasing and uniformly continuous over I.
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2.1.2 Sklar’s Theorem

Easily, a copula is a multivariate distribution function in support I, as
stated previously, where the marginal are uniforms. This immediately im-
plies that a convex sum of copulas is also a copula. The following theorem
known as Sklar’s theorem is the central theorem of copula theory. It estab-
lishes the link between the above formal definition of copulas and distri-
butions of random variables, thus allowing the application of copulas in
statistical modeling.

Definition 2.1.5 A distribution function F defined in R is given as follows:

1. F is non-decreasing.

2. F (−∞) = 0 and F (∞) = 1.

Definition 2.1.6 A joint distribution function F defined in R
2 is given as follows:

1. F is 2-increasing.

2. F (x,−∞) = F (−∞, y) = 0 and F (∞, ∞) = 1.

3. Since DomF = R
2, then F has marginals F1 and F2 defined by:

F1(x) = F (x, ∞) and F2(y) = F (∞, y) .

Theorem 2.1.3 (Sklar’s Theorem) Let F be the joint distribution function of two random vari-
ables X1 and X2, and F1 (x1), F2 (x2) represent their marginal distribution func-
tions. So there is a copula C

F(x1, x2) = C(F1(x1), F2(x2)), ∀(x1, x2) ∈ I2 (2.1.4)

- If the marginal distribution functions F1 and F2 are continuous, then
C is unique in RanF1 × RanF2.

- Conversely, if C is a copula and F1 and F2 are univariate distributions,
then the function F defined by (2.1.4) is a joint distribution whose margins
are F1 and F2, while C is unique.

Thus, the copula combines the marginals to form the multivariate dis-
tribution. This theorem provides both a parameterization of multivariate
distributions and a construction scheme for the copulas (for the proof of
this theorem see [67]). The next proposition is required for the proof of
Sklar’s theorem.

Proposition 2.1.1 Let X a random variable of distribution function F, then:

1. If U is a random variable with a uniform distribution on I, then

F−1 (U)
d−→ F.

2. If F is continuous, then F (X)
d−→ UI.
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Proof. (Sklar’s Theorem) For (X, Y) = (F−1
1 (U1) , F−1

2 (U2)), we have

F (x, y) = P [X ≤ x, Y ≤ y]

= P
[

F−1
1 (U1) ≤ x, F−1

2 (U2) ≤ y
]

= P [U1 ≤ F1 (x) , U2 ≤ F2 (y)]
= C (F1 (x) , F2 (y)) .

Using Sklar’s theorem, we can define the copulas from a couple of random
variables as follows:

Definition 2.1.7 Let H be a distribution function. Then a quasi-inverse of H is a function H(−1)

defined on I such that:
- If t ∈ RanH, then H(−1)(t) is all x ∈ R̄ such that H(x) = t.
- If t /∈ RanH, then H(−1)(t) = inf {x|H(x) ≥ t} = sup {x|H(x) ≤ t}.
If H is strictly increasing H(−1) = H−1 where H−1 is the ordinary inverse

of H.

Lemma 2.1.1 Let S1 and S2 be two non-empty subsets of R and F be a 2-increasing function,
with marginals of domain S1 × S2. Assuming that (x1, y1) , (x2, y2) be any two
points of S1 × S2 then we have:

|H (x2, y2)− H (x1, y1)| ≤ |F1 (x2)− F1 (x1)|+ |F2 (y2)− F2 (y1)|

Lemma 2.1.2 Let’ s F a joint distribution function of marginals F1 and F2. Then, there is an
unique sub-copule C′ such that:

1. DomC′ = RanF1 × RanF2,

2. For all x, y in R
2, F (x, y) = C′ (F1 (x) , F2 (y)) .

Proof. The joint distribution F verifies the assumptions of lemma (2.1.1)
where S1 = S2 = R. So for all points (x1, y1) and (x2, y2) in R

2 we have :

|F (x2, y2)− F (x1, y1)| ≤ |F1(x2)− F1(x1)|+ |F2(y2)− F2(y1)| ,

which implies that if

F1(x2) = F1(x1) and F2(y2) = F2(y1),

then
F (x2, y2) = F (x1, y1) .

Therefore, all the couples
{
(F1(x), F2(y), F(x, y)) : x, y ∈ R

}
defined a two-

dimensional real function C′ of domain RanF1 × RanF2, this function is a
sub-copule and follows directly from the properties of F.

Lemma 2.1.3 Let C′ a sub-copula, then there is a copula C such that C(u, v) = C′(u, v) for all
(u, v) in DomC′, ie any subcopula can be extended into a copula.

Proof. see [67]
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Example 1 Let (a, b) be any point of R2 and consider the following distribution function:

H (x, y) =
{

0, if x < a or y < b
1, if x ≥ a or y ≥ b

The marginals of H are the unit scale functions εa and εb. By applying the
lemma (2.1.2), we get the sub-copule C′ of domain {0, 1} × {0, 1} , such that
C′ (0, 0) = C′ (0, 1) = C′ (1, 0) and C′ (1, 1) = 1.

The extension of C′ into a copula C by lemma (2.1.3) is the copula C = Π, ie
C (u, v) = uv. Noted that each copula which coincides with C′ on its domain is
therefore an extension of it.

We are now able to prove Sklar’s theorem that we re-learn here for convenience.

Corollary 2.1.1 Let F, F1, F2 be defined in (2.1.3), where C′ a sub-copula and let F−1
1 and F−1

2
be the quasi-inverses of F1 and F2 respectively. Then

∀(u, v) ∈ DomC′, C′(u, v) = F(F−1
1 (u), F−1

2 (v)).

Proof. see [67]

Since a copula is a sub-copula, this corollary is also valid if C′ is a
copula.

Example 2 (Gumbel 1960a) Let F be the joint distribution function given by:

F (x, y) =
{

1− e−x − e−y + e−(x+y+αxy), x ≥ 0, y ≥ 0
0, otherwise

where α is a parameter in I. Then the marginal distribution functions are
exponentials, with quasi-inverses

F(−1)
1 (u) = − ln (1− u) and F(−1)

2 (v) = − ln (1− v) for (u, v) ∈ I .

Hence the corresponding copula is

C (u, v) = u + v− 1 + (1− u) (1− v) e−α ln(1−u) ln(1−v)

2.1.3 Copulas and random variables

It is essential to link a copula that describes a set of random variables
(or vector Random). This is true especially for the continuity of random
variables.

Theorem 2.1.4 Let X and Y be two random variables whose distribution functions are F1 and F2
respectively, where the joint distribution function is F. Then, there exists a copula
C satisfying F(x, y) = C(F1(x), F2(y)). If X and Y are continuous, C is unique
on RanF1 × RanF2.

17
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Theorem 2.1.5 (Independence) Let X and Y be two continuous random variables. Then, X and
Y are independent if and only if CXY = Π, where Π is the produced copula.

Copulas have one of the most important properties characterizing a dependency
measure, which is the invariance by strictly increasing transformation.

Theorem 2.1.6 (Invariance by strictly increasing transformation) Let X and Y be a continu-
ous random variables having CXY as a copula. If α and β are functions strictly
increasing on RanX and RanY respectively, Cα(X)β(Y) = CXY.

Thus CXY is invariant under strictly increasing transformations of X and Y.

Proof. Let F be the joint distribution of continuous random variables X
and Y, with respective marginal distributions F1 and F2. Let Ft be the joint
distribution of the transform ( f1(X), f2(Y)), of respective marginal distri-
butions F1t and F2t. We have

F1t(x) = P( f1((X) ≤ x) = P(X ≤ f−1
1 (x)) = F1

(
f−1
1 (x)

)
, ∀x ∈ R

(2.1.5)
the same

F2t(y) = P( f2((Y) ≤ y) = P(Y ≤ f−1
2 (y)) = F2

(
f−1
2 (y)

)
, ∀y ∈ R (2.1.6)

We conclude from (2.1.5) and (2.1.6) that for all u and v in I

F−1
1t (u) = f1

(
F−1

1t (u)
)

and F−1
2t (v) = f2

(
F−1

2t (v)
)

Then, using Sklar’s theorem we have:

C f1(X) f2(Y) (u, v) = Ft

(
F−1

1t (u) , F−1
2t (v)

)
= P( f1(X) ≤ F−1

1t (u) , f2 (Y) ≤ F−1
2t (v)),

because f1 and f2 are bijective, then

C f1(X) f2(Y) (u, v) = P(X ≤ F−1
1 (u) , Y ≤ F−1

2 (v))

= F
(

F−1
1 (u) , F−1

2 (v)
)

= CXY (u, v)

According to [60], this property ensures that the copula completely
provides the dependency structure, regardless of the size of the marginal
distributions. Thus, any measure of dependence expressed by the copula
and marginal distribution functions are too. When the transformations are
not necessarily strictly increasing, the following theorem is accurate.

Theorem 2.1.7 Let X and Y be continuous random variables having CXY as a copula. Let α and
β be strictly monotonic functions on RanX and RanY respectively.

- If α is strictly increasing and β is strictly decreasing, then

Cα(X)β(Y) (u, v) = u− CXY (u, 1− v)

18
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- If α is strictly decreasing and β is strictly increasing, then

Cα(X)β(Y) (u, v) = v− CXY (1− u, v)

- If α and β are strictly decreasing, then

Cα(X)β(Y) (u, v) = u + v− 1 + CXY (1− u, 1− v)

2.1.4 Fréchet-Hoeffding Boundaries

We have seen the Fréchet-Hoeffding bounds M(u, v) and W(u, v) for cop-
ulas like previously. Hence, its graphic representation is the continuous
surface in I3 whose vertices are (0, 0, 0), (0, 0, 1) , (0, 1, 0) and (1, 1, 1) . This
graph is located between the graphs of Fréchet-Hoeffding bounds, i.e. the
surfaces of M and W. The contour diagram can also represent the graph
of a copula.

Figure 2.1 – The Copula (top) and contour plots (bottom) of W and M respectively.

According to the following theorem, we can say that every copula C
has a lower bound and an upper bound.

Theorem 2.1.8 ( Frechet-Hoeffding) Let C a copula, for ∀u, v ∈ I, then:

W (u, v) = max (u + v− 1, 0) ≤ C (u, v) ≤ M (u, v) = min (u, v) ,

where M and W represent the lower and upper Fréchet-Hoeffding bounds (respec-
tively).

Proof. see [67]

Consider the two random variables X, Y of joint distribution function
F and of marginals F1 and F2 respectively. As a consequence of Sklar’s
theorem and of the Frechet-Hoeffding theorem we have for x and y ∈ R

max (F1(x) + F2(y)− 1, 0) ≤ F (x, y) ≤ min (F1(x), F2(y)) .
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This is true since M and W are copulas, the above bounds are distri-
bution functions and are called Fréchet-Hoeffding bounds for distribution
functions F having F1 and F2 as marginals. When these limits are reached,
we would like to notice what can be said about the random variables X
and Y in this case. The following lemmas and theorem give the conditions
of equality between the joint distribution function F(x, y) and one of the
two Frechet-Hoeffding bounds.

Lemma 2.1.4 If F is the distribution function of the random couple (X, Y) , then F is equal
to the upper Frechet-Hoeffding bound if and only if for all (x, y) ∈ R

2,
P (X > x, Y ≤ y) = 0 or P (X ≤ x , Y > y) = 0.

Proof. We have

F1 (X) = P (X ≤ x)
= P (X ≤ x, Y ≤ y) + P (X ≤ x, Y > y)
= F (x, y) + P (X ≤ x, Y > y) ,

and

F2 (y) = P (Y ≤ y)
= P (X ≤ x, Y ≤ y) + P (X > x, Y ≤ y)
= F (x, y) + P (X > x, Y ≤ y) ,

then

M (F1 (x) , F2 (y)) = F (x, y) + min (P (X ≤ x, Y > y) , P (X > x, Y ≤ y)) ,

so
F (x, y) = M (F1 (x) , F2 (y)) ,

only if
min (P (X ≤ x, Y > y) , P (X > x, Y ≤ y)) = 0.

Lemma 2.1.5 Let S a subset of R
2. S is decreasing if and only if for all (x, y) ∈ R

2,

1. ∀ (u, v) ∈ S, u ≤ x =⇒ v > y. Or

2. ∀ (u, v) ∈ S, v > y =⇒ u ≤ x.

Theorem 2.1.9 Let X, Y two random variables of joint distribution function F. We say that H
is equal to the lower Fréchet-Hoeffding bound if and only if the support of F is a
decreasing subset of R

2.
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2.1.5 Survival and semi-survival copulas

In this sub-section, we define the functions associated with copulas, which
will be used in Chapter 5 and 6.

• Survival copula

For a couple of random variables (X, Y) having F as the joint distri-
bution function, the joint survival function is given by:

S (x, y) = P(X > x, Y > y),

where S1 (x) = 1− F1 (x) and S2 (x) = 1− F2 (y) are the marginal
survival functions of X and Y respectively, presented in (1.1.3).

The question arises! is there a link between the marginal survival
functions and their joint survival function ! If we assume that C is
the copula of X and Y. Then we have:

S (x, y) = 1− F1 (x)− F2 (y) + F(x, y)
= S1 (x) + S2 (x)− 1 + C(F1(x), F2(y))
= S1 (x) + S2 (x)− 1 + C(1− S1 (x) , 1− S2 (x)).

Then, if we define a function C̃ from I2 → I we obtain:

C̃(u, v) = u + v− 1 + C(1− u, 1− v), (2.1.7)

We can notice that C̃ is a copula and we call it the survival copula
of X and Y. This copula relates the joint survival function to its uni-
variate marginals in a completely analogous way to that in which
the copula relates the joint distribution function to its marginals.

• Semi-Survival copula

For a couple of random variables (X, Y), the function S (x, y) can be
written as:

(x) , F2(y))
= C̃(S1 (x) , F2(y)).

The function C̃ is called the semi-survival copula associated with the
copula C and the expression on I2 is given by:

C̃(u, v) = v− C(1− u, v).
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2.1.6 Copula properties

Let X, Y be two continuous random variables with a copula C and a joint
distribution function F with F1 and F2 as marginals.

• Symmetry

If X is a random variable and a is a real number. We say that X
is symmetric with respect to a if X − a and a − X have the same
distribution i.e.

∀x ∈ R, P (X− a ≤ x) = P (a− X ≤ x) .

When X is continuous and has a distribution function H, it is equiv-
alent to

H (a + x) = H̄ (a− x) (2.1.8)

When H is discontinuous, (2.1.8) holds only at the points of continu-
ity of H. Now consider a couple of random variables (X, Y), we can
define symmetry in terms of couple (a, b) ∈ R2 in a different way.
One of the most important ways of symmetry is exchangeability.

Definition 2.1.8 (Exchangeability [67]) Two random variables X and Y are exchangeable
if the random vectors (X, Y) and (Y, X) are identically distributed. The
exchangeability between two random variables X and Y, where F is the
joint distribution function, can be expressed as:

F (x, y) = F (y, x) , ∀ (x, y) ∈ R2

For identically distributed random variables, the exchangeability is
equivalent to the symmetry of their copula as expressed in the fol-
lowing theorem.

Theorem 2.1.10 Let X and Y be two continuous random variables having the joint dis-
tribution function F, the marginal distribution functions F1 and F2, re-
spectively, and the copula C as an associated copula. We say that X, Y are
exchangeable if and only if:

F1 = F2 and C(u, v) = C(v, u), ∀ (u, v) ∈ I2

If C(u, v) = C(v, u), for all (u, v) ∈ I2, we say that C is symmetrical.

• Order relation

The inequality of the Fréchet-Hoeffding bounds suggests the exis-
tence of a partial order on the set copulas as follows:

Definition 2.1.9 Let C1, C2 be two copulas. We say that C1 is smaller than C2 (or C2 is
greater than C1) and we denote by C1 ≺ C2 (or C1 � C2) if:

C1(u, v) ≤ C2(u, v), ∀ (u, v) ∈ I2. (2.1.9)
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Remark 2.1.1 We can notice that according to this order, the Fréchet-Hoeffding upper
bound M = min(u, v) is greater than any other copula. And that the
Fréchet-Hoeffding lower bound W = max(u + v − 1, 0) is smaller than
any other copula.

This punctual partial order of the copulas set is called order of con-
cordance which is a tool for discussing the relationship between cop-
ulas and the dependence properties between random variables. Be-
cause not all copula pairs are comparable, it is clear that this order
is only partial.

Example 3 The copula produces Π and the copula obtained by the average of the two
Fréchet Hoeffding bounds are not comparable. Beceause, if we suppose that:

C (u, v) =
[W (u, v) + M (u, v)]

2
,

then, we have C
( 1

4 , 1
4

)
> Π

( 1
4 , 1

4

)
and C

( 1
4 , 3

4

)
< Π

( 1
4 , 3

4

)
so neither C ≺ Π nor Π ≺ C.

• Convexity and concavity

Definition 2.1.10 A copula is said to be concave if we have:

C (αa + (1− α) c, αb + (1− α) d) ≥ αC (a, b) + (1− α)C (c, d) ,

for all α, a, b, c, d in I. And it is said to be convex if we have:

C (αa + (1− α) c, αb + (1− α) d) ≤ αC (a, b) + (1− α)C (c, d) ,

for all α, a, b, c, d in I.

• Partial derivatives

Definition 2.1.11 The partial derivatives of C(u, v) almost surely exist for all (u, v) ∈ I2,

0 ≤ ∂C(u, v)
∂u

≤ 1 and 0 ≤ ∂C(u, v)
∂v

≤ 1.

• Copula’s density

Let X, Y two continuous random variables, we denote by f the joint
density function associated with F, and by f1 and f2, the marginal
density functions of X, Y respectively.

Definition 2.1.12 The density c (F1(x), F2(y)) associated with C (F1(x), F2(y)) is defined
by:
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c (F1(x), F2(y)) =
∂2C (F1(x), F2(y))

∂F1(x)∂F2(y)

=
f (x, y)

f1(x) f2(y)

We thus have according to Sklar’s theorem in particular:

f (x, y) = f1(x) f2(y).c (F1(x), F2(y))

• Harmonic copula

Let C a copula whose second-order partial derivatives are continu-
ous in I2.

Definition 2.1.13 The copula C is harmonic in I2, if C satisfies the equation:

∇2C (u, v) =
∂2

∂u2 C (u, v) +
∂2

∂v2 C (u, v) = 0.

Example 4 The copula Π(u, v) = uv, is a harmonic copula:

∂2

∂u2 Π (u, v) =
∂2

∂v2 C (u, v) = 0.

• Homogeneous copula

Definition 2.1.14 A copula C is homogeneous of degree k if ∃k ∈ R, ∀u, v, λ ∈ I

C (λu, λv) = λkC (u, v) . (2.1.10)

a. The function Π = uv, is homogeneous of degree 2, because

(λu) (λv) = λ2uv.

b. The function M = min(u, v), is homogeneous of degree 1, be-
cause

min(λu, λv) = λ min (u, v) .

2.2 Bivariate Copula families

Several studies have focused on the construction of different copula
families. In this section, we represent the most common families in the
bivariate case.
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2.2.1 Usual Copulas

• Independency copula

Let X, Y two continuous random variables and F the joint distribution
function, F1 and F2 the marginal distributions of X, Y respectively.

Definition 2.2.1 If X, Y are two independent random variables, then the associated copula is a
product of its marginals.

CX,Y (x, y) = F1 (x) .F2 (y)

The copula thus defined is harmonic and homogeneous of degree 2.

Figure 2.2 – Copula (Left) and contour plot (right) of the independence Copula.

• Gaussian copula

If we denote φρ the joint distribution function of the bivariate normal
distribution with linear correlation coefficient ρ ∈ I, where φ the dis-
tribution function of the standard normal distribution. The Gaussian
copula of the couple random X, Y is defined by:

Cφ
ρ (u, v) = φρ

(
φ−1 (u) , φ−1 (v)

)
,

where

φρ

(
φ−1 (u) , φ−1 (v)

)
=
∫ φ−1(u)

−∞

∫ φ−1(v)

−∞

1

2π
√

1− ρ2
X,Y

exp

(
2stρX,Y − s2 − t2

1− ρ2
X,Y

)
dsdt.

This copula is parameterized by the linear correlation coefficient ρ.

- Cφ
ρ (u, v) −→ Π, when ρ −→ 0.

- Cφ
ρ (u, v) −→W(u, v), when ρ −→ −1.

- Cφ
ρ (u, v) −→ M(u, v), when ρ −→ +1.

• Student’s copula

In the univariate case, the distribution function of a Student random
variable is defined by:

tυ (x) =
∫ x

−∞

Γ
(

υ+1
2

)
√

πυΓ (υ + 2)

(
1 +

s2

υ

)− υ+1
2

ds,
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where Γ is the Euler function defined by:

Γ (x) =
∫ ∞

0
tx−1e−tdt.

In the bivariate case, let ρ ∈ [−1, 1] , then the bivariate distribution
function is:

tρ,υ (x, y) =
∫ x

−∞

∫ y

−∞

1
2π
√

1− ρ2

(
1 + s2+t2−2ρst

υ(1−ρ2)

)− υ+2
2 dsdt.

Definition 2.2.2 A Student’s copula is a parametric copula parameterized by the linear correla-
tion coefficient ρ and freedom degree υ. This copula is defined by:

Ct
ρ,υ (u, v) = tρ,υ

(
t−1
ρ,υ (u) , t−1

ρ,υ (v)
)

=
∫ t−1

υ (u)

−∞

∫ t−1
υ (v)

−∞

1
2π
√

1− ρ2

(
1 + s2+t2−2ρst

υ(1−ρ2)

)− υ+2
2 dsdt.

The corresponding density is then defined by:

ct
ρ,υ (u, v) = ρ−

1
2

Γ( υ+2
2 )Γ( υ

2 )
Γ( υ+1

2 )
2

 1+(t−1
υ (u))

2
+(t−1

υ (v))
2
−2ρ(t−1

υ (u))(t−1
υ (v))

υ(1−ρ2)

−( υ+2
2 )

(
1+(t−1

υ (u))
2)−( υ+2

2 )(
1+(t−1

υ (v))
2)−( υ+2

2 )
.

Remark 2.2.1 a) The Gaussian and the Student copulas are both members of the elliptical
copula family.

b) If the freedom degree υ → ∞, then the Student copula converges to the
Gaussian copula and it is very difficult to differentiate between these two
copulas.

2.2.2 Archimedean Copulas

Before its introduction in many fields such as finance, this family of cop-
ulas was first recognized by Schweizer and Sklar (1961)[80], during the
study of the t-norm, and its name is due to Ling (1965)[58].

• Generator and Archimedien copula

Before presenting this family of copulas, it is necessary to present the
following definition and remarks:

Definition 2.2.3 Let ϕ : I → R+, continuous, decreasing and convex function, such that
ϕ (1) = 0, then ϕ is said to be generator.

The pseudo-inverse of ϕ is defined as follows:

ϕ−1 (u) =
{

ϕ−1 (u) si 0 ≤ u ≤ ϕ (0)
0 si ϕ (0) ≤ u ≤ +∞

If ϕ (0) = ∞, then ϕ is strictly decreasing.
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Definition 2.2.4 The Archimedian copula is defined by:

C (u, v) = ϕ−1 (ϕ (u) + ϕ (v))

where ϕ : I→ R+, is a generator. This copula has the following properties:

a. Symmetry
C (u, v) = C (v, u) , ∀ (u, v) ∈ I2

b. Associativity

C (C (u, v) , z) = C (u, C (v, z)) , ∀ (u, v, z) ∈ I3

c. Contour convexity{
(u, v) ∈ I2 : ϕ (u) + ϕ (v) = ϕ (k)

}
, k > 0

d. Density

c (u, v) = − ϕ” (C (u, v) ϕ′ (u) ϕ′ (v))
(ϕ′ (C (u, v)))3

• Archimedean Copula of a Single Parameter

The Gumbel (1960), Clayton (1978), and Frank (1978) copulas are the most
well-known and widely used among this family of copulas.

- Copula of Gumbel (1960):

Gumbel’s copula is a symmetrical copula defined by:

Cα (u, v) = exp−
(
(− ln u)α + (− ln v)α) 1

α ,

whose generator is defined by:

ϕα (t) = (− ln t)α ,

where the dependency parameter α ∈ [1;+∞[ , also we have:

a. Cα → Π, when α→ 1.

b. Cα → M, when α→ ∞

- Clayton’s Copula (1978):

This copula is also called the Cook and Johnson copula (1981)[17], but the
first to have studied it are Kimeldorf and Sampson (1975)[53], this copula
is defined by:

Cα (u, v) =
(
u−α + v−α − 1

)− 1
α ,

where the generator and the pseudo inverse are defined respectively by:

ϕα (t) =
1
α

(
t−α − 1

)
and ϕ−1

α (t) = (t + 1)−
1
α .

Where the dependency parameter α ∈ [−1; 0[ ∪ ]0;+∞.[ .
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Figure 2.3 – Scatter plot of n = 1000 independent observations from Gumbel Copula for
θ (left) and wireframe plot of the corresponding density (right).

a. If the parameter α→ 0, then the marginal are independent.

b. If the parameter α→ ∞, then we get the Fréchet-Hoffding upper bound
copula M.

- Frank’s Copula (1978):

This copula is a symmetric copula of a dependency parameter
α ∈ [−∞; 0[ ∪ ]0;+∞.[ . It is defined by:

Cα (u, v) = −1
α

ln
(

1 +
(e−uα − 1) (e−vα − 1)

e−α − 1

)
,

of generator:

ϕα (t) = − ln
(

exp (−αt)− 1
exp (−α)− 1

)
,

and density

cα(u, v) =
(α− 1) ln αu+v

((α− 1) + (αu − 1) (αv − 1))2 .

a. Cα → Π, when α→ 0.

b. Cα → M, when α→ +∞.

c. Cα →W, when α→ −∞.

The densities of Frank, Clayton, and Gumbel copulas are depicted in
Figure (2.2.2).

2.2.3 Extreme values Copulas

Another family of copulas which is widely used is that of the extreme
values. As the names indicate, it is a class of copulas related by the notion
of extreme values. The distribution of extreme values in the univariate
case will be presented first, followed by the copula of extreme value.
Let X1, ..., Xn a sequence of random variables i.i.d. That is Mn is given by:
Mn = max(X1, ..., Xn).
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Figure 2.4 – Copula densities (a): Clayton for α = 3, (b): Gumbel for α = 2 and (c):
Frank for α = 2.

Theorem 2.2.1 (Fisher-Tippet, 1928)
If there are two sequences cn > 0 and dn ∈ R, such that Mn−dn

cn
converges in

a non-degenerate distribution, then:

lim
n→∞

P(
Mn − dn

cn
≤ x) = Gα(x),

where Gα(x) takes one three of the distributions lisetd below:

• Fréchet Φα(x) =
{

0, if x ≤ 0
exp {−x−α} , if x > 0

α > 0

• Weibull Ψα(x) =
{

exp {−(−x)α} , if x ≤ 0
1, if x > 0

α > 0

• Gumbel Λ(x) = exp {−e−x} , x ∈ R

Lemma 2.2.1 The statistics
(

n
(

Mn
θ − 1

))
n≥1

converges in distribution to the Weibull random

variable, when α = 1.

Proof. We assume that G(x) = P(n
(

Mn
θ − 1

)
≤ x), and

FXn = P(max(Xi) ≤ x) = (F(x))n = (x/θ)n,

because the distribution function of the uniform distribution F(x) = x/n,
then,

G(x) = P
(

n
(

Mn

θ
− 1
)
≤ x

)
= P

(
Mn

θ
≤ x

n
+ 1
)

= P
(

Mn ≤ θ(
x
n
+ 1)

)
= FMn(θ(

x
n
+ 1))

= (1 +
x
n
)n

= exp(x)
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so G(x) = exp(x) has a Weibull distribution.

Lemma 2.2.2 Let (X1, Y1) , ..., (Xn, Yn) pairs of random variables i.i.d of a common copula C and
C(n) the copula associated where: X(n) = max(Xi), and Y(n) = max(yi), for all
i = 1, ..., n. Then

C(n)(u, v) = Cn(u
1
n , v

1
n ), 0 ≤ u, v ≤ 1.

Proof.

F(n)(x, y) = P
(
max(Xi) ≤ x, max(Yj) ≤ y

)
= P (X1 ≤ x, X2 ≤ x, ...Xn ≤ x and Y1 ≤ y, Y2 ≤ Y, ...Yn ≤ y)
= (F(x, y))n

= C(F1(x), F2(y))n

= Cn((F1(n)(x))
1
n , (F2(n)(y))

1
n ).

The limit of the sequence
{

C(n)

}
, gives us the following definition.

Definition 2.2.5 We say that C∗, is a Copula of bivariate extreme values if there is a copula C,
such that:

C∗(u, v) = lim
n→∞

Cn(u
1
n , v

1
n )

2.2.4 Bivariate extreme values distributions

Let (X1, Y1) , ..., (Xn, Yn) pairs of random variables i.i.d of common distri-
bution F. So there are an, cn > 0 and bn, dn ∈ R, such that:

lim
n→∞

P(
X(n,n) − bn

an
≤ x ≤

Y(n,n) − dn

cn
) = Gθ(x, y),

so G is a non-degenerate distribution if and only if the marginal dis-
tributions of G are univariate extreme value distributions.

• Parametric family of bivariate extreme value copulas

There are essentially two large families of the usual parametric model
of bivariate extreme value copulas: the mixed model and the logistic
model or Gumbel (1960) [40]. The other models usually come from a
symmetrical or asymmetrical extension of these models. We present these
distributions in table (2.1). Where ũ = − ln u, ṽ = − ln v, and Φ is the
distribution function of the reduced centered normal distribution.

Theorem 2.2.2 For any copula of bivariate extreme values C∗, there is a convex function A
defined from I in

[ 1
2 , 1
]

, such that:

C∗(u, v) = exp
[(
− ln(u) + ln(v)A

(
ln u

ln(u) + ln(v)

))]
In addition, A checks max(t, 1− t) < A(t) < t, ∀t ∈ I. A is called a

generator or Pickands dependency function (see [36], [45]).
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family C∗θ (u, v) Aθ(t)
Independence uv A(t) = 1

Gumbel1 exp
{
−(ũθ + ln ṽθ)

1
θ

}
, θ ≥ 1

[
tθ + (1− tθ)

] 1
θ

Gumbel2 uv exp
{

θ ũṽ
ũ+ṽ

}
, θ ≥ 0 t2 − θt + 1

Galambos uv exp
{
−
(
ũ−θ + ṽ−θ

) 1
θ

}
1−

[
t−θ + (1− t−θ)

]− 1
θ

Husler-Reiss exp
{
−ṽΦ[ 1

θ +
1
2 θ log( ṽ

ũ )]−
ũΦ
[ 1

θ

]
+ 1

2 θ log( ũ
ṽ )

}
, θ ≥ 0 tΦ

{ [ 1
θ +

1
2 θ log( t

1−t )
]
+

tΦ
[ 1

θ +
1
2 θ log( t

1−t )
]

Marchal-Olkin
{

uv1−β si uα < vβ

u1−αv si uα > vβ

{
max {1− αt, 1− β(1− t)} ,
α ≤ 1, β ≥ 0

Tawn uv exp

{
−(1− δ) + (θ − δ)ũ+[
(θũ)λ + (δṽ)λ

] 1
λ

} [
(1− δ) + (δ− θ)t+[
(θt)λ + (δ(1− t)λ

] 1
λ

]
Table 2.1 – Extreme value copulas.

2.3 Multivariate Copula

The properties of bivariate copulas in the multivariate case are investi-
gated in this section. While some of the results are similar, others are
not. Let A1, ..., An non-empty subsets of Rn and G a function defined on
A1 × ...× An → R.

Definition 2.3.1 Let ai the smallest elements of Ai, where i = 1, ..., n. The function G is said to
be grounded if it is equale to zero for all v ∈ A1 × ...× An, and for at least one
index k such that vk = ak

G(v1, ..., vk−1, ak, ak+1, ..., an) = 0. (2.3.1)

Definition 2.3.2 Let S1, ..., Sn non-empty measurable parts of R̄. Let B = [a; b] a n-pavement
whose vertices are in Dom G. The volume G of B is then defined by:

VG(B) = ∑ sgn(c)G(c),

where the sum is carried out on all the vertices c of B and the sgn(c) is given by:

sgn(c) =
{

1 if ck = ak for an even number of k
−1 if ck = ak for odd number of k

Definition 2.3.3 The function G is said to be n-increasing if VG(B) ≥ 0 for all n-pavement B
whose vertices are in Dom G.

Definition 2.3.4 A d-dimensionally sub-copula (or n-sub-copula) C̃ is a real function defined on
A1× ...× An, where for i = 1, ..., n, the Ai are non-empty subsets of I containing
both 0 and 1 satisfying the conditions C̃ is grounded (2.3.1) .

1. C̃ has one-dimensional marginals, C̃i for i = 1, ..., n, such that
∀ui ∈ Ai, Ci(ui) = ui.

2. C̃ is n-increasing .

Definition 2.3.5 (n-Sub-Copula) An n-dimensional sub-copula (or n-sub-copula) is a function
C′ having the following properties:
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1. DomC′ = S1 × S2 × Sn, where any Sk is a subset of I containing 0 and 1.

2. C′ is grounded and n-increasing.

3. C′ has marginals C′k, k = 1, ..., n who satisfy

C′k (u) = u for all u ∈ Sk.

Note that for every u in DomC′, 0 ≤ C′ (u) ≤ 1, RanC′ is also a subset
of I . Then, in this sense, an n-copula is stated as follows:

Definition 2.3.6 (n-Copula) An n-dimensional copula (or n-copula) is an n-sub-copula whose
domain is In.

Definition 2.3.7 (n-Copula) An n-dimensional copula C, is defined from Idin I having the fol-
lowing properties:

• For at least one of u = 0 coordinates, ∀u ∈ In, then C(u) = 0.

• For all coordinates equals 1 except ui, then C(u) = ui.

• ∀u, v ∈ Id, such that u ≤ v, we have VC([u, v]) ≥ 0.

2.3.1 Sklar’s theorem

The significance of this theorem is the same as that of the bivariate case.
The following is the n-dimensional form of Sklar’s theorem.

Theorem 2.3.1 (n-dimensional Sklar’s theorem) Let H an n-dimensional distribution function
of marginal distribution functions F1, ..., Fn. So there is a n-copula C such that for
all x ∈ R̄n,

H(x1, ..., xd) = C(F1(x1), ...., Fn(xn)) (2.3.2)

If the functions F1, ..., Fn are continuous, then C is unique.
As in the bivariate case, the continuity of marginals is a sufficient con-

dition for the uniqueness of the copula. The following corollary is very
useful in estimating the copula.

Corollary 2.3.1 (Inverse Sklar’s theorem) Let H be an n-dimensional distribution function
whose marginals are F1, F2, ..., Fn, where C the associated n-copula and let
F−1

1 ,F−1
2 , ..., F−1

n be the quasi-inverses of F1, F2, ..., Fn, respectively. Then for all
u ∈ In

C′(u1, u2, ...un) = F(F−1
1 (u1), F−1

2 (u2), ..., F−1
n (un))

Example 5

Πn(u) = u1...un.
Mn(u) = min(u1, ..., un).

Remark 2.3.1 The function Wn(u) = max(u1 + ...un +−n + 1, 0) is not a n-copula for n > 2,
it is not n-increasing for n-volume

[ 1
2 , 1
]n ⊂ In (see[14]). But in a Sklar’s theorem

(1998), he verifies that the copula C(u) = max(u1 + ...un − 10) is a copula
∀u ∈ Id and for n > 2 (see [67]).

Theorem 2.3.2 (Multivariate Fréchet-Hoeffding bounds) Every multivariate copula satisfies the
following inequality:

max(u1 + ...un − 1; 0) ≤ C(u) ≤ min(u1, ..., un).
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2.3.2 A multivariate copula’s properties

Theorem 2.3.3 (Existence and Uniqueness) Let X1, ..., Xn random variables, including marginal
distribution functions F1, F2, ..., Fn respectively, and the joint distribution func-
tion H. Then there exists an n-copula C such that (2.3.2) is verified. If F1, F2, ..., Fn
are all continuous, C is unique.

Theorem 2.3.4 (Uniform continuity) A copula C is uniformly continuous across its entire do-
main, especially for all u, v in Id, we have

|C(u)− C(v)| ≤
n

∑
k=1
|vk − uk| .

Theorem 2.3.5 (Invariance) Let (X1, ..., Xn) a vector of continuous random variables, of distri-
bution function F associated with a copula C and (α1, ..., αn) a series of strictly
increasing functions. Then, the joint distribution function of the random vector
(α1(X1), ..., αd(Xd))is also associated with the same copula C.

Cα1(X1),...,α2(Xd) = CX1,...,Xd(u)

Theorem 2.3.6 (Partial derivatives) Let the copula C. The partial derivatives of C almost cer-
tainly exist, for all i = 1, ..., d and for all u ∈ Id, we have

0 ≤ ∂C(u)
∂ui

≤ 1.

In addition, the functions

u→ ∂C(u)
∂ui

are non-decreasing.

Definition 2.3.8 (Copula’s density) The density c associated with the copula C is defined by:

c(F1(x1), ..., Fd(xd)) =
∂dC(F1(x1), ..., Fd(xd)))

∂F1(x1)...∂Fd(xd)
=

h(x1, ...xd)

f1(x1), ... fd(xd)

c(F1(x1), ..., Fd(xd)) =
h(F−1

1 (u1), ..., F−1
d (ud)

d
∏
i=1

fi(F−1
i (ui))

,

such that h is the density of H and fi is the density of Fi.

If the multivariate distribution function H is absolutely continuous, then by using
Sklar’s theorem we can present the density function h as a function of the density
c and the marginal densities f1, ..., fd by:

h(x1, ...xd) = c(F1(x1), ..., Fd(xd))
d

∏
i=1

fi(xi)

2.3.3 Multivariate parametric copula

Here we generalize all cases of bivariate copulas, we give the multivariate
form to each case presented previously.
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1. Independency copula

The random variables X1, ..., Xd are independent if and only if

H(x1, ...xd) = F1(x1)× ...× Fd(xd).

We therefore define the multivariate independence copula by

Πd(u) = u1 × ...× ud,

such that ui = Fi(xi) for i = 1, ..., d.

2. Gaussian copula

Let Φd
R a normal multivariate standard distribution with a correla-

tion matrix R, so the Gaussian copula is defined by

Cd,Ga
R (u) = Φd

R(Φ
−1(u1), ..., Φ−1(ud)),

where Φ−1 is the generalized inverse of the univariate normal stan-
dard distribution function Φ. According to (1.15) we have:

1

(2π)
d
2 |R|

1
2

exp(−1
2

XtR−1X) = cd,Ga
R (Φ(x1), ..., Φ(xd))×

d

∏
j=1

(
1√
2π

exp(−1
2

x2
j )).

3. Student Copula

Let Td
R,υ a multivariate distribution function of the student distribu-

tion, and a correlation matrix R, Td
R,υ is defined by:

Td
R,υ =

∫ x1

−∞
...
∫ xd

−∞

Γ( υ+d
2 )

Γ( υ
2 )(2π)

d
2 |R|

1
2
(1+

(X− µ)tR−1(X− µ)

υ
)−

υ+d
2 dx1...dxd,

so the Student copula is defined by

Cd,T
υ,R(u) =

t−1
υ (u1)∫
−∞

...

t−1
υ (ud)∫
−∞

Γ( υ+d
2 )

Γ( υ
2 )(2π)

d
2 |R|

1
2

(
1 +

(X− µ)tR−1(X− µ)

υ

)− υ+d
2

dx1...dxd,

Such that t−1
υ is the generalized inverse of the distribution function of

the univariate Student distribution of υ freedom degree. The density
of Cd,T

υ,R(u) is given by:

cd,T
υ,R(u) = |R|

− 1
2

Γ( υ+d
2 )

Γ( υ
2 )

(
Γ( υ

2 )

Γ( υ+1
2 )

)d


(
1 + 1

υ ςtR−1ς
)− υ+d

2

d
j=1

(
1 +

ς2
j

υ

)− v+1
2

 ,

where ς2
j = t−1

υ (uj).
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4. Archimedean Copula

As the bivariate case the multivariate Archimidean copulas is de-
fined by a generator ϕ(t). The general form of this family of copulas
is defined by:

CA,d(u) = ϕ−1(ϕ(u1) + ... + ϕ(ud)),

and their density is given by

cA,d(u) = ϕ−1(ϕ(u1) + ... + ϕ(ud))ϕ̀(u1)..ϕ̀(ud)),

The three most important and useful families of multivariate
Archimedean copulas are now shown.

(a) Clayton Copula:

Cd,Cla
α (u) =

(
1− d +d

i=1 u−α
i

)−1
α

, α > 0.

CCla
α = Π(u) when α = 0.

(b) Frank Copula:

Cd,Fr
α (u) = −1

α
log

{
1 +

d
i=1 (exp(−αui)− 1)

(exp(−α− 1))d−1

}
, α > 0.

(c) Gumbel Copula:

Cd,Gum
α (u) = exp

{
−
[

d
i=1 (− log(ui))

α
] 1

α
}

,

such that α ∈ [1, ∞[ and we have

• Cd,Gum
α (u) = Πd(u) when α→ 1.

• Cd,Gum
α (u) = Md(u) when α→ ∞.

5. Copula of extreme values

Let Xi = (Xi1, ..., Xid), i ∈ {1, ...n} a sample of random vectors i.i.d
with joint distribution function H and whose marginals are F1, ..., Fd.
The Copula C(n) of Mj,n is defined by:

C(n)(u) = Cn(u
1
n
1 , ..., u

1
n
d )

n, (u1, ..., ud) ∈ [0, 1]d,

such that
Mj,n = max(X1,j, ...Xn,j), j = 1, ..., d.

Definition 2.3.9 A Copula C∗ is a copula of multivariate extreme values, if there exists a copula
C such that:

C∗(u) = lim
n→∞

Cn(u
1
n
1 , ..., u

1
n
d )

n.

• Multivariate extreme value distribution
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The multidimensional theory of extreme values is concerned with the
limit distribution

lim
n→∞

P(
M1,n − b1,n

a1,n
≤ x1, ...,

Md,n − bd,n

ad,n
≤ xd) = Gθ(x1, ..., xd),

where G is a non-degenerate distribution if and only if the marginal
distributions of G are univariate extreme value distributions.

Theorem 2.3.7 For any copula of multivariate extreme values C∗, there is a convex function A

defined from 4d−1 =

{
(w1, ..., wd) ∈ [0, ∞[d:

d
∑

j=1
= 1

}
in
[ 1

d ; 1
]

, such that

C∗(u) = exp


(

d

∑
j=1

ln(uj)

)
A

 ln u1
d
∑

j=1
ln(uj)

, ...,
ln ud

d
∑

j=1
ln(uj)


 .

In addition, A checks

max(w1, ..., wd) < A(w1, ..., wd) < 1.

There is a new family of copulas defined by Capéraà et al. (2000)
[12], the archimax family of copulas, this family is made up of both
Archimidean and of extreme values at the same time.
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The relationship between dependency measures and copulas seen in
Chapter 2, is the subject of this chapter. We look at how copulas can

be employed in the study of random variable dependency or association.
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3.1 Association measures

To couple two or several multivariate distribution functions which are
composed of identically distributed marginal distributions, it is necessary
to measure the dependence between the margins. This is done from the
measurement of a partial order between the pairs of data making up the
observations.

3.1.1 Concordance measures

Let (xi, yi) and
(

xj, yj
)

two observations of a couple of random variables
(X, Y), where i ∈ {1, ..., n} and j ∈ {1, ..., n} .

Definition 3.1.1 We say that (xi, yi) and
(
xj, yj

)
are concordant if and only if

(xi − xj)(yi − yj) > 0⇐⇒ (xi < xj and yi < yj) or (xi > xj and yi > yj).

We say that (xi, yi) and
(
xj, yj

)
are discordant if and only if

(xi − xj)(yi − yj) < 0⇐⇒ (xi < xj and yi > yj) or (xi > xj and yi < yj).

Definition 3.1.2 A numeric measure κ association between two random variables (X, Y) whose
copula is C said to be a measure of concordance if and only if it satisfies the
following properties:

1. κX,Y is defined for each continuous random variables couple (X, Y) .

2. −1 ≤ κX,Y ≤ 1, where κX,X = 1 and κX,−X = −1.

3. κX,Y = κY,X.

4. If X and Y are independent, then κX,Y = 0.

5. If the respective copulas of (X1, Y1) and (X2, Y2) are such that
C1 ≺ C2, then κX1,Y2 ≤ κX2,Y2 .

6. κ−X,Y = κX,−Y = −κX,Y.

7. If (Xn, Yn) is a sequence of continuous random variables, where the
copula {Cn} converges pointwise to C, then limn→∞ κXn,Yn = κX,Y.

8. If α(X) and β(Y) are strictly increasing functions, then
κα(X),β(Y) = κX,Y.

Theorem 3.1.1 Let (X1, Y1) and (X2, Y2) two independent random vectors of continuous random
variables whose joint distribution functions are H1 and H2 respectively. Such that
X1 and X2 have the same distribution function F1, by the way Y1 and Y2 have the
same distribution function F2. Let C1 and C2 the copulas associated to (X1, Y1)
and (X2, Y2) , respectively. Suth that:

H1(x, y) = C1 (F1(x), F2(y))
H2(x, y) = C2 (F1(x), F2(y)) .

Consider Q as the difference between the concordance probability and that of
the discordant of (X1, Y1) and (X2, Y2), i.e.
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Q = P {(X1 − X2) (Y1 −Y2) > 0} − P {(X1 − X2) (Y1 −Y2) < 0} , (3.1.1)

then
Q = Q(C1, C2) = 4

∫ ∫
[0,1]2

C2(u, v)dC1(u, v)− 1. (3.1.2)

Proof. Since all random variables in this case are continuous, then

P {(X1 − X2) (Y1 −Y2) < 0} = 1− P {(X1 − X2) (Y1 −Y2) ≥ 0} ,

then Q = 2P {(X1 − X2) (Y1 −Y2) > 0} − 1.

However,

P {(X1 − X2) (Y1 −Y2) > 0} = P (X1 > X2, Y1 > Y2)+ P (X1 < X2, Y1 < Y2) .

These probabilities can be evaluated by integration on one of the dis-
tribution functions of (X1, Y1) or (X2, Y2) . Integrate with respect to that of
(X1, Y1)

P (X1 > X2, Y1 > Y2) =
∫ ∫

R2
P (X2 < x, Y2 < y) dC1(F1(x), F2(y))

=
∫ ∫

R2
C2(F1(x), F2(y))dC1(F1(x), F2(y)),

by changing variables, u = F1(x) and v = F2(y), we obtain

P (X1 > X2, Y1 > Y2) =
∫ ∫

[0,1]2
C2(u, v)dC1(u, v).

In a similar way

P (X1 < X2, Y1 < Y2) =
∫ ∫

R2
P (X2 > x, Y2 > y) dC1(F1(x), F2(y))

=
∫ ∫

R2
(1− F1(x)− F2(y) + C2(F1(x), F2(y))) dC1(F1(x), F2(y))

=
∫ ∫

[0,1]2
(1− u− v + C2(u, v))dC1(u, v),

Now since C1 is a joint distribution function of two random variables
(U, V) uniforms. So E(U) = E(V) = 1

2 , therefore

P (X1 < X2, Y1 < Y2) = 1− 1
2
− 1

2
+
∫ ∫

[0,1]2
C2(u, v)dC1(u, v),

finally

P {(X1 − X2) (Y1 −Y2) > 0} = 2
∫ ∫

[0,1]2
C2(u, v)dC1(u, v).

By grouping these results we deduce

Q = Q(C1, C2) = 4
∫ ∫

[0,1]2
C2(u, v)dC1(u, v)− 1.
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Corollary 3.1.1 Let C1, C2 two copulas and either Q a measure of agreement and disagreement
(3.1.2), Q has the following properties

1. Q is symmetrical
Q(C1, C2) = Q(C2, C1).

2. Q is non-decreasing

if C1 ≤ C̀1 and C2 ≤ C̀2 for all (u, v) ∈ I2, then Q(C1, C2) ≤ Q(C̀1, C̀2).

3. We can replace the copula C by the survival copula Ĉ, because

Q(C1, C2) = Q(Ĉ1, Ĉ2).

Example 6 We calculate the measure Q for the copulas M, W and Π. The support of M is the
diagonal u = v in I2, and since M has uniform margins, it follows that if g is an
integrable function whose domain is I2, then∫ ∫

I2
g(u, v)dM(u, v) =

∫ 1

0
g(u, u)du.

Therefore, we have

Q(M, M) = 4
∫ ∫

I2
min(u, v)dM(u, v)− 1

= 4
∫ 1

0
udu− 1

= 1

Q(M, Π) = 4
∫ ∫

I2
uvdM(u, v)− 1

= 4
∫ 1

0
u2du− 1

=
1
3

Q(M, W) = 4
∫ ∫

I2
max(u + v− 1, 0)dM(u, v)− 1

= 4
∫ 1

0
(2u− 1)du− 1

= 0

Likewise, because the support of W is the diagonal v = 1− u, we have∫ ∫
I2

g(u, v)dW(u, v) =
∫ 1

0
g(u, 1− u)du

Then

Q(W, Π) = 4
∫ ∫

I2
uvdW(u, v)− 1

= 4
∫ 1

0
u(1− u)du− 1

= −1
3
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Q(W, W) = 4
∫ ∫

I2
max(u + v− 1, 0)dW(u, v)− 1

= 4
∫ 1

0
0du− 1

= −1

For the copula Π, we have dΠ(u, v) = dudv, then

Q(Π, Π) = 4
∫ ∫

I2
uvdΠ(u, v)− 1

= 4
∫ 1

0

∫ 1

0
uvdudv− 1

= 0

3.1.2 Kendall’s Tau

Let (X1, Y1) and (X2, Y2) two continuous, independent and identically dis-
tributed random vectors of joint distribution functions F. Kendall’s tau
τX,Y of the random vector (X, Y), is defined by:

τX,Y = P {(X1 − X2) (Y1 −Y2) > 0} − P {(X1 − X2) (Y1 −Y2) < 0} .
(3.1.3)

We can define the Kendall’s tau as a function of a copula C, using function
Q defined in (3.1.2). The following theorem represents the relationship
between Kendall’s tau and copulas.

Theorem 3.1.2 Let X, Y two continuous random variables whose copula is C. The Kendall’s tau
of X and Y is defined by:

τX,Y = Q(C, C) = 4
∫ ∫

I2
C(u, v)dC(u, v)− 1 (3.1.4)

Since the random variables U = F(x) and V = G(y) are uniform random
variables, then equation (3.1.4) becomes:

τX,Y = 4E(C(U, V))− 1.

Example 7 Let Cθ a Farlie-Gumbel-Morgenstern copula, of parameter θ ∈ [−1; 1], since Cθ is
absolutely continue, then

dCθ(u, v) =
∂2Cθ(u, v)

∂u∂v
dudv = 1 + θ (1− 2u) (1− 2v) dudv

So
∫ ∫

I2 Cθ(u, v)dudv = 1
4 +

θ
18 and τθ = 2θ

9 . We present in the follow-
ing table some copulas and their corresponding kendall’s tau, such that

Dk(θ) =
θ∫

0

x
θ /(ex − 1)dx is a Debye function.
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Copula Kendall’s tau
Normale 2π−1 arcsin(ρ)
Gumbel (θ − 1)/θ

Frank 1−4
θ + 4Dk(θ)

θ

Clayton θ/(θ + 2)

Table 3.1 – Kendall’s tau for some copulas.

3.1.3 Spearman’s Rho

Let (X1, Y1), (X2, Y2) and (X3, Y3) three independent copies of random
vector (X, Y) . The Spearman’s Rho, noted by ρX,Y, is defined by:

ρX,Y = 3(P((X1 − X2) (Y1 −Y3) > 0)− P ((X1 − X2) (Y1 −Y3) < 0))
(2.12)

We can define Spearman’s rho as a function of a copula C, almost as
Kendall’s tau.

Theorem 3.1.3 Let X, Y two continuous random variables whose copula is C. The Spearman’s
Rho of X and Y is defined by:

ρX,Y = 3Q(C, Π),

= 12
∫ ∫

I2
uvdC(u, v)− 3

= 12
∫ ∫

I2
C(u, v)dudv− 3

Because the variables U, V are uniform, where E(U) = E(V) = 1
2 , with

variance var(U) = var(V) = 1
12 , then ρX,Y can be written by:

ρX,Y =
E(UV)− E(U)E(V)√

var(U)
√

var(V)
(2.13)

Proof. We have E(UV) =
∫ ∫

I2 uvdC(u, v), then

ρX,Y = 12
∫ ∫

I2
uvdC(u, v)− 3

= 12E(UV)− 3

=
E(UV)− 1/4

1/12

=
E(UV)− E(U)E(V)√

var(U)
√

var(V)

Example 8 Because Sparman’s rho is defined as a function of a parametric copula Cθ we can
noted ρX,Y by ρθ .

• Let Cθ a Farlie-Gumbel-Morgenstern copula, of parameter
θ ∈ [−1; 1], then

Cθ(u, v) = uv + θuv(1− u)(1− v),

so
∫ ∫

I2 Cθ(u, v)dudv = 1
4 +

θ
36 . The Spearman’s Rho is then ρθ =

θ
3 .
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• Let Cα,β the copula of Marshall Olkin, of parameters 0 < α and β < 1
defined by:

Cα,β(u, v) =
{

u1−αv, uα ≥ vβ

uv1−β, uα ≤ vβ ,

then ∫ ∫
I2

Cα,β(u, v)dudv =
1
2

(
α + β

2α− αβ + 2β

)
,

the Spearman’s Rho is ρα,β = 3αβ
2α−αβ+2β .

3.2 Dependence measure

Definition 3.2.1 A numerical measure of association δ (we note it δX,Y) between two continuous
random variables X, Y whose copula is C is said to be a dependency measure if
and only if it satisfies the following properties:

1. δX,Y is defined for each couple (X, Y) of continuous random vari-
ables.

2. 0 ≤ δX,Y ≤ 1.

3. δX,Y = δY,X.

4. δX,Y = 0 if and only if X and Y are independent.

5. δX,Y = 1 if and only if each of X and Y is a strictly monotonic func-
tion of the other almost certainly.

6. If α(X) and β(Y) are almost certainly strictly monotonic functions,
so δα(X),β(Y) = δX,Y.

7. If (Xn, Yn) is a sequence of continuous random variables, where the
copula {Cn} converges pointwise to C, then limn→∞ δXn,Yn = δX,Y.

Example 9 (Schweizer and Wolffs σ measure) Sperman’s Rho of two continuous random vari-
ables X and Y is defined by ρX,Y = 12

∫ ∫
I2(C(u, v)− uv)dudv. This integral

represents the volume between the copula C and the copula produced Π. If we
change the difference (C(u, v)− uv) by |C(u, v)− uv|, then we get a measure-
ment based on the distance L1 between the graph of C and Π, this distance repre-
sents the measurement σ of Schweizer and Wolffs, and it is defined by:

σC = σX,Y = 12
∫ ∫

I2
|C(u, v)− uv| dudv. (3.2.1)

Theorem 3.2.1 Let a continuous random variables X and Y and a copula C. The quantity σC
defined in (3.2.1) is a dependency measure. Schweizer and Wolffs (1981)[81],
assures that any distances between surfaces z = C(u, v) and z = uv represent a
non-parametric measure of dependence.

So ∀ 1 ≤ p < ∞, the distances Lp between C and Π is defined by:

Lp =

(
kp

∫ ∫
I2
|C(u, v)− uv|p dudv

) 1
p

, (3.2.2)

43



Chapter 3. Copula and dependence

such that kp is a constant. From the quantity (3.2.2) we can define the
following dependency measures:

• The measure ΦX,Y

If p = 2, then ΦX,Y = ΦC =

(
90
∫ ∫

I2
|C(u, v)− uv|2 dudv

) 1
2

(3.2.3)

Φ2
X,Y represents the dependence index between the variables X and Y.

• The measure ΛX,Y

For p = ∞, ΛX,Y = ΛC = 4 sup
u,v∈I
|C(u, v)− uv| (3.2.4)

Remark 3.2.1 After the definitions of dependency measures σC, ΦC and ΛC the latter are found
to be based on Spearman’s Rho coefficient. There are other measures of dependence
based on another coefficient such as the Gini coefficient (see Nelsen, 2006, p.211).

3.2.1 Tail dependency

Tail dependency is a local measure because it measures the dependence at
the level of the distribution tails. There are two tail dependency coefficients
defined as follows:

Definition 3.2.2 Let X and Y two continuous random variables have respectively a distribution
functions F1 and F2. The lower tail dependence coefficient λL of X and Y is defined
as:

λL(X, Y) = lim
α→0+

P
(

X ≤ F−1(α)/Y ≤ G−1(α)
)

. (3.2.5)

The upper tail dependence coefficient λu is by the way defined as:

λU(X, Y) = lim
α→1−

P
(

X > F−1(α)/Y > G−1(α)
)

. (3.2.6)

We can define these measures according to a copula C.

Definition 3.2.3 Let X and Y two continuous random variables of copula C, then we have

λL(X, Y) = lim
u→0+

C(u, u)
u

, (3.2.7)

• When λL ∈]0, 1], then C has a lower tail dependency.

• When λL = 0, then C has no lower tail dependency.

λU(X, Y) = lim
u→1−

1− 2u + C(u, u)
1− u

• When λU ∈]0, 1] then C has a upper tail dependency.

• When λL = 0 then C has no upper tail dependency.

We now present some copulas with the dependency coefficients of tails, if
they exist in the following table:
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Copula C(u, v) λL λU

Clayton 2−
1
α 0

Archimedean Cα(u, v) Gumbel 0 2− 2
1
α

Frank 0 0
Cρ(u, v) Gaussian 0 0
Cα,β(u, v) Marchall-Olkin 0 min(α, β)

Table 3.2 – Tail dependency coefficients of some copulas.

Remark 3.2.2 • The Clayton’s copula has a lower tail dependency, but Gumbel’s copula has
an upper tail dependency.

• The Gaussian copula has no tail dependency, except for ρ = 1, such that

λL = λU =

{
0 if ρ < 1
1 if ρ = 1

• Frank’s copula has no neither inferior nor superior tail dependency such as
the Gaussian copula.
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Surviving data analysis is a discipline of statistics concerned with the
modeling of "lifetimes." It is generally the time elapsed between an

origin date and an occurrence date events that generally correspond to
the onset of illness, death, relapse, etc. The probability that an individual
is alive or unscathed beyond time t is given by the survival function. When
several events are involved simultaneously, we speak of multivariate sur-
vival.

The survival time and its aspects are presented in this chapter, as well
as the established results. By the way, the notion of survival analysis is
introduced.
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4.1 Survival time notion

The term "Survival time" called also the lifetimes refers to the time elapsed
until a certain event occurs. Is the time elapsed between an origin date t0
and the occurrence date t of the event. This can represent an illness, a
relapse, a cure, a machine breakdown, a claim, and so on. We evaluate the
distribution of the variable of interest in survival analysis, which is an area
of statistics concerned with the modeling of a lifetime. When the variable
of interest T is continuous, one of the five identical functions can be used
to define or describe this distribution:

- the distribution function F,
- the survival function S,
- the density function f ,
- the instantaneous hazard function λ,
- the cumulative hazard function Λ.

In survival analysis, the value of mean survival and median survival
may also be of relevance. In survival time theory these functions can be
defined in terms of survival time as a sequence:

• The distribution function

The survival variable has a distribution function as any other con-
tinuous random variable. This distribution function, is at time t, the
probability that the event takes place before the date t.

• The survival function

For a fixed time t, is the probability that the event occurs after t, or
the probability that an individual will live beyond a date t.

• The density function

Is the probability of the event occurring within a small period of
time after instant t. It is defined by:

f (t) = lim
∆t→0

P (t ≤ T < t + ∆t)

∆t

• The instantaneous hazard function

In the modeling of the survival function, a fundamental concept is
that of the hazard function or risk function λ(t) for a fixed instant
t. It is the probability of the event occurring in a small time interval
after t, conditional on the fact that it does not take place until t. Is
defined by:

λ(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)
∆t

(4.1.1)

• The cumulative hazard function

The cumulative hazard function (Andersen, Borgan, Gill et Keiding
(1993)) [3], or integrated hazar function (Hougaard [1999]) [48], often
noted Λ(t) is the integral of the instantaneous risk and is given by:

Λ (t) =
t∫

0

h (x) dx (4.1.2)
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In the coming chapters, we will explore these definitions in consider-
able detail.

4.2 Incomplete data

One of the criteria of survival data is the existence of incomplete observa-
tions. Because of the censoring and truncation processes data is frequently
collected in partially. Censored or truncated data results from not having
access to all the information. Instead of observing independent and iden-
tically distributed realizations of duration Y, we observe the realization
of the variable Y subject to various disturbances, whether or not indepen-
dent of the event studied. Censoring and truncation procedures can both
be present simultaneously.

4.2.1 Truncated notion

The truncation prevents entirely the observation of the variable Y (in most
cases, the extreme values), and leads to a loss of information (only a sub-
sample). It is said that there is:

• Left truncation

When Y is only observable if it is greater than one fixed or ran-
dom positive C threshold. This is a pattern that first appeared in as-
tronomy, where samples are composed of astral objects of a certain
zoned. The absolute and apparent luminosities of an astral object are
respectively defined as its brightness observed at a fixed distance
and from then the earth and we only observe objects that are suffi-
ciently shiny, that is to say those for where the luminosity M ≥ m, m
being the truncation variable. In this case, we have N objects in the
sample, but we are unable to observe that the n sufficiently shiny
objects.

• Right trancattion

When Y is only visible, if it is smaller than C.

• Interval truncation

when Y is truncated on the right and on the left. This type of trun-
cation is encountered when studying patients in a registry: patients
diagnosed before setting up the registry or listed after consultation
of the registry will not be included in the study. Lyndell-Bell [21],
proposed a non-parametric estimate of the distribution function of
Y within the framework of the truncation model and the asymptotic
properties: the strong law and asymptotic normality were studied by
Woodroofe [66].
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4.2.2 Censoring notion

In reality, having a sample with complete data is sometimes not avail-
able. Censorship is one of the most frequent phenomena at the origin of
incomplete data in statistics. A data is said to be "censored" if the exact
value is unknown, but only an estimate, lower or higher, that is to say
rough information of the type T ≥ C or T ≤ C. Such information is very
poor, poorer than saying "T is between a and b ", since only one of the
two bounds is known. In the analysis of survival times, censoring occurs
when the survival T is only known for some of the individuals "the data
for which survival is unknown are said censored". The variable of interest
T is not observed and it is limited superially or inferiorly by a variable (of
censoring, generally noted C) which has been observed.

Given that in biostatistics and epidemiology, the main focus of the
studies is the explanation for the occurrence of an event of interest (death,
rejection of a transplant, end of study, withdrawal from study, loss of
follow-up, etc), all available information must be analyzed. However, due
to the fact that the phenomenon of censoring is in itself a special case in-
completeness of the data, observational studies only very rarely present
complete data when within a framework of survival analysis. Thus, it is
necessary, for the clinician be quick to use statistical methods that take
into account the censored data.

In addition, censoring can be informative or non-informative: in the
event of censoring informative, there is a dependence between the survival
time and the censoring time. We take the example of a patient lost to
follow-up: his voluntary withdrawal may, for example, result from the
fact that the patient is near death or decides to stop treatment to die in a
certain time dignity, its censoring is then dependent on the time of death.
For an individual i, we consider:

• its survival time Ti.

• its censoring time Ci.

• the time actually observed Xi.

1. Right-censoring

The variable of interest is said to be right-censoring if the individual
concerned have no information on his last sighting. In this model
of censoring, we observe the couple (Z; δ), where Z is the observed
duration and δ is a binary variable which presenting the nature of
this duration and takes the value 1 if the variable is observed and
0 if it is censoring. This model is the most common in practice, it is
for example adapted to the case where the event of interest is the
survival time to a disease and where the end date of the study is
previously fixed; patients alive at the end of the study provide right-
censored data. Censoring is not necessarily fixed, it can be random,
this is the case for example of an individual lost to follow-up or died
in an accident in study course. Or is when the event considered is
the death of a sick patient and the duration of observation is a total
duration of hospitalization. Or in a therapeutic trial, this censoring
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can be caused by loss of sight. The censoring variable C in this case
represents the date on which an individual leaves the study for a
cause other than death.

2. Left-censoring

The survival time is said to be left-censoring when the individual
has already undergone the event before to be observed. In this case
we do not know the survival time but we only know that it is less
than a certain known date. A well-known example of this type of
censoring looks at the time when baboons come down from trees to
eat. The event of interest (descent from the tree) is observed for ba-
boons who descended after the arrival of observers and is censored
for those who went down before arrival observers. We find also this
kind of phenomenon in reliability studies when the failure of an elec-
tronic device or component do not allow to continue observation for
another device or component.

3. Interval censoring

A date is interval-censored if instead of observing the time of the
event, the only information available is that it occurred between two
known dates. We find this model usually in follow-up studies where
patients are monitored periodically. For example, in the case of co-
hort follow-up, people are often followed intermittently (not contin-
uously), then we only know that the event has occurred produced
between these two observation times.

4. Double (or mixed) censoring

If data is censored on both on the right and left sides, it is said to be
mixed censored. There are several non-parametric models that deal
with this kind of data. For example, the models Morales et al.[65],
Patilea and Rolin (2006)[75], and Turnbull (1974)[88], which is the
most used, and several works are based on this model.

These four categories described above can arise according to the mode
or mechanism of censoring. Thus, in the literature we find the following
types:

• Censoring of type I (fixed)

The observer fixed a value (for example a non-random end of experi-
ment date). If we choose the right-censoring, despite of looking at the
variables T1, T2, ..., Tn which interest us, we observe Ti when it is less
than a fixed duration C. Otherwise we only know that Ti is greater
than C. Then, we observe a variable Zi = min (Ti, C) , i = 1, ..., n. For
example, in the industrial domain, when observing the survival time
of an electronic component during a time interval of [0; C].

• Censoring of type II (waiting, until the kth dies)

We observe the life durations of n patients until k of them have
died and we stop at this moment. If we order the variables
T1, T2, ...Tk, ..., Tn, we get the order statistics T(1), T(2), ...T(k), ..., T(n).
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The date of censoring is then Trk and only the first k times are ob-
served. In this case, we are talking about type II of censoring. For
example, to test the reliability of a complex system we put n systems
of the same type into working order and we stop when the kth failure
is observed.

• Censoring of type III (randomly)

Censoring is generally not controlled and is also a random variable.
Thus, for each individual i = 1, 2, ..., n is associated a couple of ran-
dom variable durations (Ti, Ci), we have what is actually observed
Xi is an indicator which is equal to 1 if the event is observed and 0 if
it is censored. In a therapeutic trial for example, this censoring can
be caused by loss of sight, death, etc. In other words, let T1, T2, ..., Tn
a sample of a positive random variable T, we say that there is a ran-
dom censoring of this sample if there is another positive random
variable C of a sample C1, C2, ..., Cn, where in this case instead of
observing the Ti, we observe a couple of variables (Zi, δi) , where

Zi = min (Ti, Ci) and δi = ITi≤Ci for i = 1, 2, ..., n.

and δi = ITi≤Ci represents the indicator function of censored data,
which specifies if our variable of interest is observed or not. For ex-
ample in the right-censoring, we only observe the variable
Zi = min (Ti, Ci) , if Ti < Ci in this case δi = 1 and the duration of
interest is observed (Zi = Ti).
Otherwise, if Ti ≥ Ci the variable in this case is censored (Zi = Ci)
and the indicator equal to δi = 0, i.e. we observe incomplete
durations.
By the way, we say there is a random left-censoring instead of ob-
servation T1, T2, ..., Tn we observe the copule Zi = max (Ti, Ci) where
δi = ITi≥Ci for i = 1, 2, ..., n.

In this thesis, we only interested by the case of right-censoring of the
random type. The following are the primary estimators that play a signif-
icant role in the censored data framework.

4.3 Semi-parametric estimation for Copula models

4.3.1 Maximum Likelihood Estimation (MLE)

Assuming a multivariate parametric copula Cθ , where θ = (θ1, ..., θd) ∈ Θ
be the vector of copula parameters and β be the vector of marginal param-
eters. Given the relatively simple functional form the self-selection like-
lihood function under an Archimedean copula, MLE can be employed
to jointly estimate all parameters of the unknown parameters vector
(β1, ..., βd, θ) at the same time. Assume that we observe d-independent
realizations (Xi1, . . . , Xip), i = 1, . . . , d, specified by p-margins with cumu-
lative distribution function (CDF) Fi. However, the density of F is given
by:

f (x1, ..., xd; θ) = cθ

[(
F1,β1(x1), ..., Fd,βd(xd)

)
; θ
] d

∏
i=1

fi,βi(xi) (4.3.1)
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That is associated with a sample (Xi1, . . . , Xip)i=1,...,d, where cθ is a den-
sity of a parametric copula Cθ and fi,βi is a density of Fi,βi . A parametric
and a semi-parametric approaches both presented seek to maximize a like-
lihood approximation based on (4.3.1). Consequently, the parameter vector
to be estimated in the parametric approach is α = (β, θ) and by maximiz-
ing the log-likelihood function L(β1, ..., βd; θ) defined by:

L(β1, ..., βd; θ) =
n

∑
i=1

log f (x1, ..., xd; θ) (4.3.2)

L(β1, ..., βd; θ) =
n

∑
i=1

log cθ

(
(F1,β1(x1), ..., Fd,βd(xd); θ)

d

∏
j=1

f j,β j(xj)

)

=
n

∑
i=1

log cθ((F1,β1(x1), ..., Fd,βd(xd); θ) +
n

∑
i=1

d

∑
j=1

log
d

∏
j=1

f j,β j(xij),

then the estimator of θ, noted θ̂MV
n is

θ̂MLE = arg max L(β1, ..., βd; θ)

See Lehmann and Casella [56], for more details. This estimator is con-
sistent and satisfies the asymptotic normality property:

√
n
(
θ̂MLE − θ

)
→ N(0, I−1(θ)),

such that I(θ) is the Fisher information matrix. This matrix is estimated
by the inverse of the Hessian matrix of the likelihood function.

4.3.2 Margin Inference Function Method (IFM)

This method was introduced by Joe [49], in a general framework. He called
the inference function method for margins (IFM) because estimation func-
tions relate to likelihood functions (univariate or multivariate). The IFM
was used primarily for multivariate models in which a multi-parameter
numerical optimization for maximum likelihood estimation is unattain-
able or takes a too long time if we talk about a time-consuming viewpoint.
Therefore, the estimation by the IFM method can be decreased the compu-
tational load potentially associated with the estimation of the maximum
likelihood. Hence, this method proceeds in two stages:

• Stage 1: Estimate the margins parameters firstly.

• Stage 2: fix the marginal parameters obtained in the first stage, and
then estimate the copula parameters.

See Joe [42], [49]. By analogy, for j = 1, ..., d the unknown margins
parameter vectors (β1, ..., βd) are first estimated by:

βn,j = arg sup

(
n

∑
i=1

log f j,β j

(
Xij
))

, where β j ∈ Rpj
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By the way in the second stage, estimating the vector of the unknown
copula parameter θ is performed by:

θ̂IFM = arg sup
n

∑
i=1

log cθ((F1,β1(x1), ..., Fd,βd(xd); θ),

where θ ∈ Θ. The main advantage of this approach is that this method
(IFM) is done in two stages. Wherever, under the MLE estimate, when
models are usually multivariate, the number of parameters increases, and
the numerical optimization becomes more complicated. Also, for some
models multi-dimensional numerical integration is needed and this be-
comes increasing difficult for the theoretical properties of the IFM method
(see [42]).

Again, the estimator θ satisfies the asymptotic normality property as
Joe [49], has been shown:

√
n
(
θ̂IFM − θ

)
→ N(0, V−1(θ)),

where V(θ) is the Godambe information matrix, defined by:

V(θ) = D−1M
(

D−1
)t

,

where

D = E
[

∂

∂θ
(g(θ)t)

]
, M = E

[
g(θ)tg(θ)

]
and g(θ) =

(
∂

∂γ1
L1, ...,

∂

∂γd
Ld

)

4.3.3 The Pseudo-maximum likelihood method (PML)

The Pseudo-maximum likelihood method (PML), was proposed in the
case where the margins F1, ..., Fd associated with X1, ..., Xd are unknown,
she does in two stages:

• We replace the margins F1, ..., Fd by their natural estimates (empirical
estimator), they are defined by:

F̂j,n(xij) =
1
n

n

∑
i=1

1
(
Xij ≤ x

)
• By maximizing the pseudo log-likelihood to estimate θ, such that:

L(θ) =
n

∑
i=1

ln cθ

{
F̂1,n(xi1), F̂2,n(xi2), ..., F̂d,n(xid)

}
,

then the estimator θ̂PML is θ̂PML = arg sup L (θ).

4.3.4 Moments Estimation method based on Kendall’s Tau and Spear-
man’s Rho

The estimation methods based on the correlation coefficients of Spear-
man’s rho or Kendall’s tau rank are called tau-inversion methods (re-
spectively, rho-inversion) or concordance method (mentioned in part one).

53



Chapter 4. Survival Analysis and Copulas

Take advantage of the relationship between these coefficients of depen-
dency and the parameter of the copula θ. Early references on the former
in a copula setting are among others Oakes [70], Genest [34], Genest and
Rivest [33]. This method consists of estimating the parameters sought us-
ing some measure of association such as Kendall’s rate and Spearman’s
rho, where there is a relationship between these measures and the copula
dependency parameter. Let (X, Y) a couple of random variables whose
copula is Cθ , of parameter θ, such that θ ∈ Θ ⊂ R.

• Moment Estimator Based on Kendall’s Tau

Assuming that there is a relationship between the Kendall’s Tau and
the parameter θ. This relation is defined by:

τX,Y = g(θ), (4.3.3)

where g is a continuous and differentiable function. Then, an estima-
tor θ̂TK

n of θ is defined by: θ̂TK
n = g−1(τn), such that τn is the empirical

estimator of τ.

This estimator is asymptotically normal
√

n(θ̂KT − θ)→ N(0, σ̂2
τ),

such that σ̂2
τ is the empirical variance of σ2

τ

σ̂2
τ = (4Sg̀(τn))

2,

where 

S2 = 1
n

n
∑

i=1

(
Wi + W̃i − 2W̄

)2

Wi =
1
n

n
∑

j=1
1
(
Xj ≤ Xi, Yj ≤ Yi

)
W̃i =

1
n

n
∑

j=1
1
(
Xi ≤ Xj, Yi ≤ Yj

)
• Moment Estimator Based on Spearman’s Rho

Similarly, if we assume that Spearman’s Rho is defined as a function
of θ by the following relation:

ρ = h(θ),

where h is a continuous and differentiable function. Then the esti-
mator θ̂n of θ is defined by:

θ = h−1(ρn),

such that, ρn is the empirical estimator of ρ. This estimator is asymp-
totically normal

√
n(θ̂RS − θ)→ N(0, (σnh−1(ρn))

2),

such that σ2
n is the estimator of σ2

σ2
n = 144(−9A2

n + Bn + 2Cn + 2Dn + 2εn),
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where

An =
1
n

n

∑
i=1

Ri

n + 1
Si

n + 1

Bn =
1
n

n

∑
i=1

(
Ri

n + 1

)2 ( Si

n + 1

)2

Cn =
1
n3

n

∑
i=1

n

∑
j=1

n

∑
k=1

Ri

n + 1
Si

n + 1
1(Rk ≤ Ri, Sk ≤ Sj) +

1
4
− An

Dn =
1
n2

n

∑
i=1

n

∑
j=1

Si

n + 1
Sj

n + 1
max

(
Ri

n + 1
,

Rj

n + 1

)
and

εn =
1
n2

n

∑
i=1

n

∑
j=1

Ri

n + 1
Rj

n + 1
max

(
Si

n + 1
,

Sj

n + 1

)

These all methods have been used extensively by many authors, their
importance discussed in the introductory part. In this thesis, we are inter-
ested by the last one due to its simple mathematical form, where the data
is right-censored.

4.4 Non-parametric estimation for right-censoring

model

4.4.1 Kaplan-Meier Estimator

In the case of right-censoring, the empirical survival function of the vari-
able T is no longer valid because since it involves unobserved quantities.
In particular, estimating the distribution of a duration censored by the
empirical distribution function was impossible. In order to estimate the
T distribution, it was necessary to construct a survival function estimator
in the presence of censored data. The non-parametric estimation problem
of a right-censored random variable distribution function, was originally
considered by Kaplan and Meier (1958) [51]. They provide a good estima-
tor of the survival function ST(t) = 1− FT(t), having the following form:

ŜT
n (t) = ∏

j/Z′j≤t

1−
M
(

Z′j
)

C
(

Z′j
)
 (4.4.1)

where

•
(

Z′j
)

1≤j≤M
(M ≤ n) are the distinct values of Zi = min (Ti, Ci) ar-

ranged in ascending order.

• M
(

Z′j
)
=

n
∑

i=1
δi I{Zi=Z′j

} is the exact number of deaths at the moment

Z′j.

• C
(

Z′j
)
=

n
∑

i=1
I{

Zi≥Z′j
} is the number of individuals at risk just before

the moment Z′j.
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The Kaplan-Meier estimator is also called the Boundary Product. It’s a
function in the staircase (whose value changes only at times corresponding
to events observed), decreasing, continuing to the right. Noted that when
there is no censoring, the Kaplan-Meier estimator reduces to the empir-
ical survival function Sn(t). It coincides with the empirical distribution
function Fn when there is no censored data.

The asymptotic behavior of this estimator has aroused the interest of
many authors. For independent random variables, Breslow and Crowley
(1974) [8], were the first to deal with its convergence and asymptotic nor-
mality. By imposing the continuity of the distribution function of the in-
terest variable and that of the censoring variable, Foldes and Rejto (1981b)
[24], find a uniform convergence rate almost complete for ŜT

n of the order√
ln(n)

n , the latter also introduced the law of iterated logarithm for the
Kaplan-Meier estimator during the same year of 1981 (See Foldes and Rejt
(1981a) [23]). Stute and Wang (1993) [85], in turn deal with its uniform
convergence almost sure. The functional law of the iterated logarithm for
right-censored data or truncated is deduced by Gu and Lai (1990) [41].

Under the strong dependence hypothesis of the variables of interest
Cai (1998) [9] showed the consistency of this estimator, by specifying its
speed of convergence. In his 2001 article (See Cai (2001) [10]), he gen-
eralizes the result of Cai and Roussas (1992) [11], to the Kaplan-Meier
estimator, namely, the distribution of the iterated logarithm, under certain
regularity and strong mixing conditions.

4.4.2 Kernel density estimator

Assume that the right-censored positive random variable T has a density
of probability fT. Foldes et al. (1981), proposed an extension to the estima-
tor of Rosenblatt (1956) [76], and Parzen (1962) [74], which is expressed as
follows:

f̂ T
n (t) =

1
hn

∫
K
(

t− z
hn

)
dF̂T

n (z),

where F̂T
n = 1− ŜT

n is the Kaplan-Meier estimator given by (4.4.1). In
the same work of Foldes et al. (1981) [25], they proved its almost com-
plete convergence. By the way, its asymptotic normality is established by
Mielniczuk (1986) [64], and improved in Diehl and Stute (1988) [20]. Sub-
sequently, Kagba (2004) [50], has given its convergence in quadratic mean.
In the case of dependent data, only a few publications deal for the density
function estimator. We can cite the work of Cai (1998) [9], who proposed
an almost sure rate of convergence for stationary processes and α-mixers.
Later, Liebscher (2002) [57], improved this result.

4.5 Non-parametric estimation for mixed censoring

model

A new class of estimators is to be presented when the observations Ti
are subjected to a censoring mechanism, this model is carried on the non-
parametric estimate and discussed by Patilea and Rolin (2006) [75].
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4.5.1 The Patilea and Rolin Estimator

Assuming that we have observed a sample (Zi; δi)1≤i≤n of the pair (Z; δ)
where Z = (T ∧ C) ∨ L = max (X, L) , for X = (T ∧ C) and T, L, C are
positive and independent random variables representing respectively the
variable of interest, the left-censored variable, and the right-censored vari-
able.

Let H be the distribution function of Z and H(0) its sub-distribution
for uncensored observations having the following expressions:

H(t) = P (Z ≤ t) = FL (t) FX (t) = FC (t) (1− ST (t) SC (t)) ,

and

H(0)(t) = P (Z ≤ t, δ = 0) =
∫ t

0
FL (x) SC (x) dFT (x)

As well as their empirical versions are given respectively by:

Hn(t) =
1
n

n

∑
i=1

I{Zi≤t},

and

H(0)
n (t) =

1
n

n

∑
i=1

I{Zi≤t,δi=0} =
1
n

n

∑
i=1

I{Zi≤t, Ti−Ci≤0, Li−Ti≤0}

We noted Z′j (1 ≤ j ≤ M) the distinct values of Zi arranged in increas-
ing order and for k ∈ {0, 1, 2} :

Dkj =
n

∑
i=1

I{
Zi=Z′j ,δi=k

}

The non-parametric estimator, denoted by S̃n, of ST, is the bounded
product estimator given by Patilea and Rolin (2006) by the form:

S̃n (t) = 1− F̃n (t)

= ∏
j/Z′j≤t

1−
D0j

nF̊n

(
Z′j−1

)
− nHn

(
Z′j−1

)


where F̊n is the Kaplan-Meier estimator of the distribution function FL,
defined by inverting time as:

F̊n (t) = ∏
j/Z′j≤t

1−
D2j

nHn

(
Z′j
)


The almost sure uniform convergence of the Patilea-Rolin estimator is
proved in this same article.
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In this chapter, we have introduce a new copula estimator for censored
bivariate data based on the classical estimation method of moments,

presented in a semi-parametric estimation framework. This chapter is di-
vided into two parts the first focuses on the estimation of this new es-
timator when the data are doubly right-censoring, i.e. the two variables
are right-censored at the same time. In the second part, we present this
estimator and all results obtained by part one, in the case of singly right-
censoring.
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A semi-parametric estimation of copula models

based on moments methods under

right-censoring
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Abstract

Based on the classical estimation method of moments, a new copula
estimator was proposed for censored bivariate data. As theoretical results,
general formulas were proved with analytical forms of the obtained esti-
mators. Taking into account Lopez and Saint-Pierre’s(2012) [72], Gribkova
and Lopez’s (2015) [39], results, the asymptotic normality of the empir-
ical survival copula was established. The dependence structure between
the bivariate survival times were modeled under the assumption that the
underlying copula is Archimedean. Accounting for various censoring pat-
terns (singly or doubly censored), a simulation study was performed to
enlighten the behavior of the procedure estimation method shows the ef-
ficiency and robustness of the new estimator proposed.

Keywords: Archimedean copulas models, Bivariate censoring, Mo-
ment estimator, Survival copula, Right censored data.

Résumé

Sur la base de la méthode classique d’estimation des moments, un
nouvel estimateur de copule a été proposé pour les données bivariées
censurées. Comme résultats théoriques, des formules générales ont été
prouvées avec des formes analytiques des estimateurs obtenus. En ten-
ant compte des résultats de Lopez et Saint-Pierre (2012) [72], Gribkova
et Lopez (2015) [39], la normalité asymptotique de la copule empirique
de survie a été établie. La structure de dépendance entre les temps de
survie bivariés a été modélisée en supposant que la copule sous-jacente
est d’Archimède. Prise en compte de divers modèle de censure (unique-
ment ou doublement censurés), une étude de simulation a été réalisée
pour éclairer le comportement de la méthode d’estimation de la procé-
dure, a montré l’efficacité et la robustesse du nouvel estimateur proposé.

Mots clés : Modèles de copules archimédiennes, Censure bivariée, Es-
timateur des moments, Copule de survie, Données censurées à droite.

AMS Subject Classification: 62G05, 62G20.
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5.1 Introduction

The modeling of bivariate or multivariate data in survival analysis has
been discussed by several authors. Many approaches have been intro-
duced for this modelisation, including Archimedean copula models, even
their application (see [4], [16], [46], [47], [62], [85], [95]). Archimedean
copula models arise naturally from bivariate frailty models ([71], [69]) in
which the two failure times have given an unobserved frailty W and each
follows the proportional hazards model in W. However, in this aspect, an
Archimedean copula is presented by:

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)),

where, ϕ is a continuous, convex and decreasing function called the gen-
erator of C, defined on I = [0, 1] → [0, ∞] and verifies ϕ(1) = 0. In
the context of multivariate survival analysis, assume that T1 and T2 are
two failure times conditionally independent, represented thereafter by the
Archimedean copula C with the cumulative distribution function (CDF):

F(t1, t2) = P(T1 ≤ t1, T2 ≤ t2),

which can be identified according to a copula function as:

F(t1, t2) = C(F1(t1), F2(t2)),

where C is the associated copula function and F1, F2 are the margins. We
noted the survival functions of T1 and T2 by S1(t1) = P(T1 > t1) and
S2(t2) = P(T2 > t2) respectively and the joint survival function by:

S(t1, t2) = P(T1 > t1, T2 > t2).

A natural question is the following: Is there a relationship between uni-
variate and joint survival functions !! The answer is like the following by
using the copula function:

S(t1, t2) = 1− F1(t1)− F2(t2) + F(t1, t2),
= S1(t1) + S2(t2)− 1 + C(1− S1(t1), 1− S2(t2))

Besides, the function C̃ which couples S1 and S2 via

S(t1, t2) = C̃(S1(t1), S2(t2)),

called the survival copula of (T1, T2). Then, if we define C̃ from I2 → I we
obtain:

C̃(u, v) = u + v− 1 + C(1− u, 1− v), (5.1.1)

where (u, v) ∈ I2, see Nelsen (2006) [67]. Although this latter, can also be
generated by an Archimedean copula (see [33], [32]) in the manner of the
following:

S(t1, t2) = ϕ−1(ϕ(S1(t1)) + ϕ(S2(t2))),
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Hence, it was demonstrated by Genest and Rivest (1993) [33] that if
(T1, T2) follows an Archimedean copula with the marginal survival func-
tions S1(t1) and S2(t2), then

U =
ϕ (S1 (T1))

ϕ (S1 (T1)) + ϕ (S2 (T2))
,

and
V = C̃(S1 (T1) , S2 (T2)) = ϕ−1 (ϕ (S1 (T1)) + ϕ (S2 (T2))) ,

are random variables distributed independently, where U distributed uni-
formity on I and V follows a so-called Kendall distribution with the den-
sity function:

kC (t) =
ϕ (t) ϕ′′ (t)
(ϕ′ (t))2 ,

defined on (0, 1], as a function of t depends on the unknown parameter
θ. Assume that the two failure times T1 and T2 can be modeled by an
Archimedean copula model and it is subject to dependence or indepen-
dence right-censoring with the censoring vector (C1, C2), we also assume
that the vector (C1, C2) follows an arbitrary bivariate continuous distribu-
tion. Therefore, if we denote δi = 1{Ti≤Ci}i=1,2

which represents the indi-
cator function of censored data, that specifies if our variable of interest is
observed or not. Then, we only observe the variable Zi = min(Ti, Ci) if
Ti ≤ Ci when δi = 1, otherwise, if Ti ≥ Ci the variable, in this case, is cen-
sored and the indicator δi equal to zero δi = 0. In this paper, we are inter-
ested by type one of censoring, where two models are presented, the first
is for doubly censored variables (T1 and T2 both are right-censored) and
the second for a singly censored when only T1 (or T2) is right-censored.

The issues of estimating copula parameters in literature are usually
solved by maximum likelihood methods ([5], [27]). For example, if we
consider the IFM method Joe (2005) presented a two-stage procedure to
estimate a copula, by maximizing the copula likelihood function. Even
so, this maximization generally becomes very difficult to achieve when
the dimension is large and the parameter numbers are also higher. For
this reason, our main aim in this paper is to propose an alternative es-
timation method of a survival copula C̃, based on the moments method
due to its simple mathematical form, given (T1, T2) as singly or doubly
right-censored. General formulas were established when the considered
variable C̃ defined under certain conditions.

The remainder of the paper is structured as follows: in section 2,
our main theorems and corollary are presented where general forms of
the survival copula estimator are established. As well as, the asymptotic
normality of this estimator to be verified, by considering two types of
right-censored models. However, in section 3 a semi-parametric estima-
tion based on the classical moments method illustrated for a conditional
distribution on C̃, followed by an application presented for the Gumbel
model. A simulation study evaluates the performance of our estimator
presented in Section 4. Our paper ends with some discussions in Section
5.
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5.2 Main results

Interesting results to be proven, related by a semi-parametric estimation
based on kth-moments of a variable V = C̃ (u, v) conditionally distributed
given T1 and T2 as singly or doubly censored. Moreover, the following
theorems and corollary illustrate our main results.

Theorem 5.2.1 (Wang and Oakes 2008) Let (T1, T2) be a random pair whose distribution can be
modeled by an Archimedean copula. Assuming that (T1, T2) is subject to depen-
dent or independent right censoring by a censoring vector (C1, C2) that follows
an arbitrary bivariate continuous distribution, then we have:

1. The distribution function of (V| T1 > C1 = c1, T2 > C2 = c2) is

F1(v, c1, c2) =
1

C̃ (c1, c2)

{
v−

ϕ(v)− ϕ
(
C̃ (c1, c2)

)
ϕ′(v)

}
, 0 ≤ v ≤ C̃ (c1, c2)

2. The distribution function of (V| T1 > C1 = c1, T2 = t2) is

F2(v, c1, t2) =
ϕ′
(
C̃ (c1, t2)

)
ϕ′ (v)

, 0 ≤ v ≤ C̃ (c1, t2)

3. The distribution function of (V| T1 = t1, T2 > C2 = c2) is

F3(v, t1, c2) =
ϕ′
(
C̃ (t1, c2)

)
ϕ′ (v)

, 0 ≤ v ≤ C̃ (t1, c2)

Proof. See Wang and Oakes (2008) [95].

Based on Theorem (5.2.1), we can show the extremely important results
illustrated in Corollary (5.2.1).

Corollary 5.2.1 (IDIOU, N. et al 2021) Under the same conditions given in Theorem (5.2.1), we
have:

1. The kth moments of (V| T1 > c1, T2 > c2) for k ≥ 1 is

E(Vk
∣∣∣ T1 > c1, T2 > c2) =

(
C̃ (c1, c2)

)k

k + 1

− k
(
C̃ (c1, c2)

)k−1
ϕ
(
C̃ (c1, c2)

) ∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, c2)

)dv

+ k
(
C̃ (c1, c2)

)k−1
∫ 1

0

vk−1ϕ
(
vC̃ (c1, c2)

)
ϕ′
(
vC̃ (c1, c2)

) dv.

2. The kth moments of (V| T1 > c1, T2 = t2) for k ≥ 1 is

E(Vk
∣∣∣ T1 > c1, T2 = t2) =

(
C̃ (c1, t2)

)k

− k
(
C̃ (c1, t2)

)k
ϕ′
(
C̃ (c1, t2)

) ∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, t2)

)dv.
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3. The kth moments of (V| T1 = t1, T2 > c2) for k ≥ 1 is

E(Vk
∣∣∣ T1 = t1, T2 > c2) =

(
C̃ (t1, c2)

)k

− k
(
C̃ (t1, c2)

)k
ϕ′
(
C̃ (t1, c2)

) ∫ 1

0

vk−1

ϕ′
(
vC̃ (t1, c2)

)dv.

Survival empirical copula for doubly right-
censoring

Initially, let us clarify that from now, we are only interested by the
first model presented in corollary (5.2.1), where the two variables both
are doubly censored (T1 and T2 both). Given the accessible observation
(Z1i, Z2i, δ1i, δ2i)1≤i≤n : the independent copies of a non-negative random
variable of the vector (Z1, Z2, δ1, δ2) and the survival copula C̃. Assuming
that C̃ is known and the following assumptions:

• [H1] The first and the second partial derivatives of C̃ are limited on
I2, where C̃(u, v) is different to zero for u 6= 0 and v 6= 0.

• [H2] ∃ (α, β) ∈ I2, where C̃(u, v) ≥ uαvβ.

• [H3] The integral
∫ dF(t1,t2)

C̃(S1(t1),S2(t2))
, is strictly less than infinity. For θ >

0, where Fi(t) =
∫ t

0
dFi(v)

Si(u)
2STi (u)

, i ∈ {1, 2} we have

∫
{

S1−α
1 (t1)F

1
2+θ

1 (t1)

Sβ
2 (t2)

+
S1−β

2 (t2)F
1

2+θ

2 (t2)

Sα
1 (t1)

}dF(t1, t2) < ∞.

• [H4] Suggesting that
∫ dF(t1,t2)

S1(t−1 )
, is strictly less than infinity and for

θ > 0, we have∫ {(∫ t1

0

dF1(v)
S1(v−)2ST1(v)

) 1
2+θ

}
dF(t1, t2) < ∞.

Lopez and Saint-Pierre(2012) [72], have studied this model, noting that
F can be consistently estimated by an Fn estimator in the following form:

F̃n(t1, t2) =
1
n

n

∑
i=1

1{T1i≤t1,T2i≤t2},

that could not be used to estimate F(t1, t2) since T1 and T2 are unobserved.
Therefore, according to the proposition of Lopez and Saint-Pierre(2012)
[72], the F estimate can be given in such form:

Fn(t1, t2) =
1
n

n

∑
i=1

δ1iδ2i

C̃
(
Ŝ1 (Z1i) , Ŝ2 (Z2i)

)1{Z1i≤t1,Z2i≤t2}, (5.2.1)

where C̃ is the survival copula given by (5.1.1) and

Ŝ1 (t) = ∏
k/Z′1k<t

(1−
∑n

i=1 1{Z1i=Z′1k ,δ1i=0}

∑n
i=1 1{Z1i≥Z′1k}

)
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is the Kaplan-Meier estimate of S1 for ((Z′1:k)1≤k≤m, m ≤ n), and Ŝ2 is the
Kaplan-Meier estimate of S2 defined by the same way. Noted ΓT1 and ΓT2

the support of T1 and T2 respectively and l∞(W) all bounded real-valued
functions space, identified on non-empty set W.

Assuming that the assumptions [H1] − [H3] hold, Lopez and Saint
Pierre’s (2012), have concluded that the processes n

1
2 (Fn − F) converge

weakly in l∞(ΓT1 ∗ ΓT2) to a centered Gaussian process (Theorem (3.4) [72]).
By the way, in the event of complete data, the copula C can be estimated
by:

Ĉ(u, v) = Fn(F−1
1n (u), F−1

2n (v)),

where (u, v) ∈ I2, F1n(t1) = lim
t2→∞

Fn(t1, t2) and F2n(t2) = lim
t1→∞

Fn(t1, t2),

Gribkova and Lopez (2015) [39], proposed the empirical copula of C in the
case of incomplete data given by:

Cn (u, v) =
1
n

n

∑
i=1

δ1iδ2i

C̃
(
Ŝ1 (Z1i) , Ŝ2 (Z2i)

)1{F1n(Z1i)≤u,F2n(Z2i)≤v}, (5.2.2)

when the two variables are both right-censored. By analogy, using (5.1.1)
and (5.2.2), the empirical survival copula via:

C̃n(u, v) = u + v− 1 +
1
n

n

∑
i=1

δ1iδ2i

C̃
(
Ŝ1 (Z1i) , Ŝ2 (Z2i)

)1{1−F1n(Z1i)≥u,1−F2n(Z2i)≥v}

(5.2.3)
Observe that for this models

sup
(u,v)∈I2

|Cn(u, v)− Ĉ(u, v)| = Op

(
1
n

)
,

which means that the process n
1
2 (Cn − C) converges weakly in l∞(I2) to

the limiting approach L (centered Gaussian process), which either has
been proven by Gribkova and Lopez (2015) [39], in theorem 2. Hence, this
weak convergence allows us to prove the asymptotic normality of statistics
given by the form: ∫

I2
g(u, v)dCn(u, v),

noted g as a function that has a real value defined on I2 (Van der vart and
wellner (1996)).

Fermanian, Radulovic, and Wegkamp (2004), have proven this asymp-
totic normality in the case of complete data. By the way, thanks to Theorem
1 of M. Boukeloua (2020)[62], who proved that under some assumption
when n→ ∞ the quantity:

n
1
2

{∫
I2

g(u, v)d (Cn(u, v)− C(u, v))
}

,

converges in distribution to a Gaussian random variable

G =
∫

I2
g(u, v)d (L(u, v)) ,
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where g ∈ R2(I2), the set of all real-valued functions defined on I2, which
are continuous from above and with discontinuities of the first kind.

Based on these results and if we assume the assumptions [H1]− [H4]
hold we can show the next theorem.

Theorem 5.2.2 (IDIOU, N. et al 2021) Assuming the function g ∈ R2(I2), C̃ and C̃n the
survival copula and its empirical version respectively, then when n→ ∞ we have

n
1
2

{∫
I2

g(u, v)d
(
C̃n(u, v)− C̃(u, v)

)}
D−→
∫

I2
g(u, v)d (L(u, v)) ,

where the limiting is a Gaussian random variable and (u, v) ∈ I2.

This theorem proved the asymptotic normality of the empirical sur-
vival copula, which remains valid for both models considered in the corol-
lary (5.2.1).

5.3 Moments estimator for right-censoring

Either the following figure, T1 and T2 represent the survival time point and
(C1, C2) the censoring time point. The display contains four data kinds
points, including observed points (T1, T2), two types of singly censored
points (T1, C2), (C1, T2), and doubly censored points (C1, C2).

Figure 5.1 – Censored data.

Let (T1,T2) a random variables whose distribution can be modeled by
an Archimedean copula and is subject to dependent or independent right
censoring, V = C̃ (S1 (Z1i) , S2 (Z2i)) is a conditionally distributed variable
that follows a so-called Kendall distribution KC with the density function:

kC (t) =
ϕ (t) ϕ′′ (t)
(ϕ′ (t))2 ,

defined on (0, 1]. We define the kth-moments of V for k ≥ 1 by:

Mk(V|H) = E(Vk|H),

where H = h(c1,c2) indicate the first case of censoring (T1 and T2 are both
right-censoring). Then, relying on the results obtained in Corollary (5.2.1),
we have:
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Mk(V|H) =

(
C̃ (c1, c2)

)k

k + 1

− k
(
C̃ (c1, c2)

)k−1
ϕ
(
C̃ (c1, c2)

) ∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, c2)

)dv

+ k
(
C̃ (c1, c2)

)k−1
∫ 1

0

vk−1ϕ
(
vC̃ (c1, c2)

)
ϕ′
(
vC̃ (c1, c2)

) dv.

Suppose now that V belongs to a parametric family Vθ = C̃θ(u, v), it
follows that ϕ = ϕθ , C̃ = C̃θ and KC = Kθ , where u = S1(t1) = F̄1(t1) and
v = S2(t2) = F̄2(t2), mentioned that F1 and F2 are completely known.

Noted that Mk(V|H) = Mk(θ|H), then, we can distinguish the follow-
ing form of the kth-moments:

Mk(θ|h(c1,c2)) =

(
C̃θ (c1, c2)

)k

k + 1

− k
(
C̃θ (c1, c2)

)k−1
ϕθ

(
C̃θ (c1, c2)

) ∫ 1

0

vk−1
θ

ϕ′θ
(
vθC̃θ (c1, c2)

)dvθ

+ k
(
C̃θ (c1, c2)

)k−1
∫ 1

0

vk−1
θ ϕθ

(
vθC̃θ (c1, c2)

)
ϕ′θ
(
vθC̃θ (c1, c2)

) dvθ ,

for unknown θ ∈ Rd. Given the empirical version of moment estimator
under doubly censored presented by:

M̂k = M̂k(V̂|h(c1,c2)) =
1
n

n

∑
i=1

{
C̃n
(
Ŝi(ti)|H

)}k
,

for k ≥ 1 where V̂ = C̃n is the survival empirical copula given by formula
(5.2.3). By analogy, as the natural estimators of moments copula it is
necessary to solve the equation system given below:


M1(θ|h(c1,c2)) = M̂1

M2(θ|h(c1,c2)) = M̂2

:
Md(θ|h(c1,c2)) = M̂d.

To obtain the unique solution θ̂CCM = (θ̂1, ..., θ̂d) called the censored cop-
ula moment (CCM) estimator of θ.

Example 10 Application: illustrative example

In particular, in the bivariate case, the Gumbel model of one-parameter is
given by:

Cα (u, v) = exp
(
−
(
(− ln u)α + (− ln v)α) 1

α

)
,
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with the generator: ϕα(t) = (− ln t)α, α ∈ [1,+∞[. Consequently, by consider-
ing the case of two parameters, the preceding model becomes:

Cα,β (u, v) =
(((

u−α − 1
)β

+
(
v−α − 1

)β
) 1

β
+ 1
)− 1

α

,

with the generator: ϕα,β(t) = (t−α − 1)β, where α > 0 and β ≥ 1 (see [7]).
Obviously, by the use of (5.1.1), we obtain the survival copula of the Gumbel
family given by:

C̃α,β (u, v) = u+ v− 1+

(((
(1− u)−α − 1

)β
+
(
(1− v)−α − 1

)β
)1/β

+ 1

)−1/α

Hence, as an application of our results proved previously we can reach the
following bivariate censoring models using equation 1 in Corollary (5.2.1).

For k ≥ 1, α > 0 and 1 ≤ β ≤ 2, the kth moments of the Gumbel’s survival
copula, is given by:

Mk((α, β) |H) = E(Vk
∣∣∣ h(c1,c2))

=
mk

k + 1
+

k (m−α − 1)β

α2βm
βmα

(
β +

k + 1
α

, 2− β

)
+

kmk−1

αβ

(
mα+1

k + α + 1
− m

k + 1

)
,

in which βmα(x, y) is the Beta function and m = C̃ (c1, c2) is the ordinary copula.
If we simplify more the previous formula we will obtain the following writing:

Mk((α, β) |h(c1,c2)) =
mk

k + 1
+

k
αβ
×
(

mk+α

k + α + 1
− mk

k + 1

− (β− 1) (m−α − 1)β

αmα+1

Γ (1− β) Γ
( 1

α (k + αβ + 1)
)

Γ
( 1

α (k + 2α + 1)
) ,

where Γ (x) is the Gamma function. In particular, the two first moments are given
by: M1((α, β) |h(c1,c2)) =

1
2 m + (m−α−1)β

α2βm βmα

(
β + 2

α , 2− β
)
+ 1

αβ

(
mα+1

α+2 −
m
2

)
M2((α, β) |h(c1,c2)) =

1
3 m2 + 2(m−α−1)β

α2βm βmα

(
β + 3

α , 2− β
)
+ 1

αβ

(
mα+1

α+3 −
m
3

)
Which can further simplify as well:

M1((α, β) |h(c1,c2)) =
1
2 m + 1

αβ

{
mα+1

α+2 −
1
2 m− (β−1)(m−α−1)β

αmα+1

Γ(1−β)Γ( 1
α (αβ+2))

Γ( 2
α (α+1))

}
M2((α, β) |h(c1,c2)) =

1
3 m2 + 2

αβ

{
mα+2

α+3 −
1
3 m2 − (β−1)(m−α−1)β

αmα+1

Γ(1−β)Γ( 1
α (αβ+3))

Γ( 1
α (2α+3))

}
However, the CCM estimator of θ = (α, β) is the unique solution of the

system: {
M1(θ|h(c1,c2)) = M̂1

M2(θ|h(c1,c2)) = M̂2
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5.4 Simulation study

To illustrate the performances of the proposed estimator, a simulation
study is carried out based on the Monte Carlo method for right-censored
sampling. First, we generate a bivariate survival distribution of the Gum-
bel copula model where the margins are assumed to be Pareto(λ),

F(t) = 1− t−λ, t ≥ 0

The distribution of survival times T1, T2, and the censoring times C1,
C2 are all assumed to be Pareto of parameters λ1, λ2, λ3, λ4 respectively. If
we suppose that the corresponding percentage of observed data is equal
to p1 = λ2

λ1+λ2
for the first sample, then we can choose the values 0.3 for

λ1 and 0.95, 0.90, 0.85, 0.80 for p1, next we solve the equation p1 = λ2
λ1+λ2

to

get the pertaining λ2-values. In this path, we fix λ3 and p2 = λ4
λ3+λ4

by the
same previous values to find λ4 by the same way.

Since the quality of the estimate is assessed by evaluating the bias
(relative Bias) and the root mean square error (RMSE), then for the two
samples both we generate 1000 replicas for each common size n varied for
n = 30, 50, 100, 500, 1000,2000, to pick our final performance as empirical
evidence of the results gained across all replicates. Besides, for a wide set
of parameters of the true survival copula C̃α,β the simulation procedure
based on Section (5.3) is repeated for each sample.

The selection of true survival copula parameter values (α, β) must be
significant, i.e. each couple of parameters consists a value of one of the de-
pendency measurements. So, if we consider Kendall’s τ as an association
index then, it can be expressed as a function of the dependency param-
eter in Archimedean copula models. In this case, we should select the
parameter values of C̃ that correspond to specified values of τ by using
the transformed of the underlying survival copula. Since the link between
Kendall’s τ and C̃ is usually formulated by

τα,β = 4E(Vα,β)− 1,

where Vα,β = C̃α,β(u, v), then to generate data, we select values for survival
copula parameters that corresponding to Kendall’s tau values 0.05 (low
association), 0.5 (mean association) and 0.7 (high positive association).

For the Gumbel survival copula of two parameters, the performance of
the estimator proposed is summarized in Tables (5.1-5.3). The results ob-
tained for different values of Kendall’s τ are quite good in the three cases
of dependence considered (0.05, 0.5, 0.7) and by considering different cen-
soring percentages. In each table, τ1 and τ2 are represented respectively
the Kendall’s tau value before and after censoring.

From the three tables, we deduce that the estimator proposed to have a
good performance and works quite well if we compare it with other meth-
ods used before on the copulas estimation. By the way, the performance
of survival copula estimate based on the moments method is justified,
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Table 5.1 – Moments estimator performance based on Gumbel survival copula generated
from 1000 replications with Pareto margins and shape parameter 0.3. Re.Bias and RMSE
of the estimators are calculated for different censoring values and weak dependence.

τ = 0.05 , α = 0.1→ β = 1.00
1% of censoring

N n = 30 n = 50 n = 100 n = 500 n = 1000 n = 2000
(α̂, β̂) α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂

Re.Bias -0.0563 0.2852 -0.0537 0.2119 -0.0539 0.2515 -0.0536 0.2403 -0.051 0.2461 -0.0546 0.1972

RMSE 0.0649 0.0116 0.0624 0.0117 0.0629 0.0119 0.0620 0.0117 0.0606 0.0118 0.0631 0.0116

τ1 0.04336 0.05059 0.0477 0.04733 0.04892 0.04791

τ2 0.04384 0.04992 0.0477 0.04711 0.04838 0.03699

c1 0.03188 0.01975 0.00974 0.00208 0.00105 0.00043

c2 0.03134 0.01956 0.00947 0.00195 0.00104 0.00041

5% of censoring
Re.Bias -0.0539 0.2072 -0.0526 0.2490 -0.0551 0.2450 -0.0544 0.2339 -0.0520 0.2457 -0.0540 0.2475

RMSE 0.0625 0.0115 0.0613 0.0115 0.0638 0.0118 0.0628 0.0115 0.0610 0.0115 0.0629 0.0116

τ1 0.04685 0.04920 0.04682 0.04851 0.05031 0.04969

τ2 0.04240 0.04914 0.04524 0.04656 0.04771 0.04782

c1 0.03090 0.01852 0.00932 0.00195 0.001 0.00053

c2 0.03135 0.01953 0.00948 0.00192 0.001 0.00051

10% of censoring
Re.Bias -0.0526 0.2387 -0.0538 0.2264 -0.0548 0.2455 -0.0526 0.2294 -0.0547 0.2380 -0.0546 0.2186

RMSE 0.0616 0.0117 0.0627 0.0119 0.0637 0.0117 0.0617 0.0120 0.0634 0.0118 0.0635 0.0116

τ1 0.0567 0.04865 0.04794 0.05103 0.04924 0.04989

τ2 0.04909 0.04385 0.04431 0.04669 0.04515 0.04565

c1 0.02813 0.01722 0.0089 0.00179 0.00098 0.00052

c2 0.0286 0.01670 0.00867 0.00175 0.00098 0.00048

20% of censoring
Re.Bias -0.0531 0.2136 -0.0532 0.2003 -0.0530 0.1926 -0.0524 0.2049 -0.0532 0.2038 -0.0518 0.1965

RMSE 0.0619 0.0117 0.0617 0.0118 0.0620 0.0118 0.0615 0.0114 0.0623 0.0115 0.0611 0.0117

τ1 0.0524 0.05195 0.05116 0.04761 0.04974 0.05035

τ2 0.03684 0.04077 0.04059 0.03969 0.04155 0.04125

c1 0.02514 0.01573 0.00828 0.00171 0.00088 0.00045

c2 0.02540 0.01537 0.00785 0.00169 0.00081 0.00045

25% of censoring
Re.Bias -0.0518 0.1861 -0.0531 0.2058 -0.0526 0.2109 -0.0519 0.1782 -0.0534 0.1950 -0.0546 0.1972

RMSE 0.0610 0.0116 0.0625 0.0115 0.0612 0.0114 0.0606 0.0118 0.0622 0.0116 0.0631 0.0116

τ1 0.04636 0.04423 0.04691 0.04842 0.04888 0.04791

τ2 0.0384 0.03729 0.03637 0.03693 0.03795 0.03699

c1 0.02441 0.01444 0.00754 0.00148 0.00078 0.00043

c2 0.02402 0.01445 0.00698 0.00161 0.00078 0.00041
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Table 5.2 – Moments estimator performance based on Gumbel survival copula generated
from 1000 replications with Pareto margins and shape parameter 0.3. Re.Bias and RMSE
of the estimators are calculated for different censoring values and moderate dependence.

τ = 0.5 , α = 0.2→ β = 1.82
1% of censoring

N n = 30 n = 50 n = 100 n = 500 n = 1000 n = 2000
(α̂, β̂) α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂

Re.Bias -0.0263 0.3759 -0.0263 0.3735 -0.0259 0.3480 -0.0256 0.3648 -0.0252 0.3649 -0.0250 0.3695

RMSE 0.0302 0.0063 0.0302 0.0063 0.0299 0.0064 0.0299 0.0064 0.0293 0.0063 0.0292 0.0064

τ1 0.49995 0.50077 0.49672 0.5008 0.50048 0.50033

τ2 0.49148 0.49273 0.48865 0.49225 0.49224 0.49208

c1 0.03163 0.01859 0.00977 0.00195 0.00102 5e-04

c2 0.03296 0.01876 0.00972 0.00194 0.00103 0.00053

5% of censoring
Re.Bias -0.0267 0.3538 -0.0266 0.3554 -0.0255 0.3759 -0.0257 0.3415 -0.0255 0.3500 -0.0265 0.3566

RMSE 0.0309 0.0064 0.0306 0.0062 0.0296 0.0062 0.0299 0.0063 0.0298 0.0065 0.0306 0.0064

τ1 0.50274 0.50408 0.49962 0.50013 0.50015 0.50143

τ2 0.46311 0.46417 0.45925 0.46042 0.45939 0.46095

c1 0.02847 0.01856 0.00946 0.00183 0.00099 0.00051

c2 0.02926 0.01803 0.00940 0.00183 0.00094 0.00049

10% of censoring
Re.Bias -0.0259 0.3875 -0.0261 0.3658 -0.0255 0.3319 -0.0261 0.3312 -0.0262 0.3260 -0.0265 0.3301

RMSE 0.0300 0.0065 0.0303 0.0065 0.0298 0.0063 0.0302 0.0065 0.0302 0.0065 0.0304 0.0062

τ1 0.49346 0.50026 0.50191 0.49985 0.50019 0.4999

τ2 0.41385 0.41922 0.42175 0.42134 0.42191 0.42137

c1 0.0279 0.01841 0.00902 0.00178 0.00092 0.00049

c2 0.02938 0.01794 0.00901 0.00177 0.00089 0.00046

20% of censoring
Re.Bias -0.0261 0.3413 -0.0256 0.2964 -0.0252 0.3214 -0.0259 0.3021 -0.0250 0.3065 -0.0264 0.3017

RMSE 0.0303 0.0063 0.0298 0.0065 0.0295 0.0063 0.0302 0.0063 0.0292 0.0065 0.0304 0.0063

τ1 0.50244 0.4976 0.49889 0.50007 0.50027 0.49999

τ2 0.35571 0.34813 0.35141 0.35171 0.35227 0.35153

c1 0.02586 0.01614 0.00838 0.00164 0.00081 0.00041

c2 0.02487 0.01648 0.00797 0.0016 0.00081 0.00042

25% of censoring
Re.Bias -0.0251 0.2793 -0.0259 0.3205 -0.0266 0.2833 -0.0254 0.2982 -0.0253 0.2869 -0.0256 0.2838

RMSE 0.0293 0.0063 0.0299 0.0062 0.0305 0.0064 0.0296 0.0064 0.0295 0.0064 0.0298 0.0065

τ1 0.49657 0.50095 0.50224 0.50036 0.50043 0.50059

τ2 0.31482 0.32157 0.31815 0.31958 0.32107 0.32089

c1 0.02483 0.01532 0.00737 0.00156 0.00079 4e-04

c2 0.02584 0.01444 0.00729 0.00152 0.00074 4e-04
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Table 5.3 – Moments estimator performance based on Gumbel survival copula generated
from 1000 replications with Pareto margins and shape parameter 0.3. Re.Bias and RMSE
of the estimators are calculated for different censoring values and strong dependence.

τ = 0.7 , α = 0.4→ β = 2.78
1% of censoring

N n = 30 n = 50 n = 100 n = 500 n = 1000 n = 2000
(α̂, β̂) α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂

Re.Bias -0.0131 0.4582 -0.0129 0.4197 -0.0128 0.4053 -0.0127 0.4127 -0.0128 0.4195 -0.0125 0.4171

RMSE 0.0150 0.0041 0.0149 0.0042 0.0147 0.0040 0.0147 0.0040 0.0148 0.0430 0.0145 0.0042

τ1 0.70344 0.69913 0.70007 0.70007 0.70013 0.69997

τ2 0.69002 0.68812 0.68855 0.68788 0.68815 0.68794

c1 0.03001 0.0189 0.00982 0.0019 0.00096 5e-04

c2 0.03035 0.01927 0.01 0.00191 0.0095 0.00048

5% of censoring
Re.Bias -0.0126 0.4252 -0.0127 0.4063 -0.0127 0.3972 -0.0126 0.3973 -0.0126 0.4056 -0.0124 0.4001

RMSE 0.0146 0.0041 0.0147 0.0042 0.0147 0.0042 0.0146 0.0042 0.0146 0.0042 0.0144 0.0041

τ1 0.69937 0.69845 0.69828 0.70019 0.7001 0.70065

τ2 0.64116 0.63732 0.6397 0.64107 0.64168 0.64204

c1 0.03068 0.02042 0.00955 0.00194 0.00098 0.00049

c2 0.0305 0.01966 0.00974 0.00186 0.00095 0.00049

10% of censoring
Re.Bias -0.0123 0.3847 -0.0125 0.3756 -0.0127 0.3768 -0.0127 0.3927 -0.0129 0.3889 -0.0121 0.3860

RMSE 0.0144 0.0041 0.0145 0.0042 0.0146 0.0041 0.0147 0.0042 0.0149 0.0041 0.0142 0.0043

τ1 0.69714 0.70026 0.69879 0.69974 0.70095 0.70013

τ2 0.58936 0.58693 0.58613 0.58613 0.58814 0.58743

c1 0.03007 0.01752 0.00928 0.00183 0.00088 0.00045

c2 0.02926 0.01711 0.00886 0.00186 0.00092 0.00047

20% of censoring
Re.Bias -0.0128 0.3923 -0.0125 0.3671 -0.0125 0.3364 -0.0132 0.3458 -0.0130 0.3441 -0.0127 0.3445

RMSE 0.0148 0.0042 0.0146 0.0041 0.0148 0.0041 0.0151 0.0041 0.0149 0.0041 0.0147 0.0041

τ1 0.70236 0.70103 0.69985 0.70113 0.70053 0.70069

τ2 0.4952 0.49110 0.48840 0.49066 0.48991 0.4895

c1 0.02444 0.01543 0.00820 0.0016 0.00082 4e-04

c2 0.02485 0.01492 0.00829 0.00155 0.00077 0.00039

25% of censoring
Re.Bias -0.0126 0.2926 -0.0128 0.3569 -0.0126 0.3280 -0.0126 0.3417 -0.0122 0.334 -0.0126 0.3247

RMSE 0.0147 0.0043 0.0149 0.0041 0.0146 0.0042 0.0146 0.0040 0.0142 0.0041 0.0146 0.0041

τ1 0.69894 0.69874 0.70112 0.70002 0.70018 0.70029

τ2 0.44299 0.43503 0.44424 0.44622 0.44462 0.4453

c1 0.02306 0.01406 0.00691 0.00147 0.00073 0.00038

c2 0.02331 0.01521 0.00749 0.00147 0.00072 0.00036
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through the adoption of relative bias (Re.Bais) and RMSE discourse, when
we can see all their values are sufficiently decreased for each case of small
and even large samples (are almost close to zero). Even so, the value of
Kendall’s tau after censoring (τ2 ) remains close to its original theoreti-
cal value given by τ1 , which means that the variables remain dependent
despite the censorship.

5.5 Discussion

In this paper, we elaborate a semi-parametric estimation method of a sur-
vival copula based on Archimedean models, but in specific conditions on
the data. Indeed, under different censoring (singly or doubly), the results
of our estimator were presented with an analytical form which overcame
the problem that occurs usually by other methods. As an application of
the considered method, we have chosen the Gumbel model, given T1 and
T2 as doubly right-censored variables. In the simulation part, three cases
of dependence are considered, where the results can validate the use of the
method proposed. Consequently, this method is preferable if we compare
it with the maximum likelihood method, because of its easy mathematical
form.

Our main result for these studies is based on the copula approaches
and the survival analysis, in which the correlation between two survival
time variables was detected. Therefore, our research results open a vast
area of application, notably in real life, when there are two related events
defined under specific situations. This will be discussed in an interesting
new paper that we are currently working on. Based on the outcomes
of Gripkova and Lopez (2015) [39], Lopez and Saint-Pierre (2012) [72],
research our results can be applied for left and right censoring. This is one
of our current research topics and the idea has been developed in another
paper that is also under preparation.

Acknowledgement. The authors would like to extend their gratitude
to the editor of the journal and to the reviewers for their valuable advice.

73



5.6 Appendix

Proof of corollary (5.2.1). In order to prove the result of Corollary
(5.2.1) we need to use the results given in Theorem (5.2.1) and we start
by equation 1. For k > 1 the kth moments is given by:

E(Vk
∣∣∣ T1 > c1, T2 > c2) =

∫ C̃(c1,c2)

0
vkdF1 (v, c1, c2)

Using the conditional distribution of (V| T1 > c1, T2 > c2), given in Theo-
rem (5.2.1) we get:

E(Vk
∣∣∣ T1 > c1, T2 > c2) =

=
1

C̃ (c1, c2)

∫ C̃(c1,c2)

0
vk

{
1−

(ϕ′(v))2 − ϕ′′(v)
(

ϕ(v)− ϕ
(
C̃ (c1, c2)

))
(ϕ′(v))2

}
dv

=
1

C̃ (c1, c2)

∫ C̃(c1,c2)

0
vkdv

− 1
C̃ (c1, c2)

∫ C̃(c1,c2)

0
vk (ϕ′(v))2 − ϕ′′(v)

(
ϕ(v)− ϕ

(
C̃ (c1, c2)

))
(ϕ′(v))2 dv

= I1 − I2,

by the way, I1 have to simplify as follows:

I1 =
1

C̃ (c1, c2)

∫ C̃(c1,c2)

0
vkdv =

C̃ (c1, c2)
k

k + 1
.

On otherhand, to simplify I2 we pass directly to integration by parts, and
we have:

I2 =
1

C̃ (c1, c2)

∫ C̃(c1,c2)

0
vk (ϕ′(v))2 − ϕ′′(v)

(
ϕ(v)− ϕ

(
C̃ (c1, c2)

))
(ϕ′(v))2 dv

=
1

C̃ (c1, c2)

[vk ϕ(v)− ϕ
(
C̃ (c1, c2)

)
ϕ′(v)

]C̃(c1,c2)

0

−k
∫ C̃(c1,c2)

0
vk−1 ϕ(v)− ϕ

(
C̃ (c1, c2)

)
ϕ′(v)

dv

)

= − k
C̃ (c1, c2)

∫ C̃(c1,c2)

0
vk−1 ϕ(v)− ϕ

(
C̃ (c1, c2)

)
ϕ′(v)

dv.

it follows after changing variables that:

I2 = −k
(
C̃ (c1, c2)

)k−1
∫ 1

0
vk−1 ϕ(vC̃ (c1, c2))− ϕ

(
C̃ (c1, c2)

)
ϕ′(vC̃ (c1, c2))

dv

= −k
(
C̃ (c1, c2)

)k−1
∫ 1

0
vk−1 ϕ(vC̃ (c1, c2)

ϕ′(vC̃ (c1, c2))
dv

+ k
(
C̃ (c1, c2)

)k−1
ϕ
(
C̃ (c1, c2)

) ∫ 1

0

vk−1

ϕ′(vC̃ (c1, c2))
dv.

For equations 2 and 3 (in the case of singly-censored data), we see its
proofs and approaches details in a future article which is under prepara-
tion.
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Proof of theorem (5.2.2). If we consider the survival copula C̃ and its
empirical version C̃n, we have

C̃n(u, v)− C̃(u, v) = u + v− 1 + Cn(1− u, 1− v)− C̃(u, v)
= Cn(1− u, 1− v)− C(1− u, 1− v),

hence, by a change of variables w1 = 1− u and w2 = 1− v, we get

C̃n(u, v)− C̃(u, v) = Cn(w1, w2)− C(w1, w2),

where (w1, w2) remain belongs to the interval I2. So, we can concluded
that n

1
2
(
C̃n − C̃

)
also converges weakly in l∞(I2) to the limiting approach

L. Assuming the application ζ represented on RI(I2) the set of all func-
tions defined on I2 whose total variation is bounded by 1 and which are
continuous from above and with discontinuities of the first kind, given by

ζ(h) =
∫

I2
g(w1, w2)dh(w1, w2),

which is Hadamard differentiable on RI(I2), (see [89]). Because
n

1
2 (Cn − C) converges weakly to the limiting approach L, then, by us-

ing delta method we get

n
1
2

{∫
I2

gdCn(w1, w2)−
∫

I2
gdC(w1, w2)

}
= n

1
2

{∫
I2

gdC̃n(u, v)−
∫

I2
gdC̃(u, v)

}
= n

1
2
{

ζ(C̃n(u, v))− ζ(C̃(u, v))
}

= ζ̄

⇔ ζ̄ D−→ ζ ′c(L)

where ζ ′c(L) =
∫

I2 g(u, v)d (L(u, v)) is the derivative of ζ in the point c (see
[62]).
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Survival Copula parameters estimation for

Archimedean family under singly censoring

Idiou Nesrine
1 Benatia Fatah

2

Abstract

Given (Zi, δi) =
{

min(Ti, Ci), I(Ti<Ci)i=1,2

}
, as dependent or indepen-

dent right-censored variables. As a logical continuation of results estab-
lished by N.IDIOU et al (2021) [68], a particular case of right-censoring has
well detailed, as well as the empirical survival copula has also evaluated
in this case of singly-censoed data. As an application, two Archimedean
copula models have been chosen to illustrate our theoretical results. A
simulation study follows, which sheds light on the behavior of the pro-
cess estimation method shown that the proposed estimator performs well
in terms of relative bias and RMSE. The methodology of the proposed
estimator is also illustrated by using real lifetime data from the Diabetic
Retinopathy Study, where its efficiency and robustness are observed.

Keywords: Archimedean copulas, Individually censoring data, Mo-
ment estimator, Survival copula, Semi-parametric estimation.

Résumé

Soit (Zi, δi) =
{

min(Ti, Ci), I(Ti<Ci)i=1,2

}
, en tant que dépendantes ou

indépendantes variables censurées à droite. Dans la suite logique des ré-
sultats établis par N.IDIOU et al (2021) [68], un cas particulier de la cen-
sure à droite est bien détaillée, ainsi que la copule de survie empirique
a également évaluée dans ce cas de données censurées individuellement.
Comme application, deux modèles de copules d’Archimède ont été choisis
pour illustrer notre résultats théoriques. Une étude de simulation suit, qui
met en lumière le comportement de la méthode d’estimation de processus,
a montré que l’estimateur proposé fonctionne bien en termes de biais re-
latif et de RMSE. La méthodologie de l’estimateur proposé est également
illustrée en utilisant des données de durée de vie réelles du Diabetic et de
rétinopathie, où son efficacité et sa robustesse sont observées.

Mots clés : copules d’Archimède, Données censurées simplement, es-
timateur des moments, copule de survie, Estimation semi-paramétrique.

AMS Subject Classification: 62G05, 62G20.

5.7 Introduction

In the medical domain, researchers were mostly confronted with compet-
ing risk issues, that is, event times may be dependent and they are cen-
soring each other [94], [4], [16], [46], [47]. Likewise, in survival analyses
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it is popular to observe two or more lifetimes for the same customer, pa-
tient, or equipment. For example, the lifetimes of a pair of organs can be
observed in a pair of kidneys, an ear, or an eye in patients, or the lifetimes
of engines in a two-engine vehicle. In most cases, these variables are re-
lated and this pattern of bivariate data is well-suited to the copula model,
particularly the Archimedean one.

As an outcome, we suggest that the two failure times T1 and T2 can
be modelled by an Archimedean copula model and it is subject to depen-
dence or independence right-censoring with the censoring vector (C1, C2),
we also propose that the vector (C1, C2) follows an arbitrary bivariate
continuous distribution. Hence, we can only observe Zi = min(Ti, Ci),
δi = I{Ti≤Ci}i=1,2

where I(.) represents the indicator function.

Sometimes, the problem in right-censoring is how to model the de-
pendence concept among bivariate censoring vectors (T1, T2) and (C1, C2),
when both variables are censored at the same time (see [62]). The is-
sue now is how to construct the dependency structure between this vec-
tor when only one variable is right-censored. Let’s look at the bivari-
ate pattern (T1, T2), with the joint distribution function (df) F(t1, t2) =
P(T1 ≤ t1, T2 ≤ t2), which can be presented by the following form
F(t1, t2) = C(F1(t1), F2(t2)), where F1, F2 are two continuous margins and
C is the related copula function ordinarily known for all (u, v) in I2 by:

C(u, v) = F((F−1
1 (u), F−1

2 (v)),

when F−1(u) = inf{x ∈ R : F(x) ≥ u} is the generalized inverse of a
non-decreasing function F. A joint survival function S of (T1, T2) is said to
have an Archimedean association dependence structure if for all t1, t2 ≥ 0,
it can be interpreted as follows S(t1, t2) = ϕ−1(ϕ(S1(t1)) + ϕ(S2(t2))),
where ϕ is a continuous and convex function defined on I → [0, ∞] with
ϕ(1) = 0, and S1, S2 are the marginal survival functions of T1 and T2
respectively (see [71], [32], and [33]).

In the context of multivariate survival analysis, many models
have been proposed to model multivariate survival data among
them, Archimedean copulas models (see [4], [92] and [93]). Specifi-
cally, for the couple (u, v) ∈ I2, an Archimedean copula is noted as
C(u, v) = ϕ−1(ϕ(u) + ϕ(v)), where ϕ−1 is the inverse function of ϕ and
ϕ usually called the Archimedean generator of C. Hence, the function
C̃ define from I2 → I, which couples S1 and S2, known by the survival
copula of (T1, T2) via

C̃(u, v) = u + v− 1 + C(1− u, 1− v), (5.7.1)

(Nelsen, (2006) [67]). Supposing that (T1, T2) follows an Archimedean cop-
ula, where S1 and S2 are the marginal survival functions, Genest and
Rivest (1993) [33], have proved that U = ϕ(S1(T1))

ϕ(S1(T1))+ϕ(S2(T2))
and

V = C̃(S1 (T1) , S2 (T2)) = ϕ−1 (ϕ (S1 (T1)) + ϕ (S2 (T2))) , are indepen-
dently distributed random variables when U follows a uniform distribu-
tion on I and V follows a so-called Kendall distribution with the density
function: kC (t) = ϕ(t)ϕ′′(t)

(ϕ′(t))2 defined on (0, 1], as a function of t depends on

the unidentified parameter θ.

78



The main aim of this paper is to present a new semi-parametric esti-
mation procedure and its application to health-related survival data, given
(T1, T2) as individually censored. General formulas for all possible param-
eters estimate of a survival copula C̃ are also presented under the assump-
tion that the copula is Archimedean.

Important results are reviewed in section 2, where general formulas
are proposed for the marginal survival functions of T1 and T2. As an ap-
plication of our results, a simple way of the estimation of the unknown
parameters is declared in section 3, where an estimator of V based on
the classical moments method is proposed, followed by two examples of
Clayton and Gumbel copula models. Under the Archimedean dependence
structure assumption for censored data, a simulation study evaluates the
performance of our estimator presented in Section 4, relatively on bias and
RMSE, where the robustness and efficiency of the estimator are proven. In
section 5, we illustrate the methodology presented in section 3 on real data
from the Diabetic Retinopathy Study, which is available in the "survival"
package (see [73] and [86]), of the R software. Our paper ends with some
discussions in Section 6.

5.8 Important results

Assume that (T1, T2) are two positive random variables whose distribu-
tions can be modelled by an Archimedean copula either dependently or
independently right-censored by a censoring vector (C1, C2) that follows
an arbitrary bivariate continuous distribution. Take the available observa-
tion in the case of absence data (Z1i, Z2i, δ1i, δ2i)1≤i≤n : the independent
copies of a non-negative random variable of the vector (Z1, Z2, δ1, δ2). As
a result, the variable Zi = min(Ti, Ci) is only observed when Ti ≤ Ci for
i = 1, 2, then δi = I{Ti≤Ci}i=1,2

equal to one which represents the indicator
function of censored data.

Considering only T1 is right-censored, in other words, C2 = ∞ almost
surely, which is a particular situation from another case of doubly right-
censored (see [62]). In this case, the empirical distribution function is

F̃n(t1, t2) =
1
n

n

∑
i=1

1{T1i≤t1,T2i≤t2},

this model was studied by Stute (1993) [85], who suggested the empirical
distribution function F̃n given by:

F̃n(t1, t2) =
1
n

n

∑
i=1

δ1i

Ŝ1
(
Z−1i

)1{Z1i≤t1,Z2i≤t2}, (5.8.1)

which is a consistent estimator of F, known as a particular model
situation from the case given in section (5.2), where we can take
C̃
(
Ŝ1 (Z1i) , Ŝ2 (Z2i)

)
= Ŝ1 (Z1i) Ŝ2 (Z2i) and for any right continuous func-

tion M (t−) , when M defined from R in R we set M (t−) = lim
n→∞

M(t− 1
n )

the left-hand limit of M at t when it exists (see [68]).
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Recognizing it was provided that

Ŝ1 (t) = ∏
k/Z′1k<t

(1−
∑n

i=1 1{Z1i=Z′1k ,δ1i=0}

∑n
i=1 1{Z1i≥Z′1k}

),

where Ŝ1 as the Kaplan-Meier estimate of S1 and ((Z′1k)1≤k≤m, m ≤ n) is
the distinct values of (Z1i)1≤i≤n .

Suppose that the copula C is twice continuously differentiable and the
variable T1’s support is lower than the variable T2’s support. Following
Gribkova and Lopez (2015) [39] and noted that

F1n(t1) = lim
t2→∞

Fn(t1, t2), F2n(t2) = lim
t1→∞

Fn(t1, t2),

the empirical copula function Cn have estimated by:

Cn (u, v) =
1
n

n

∑
i=1

δ1i

Ŝ1
(
Z−1i

)1{F1n(Z1i)≤u,F2n(Z2i)≤v}, (u, v) ∈ [0, 1]2

The weak convergence of Cn has proved under some assumptions (see
[68]). Hence, the empirical survival copula of such form:

C̃n(u, v) = u + v− 1 +
1
n

n

∑
i=1

δ1i

Ŝ1
(
Z−1i

)1{F̄1n(Z1i)≥u,F̄2n(Z2i)≥v} (5.8.2)

where (u, v) ∈ [0, 1]2. The reader is invited to take a look on the references
mentioned below ([68] and [42]).

Following [68], the asympthotic normality of the empirical survival
copula C̃n, can be proven for a singly censored under some assumptions
and by the same manner as seen in Theorem (5.2.2) . Because the depen-
dence between Ti and Ci, i = 1, 2 can be modeled by an Archimedean
copula, Wang and Oakes (2008), proved that the distribution function of
V formulated by

F(v, c1, c2) =
1

C̃ (c1, c2)

{
v−

ϕ(v)− ϕ
(
C̃ (c1, c2)

)
ϕ′(v)

}
, 0 ≤ v ≤ C̃ (c1, c2) ,

(5.8.3)
where T1 and T2 are both right-censored [95]. By analogy, when only one
variable is censored the distribution function of V become as follows:

• F1(v, c1, t2) =
ϕ′(C̃(c1,t2))

ϕ′(v) , 0 ≤ v ≤ C̃ (c1, t2), when only T1 is right-
censored

• F2(v, t1, c2) =
ϕ′(C̃(t1,c2))

ϕ′(v) , 0 ≤ v ≤ C̃ (t1, c2) , when only T2 is right-
censored.

Proof. see [95].
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By the way used (5.8.3), the kth moments of V in the case of doubly
right censoring have established by:

E(Vk
∣∣∣ T1 > c1, T2 > c2) =

(
C̃ (c1, c2)

)k

k + 1

− k
(
C̃ (c1, c2)

)k−1
ϕ
(
C̃ (c1, c2)

) ∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, c2)

)dv

+ k
(
C̃ (c1, c2)

)k−1
∫ 1

0

vk−1ϕ
(
vC̃ (c1, c2)

)
ϕ′
(
vC̃ (c1, c2)

) dv, k ≥ 1

Proof. see [68].

We can recall this corollary based on N.IDIOU et al’s results (see [68]).

Corollary 5.8.1 (IDIOU, N. et al 2021) Let (T1, T2) be a random pair whose distribution can be
modelled by an Archimedean copula. Assuming that (T1, T2) is subject to depen-
dent or independent right censoring by a censoring vector (C1, C2) that follows
an arbitrary bivariate continuous distribution, then we have:

1. For k ≥ 1, the kth moments of V when only T1 is right-censored is

E(Vk
∣∣∣ T1 > c1, T2 = t2) =

(
C̃ (c1, t2)

)k

− k
(
C̃ (c1, t2)

)k
ϕ′
(
C̃ (c1, t2)

) ∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, t2)

)dv.

2. For k ≥ 1, the kth moments of V when only T2 is right-censored is

E(Vk
∣∣∣ T1 = t1, T2 > c2) =

(
C̃ (t1, c2)

)k

− k
(
C̃ (t1, c2)

)k
ϕ′
(
C̃ (t1, c2)

) ∫ 1

0

vk−1

ϕ′
(
vC̃ (t1, c2)

)dv.

5.9 Parameters estimation under singly right cen-
sored variable

We propose a simple way of estimating the unknown parameters for
Archimedean copula models. We set up the procedure based on the clas-
sical moments method, that we have seen before in section(5.3) [68]. As-
sume that Z1:n < ... < Zn:n, the order statistics, pertaining to the sample
{Zi, δi; 1 ≤ i ≤ n} with their associated concomitants δ[i:n], ..., δ[n:n].

Then, δ[j:n] = δi if Zj:n = Zi for 1 ≤ j ≤ n. Since we are focusing on the
datasets that contain extreme values which include distributions such as
Burr, Fréchet, generalized Pareto...etc. However, the selected Pareto model
is well known as a heavy-tailed censored data model and it is obvious that
the heavy-tailed distribution class plays a significant role in the theory of
extreme value. Then it would be natural to assume that both survival
functions S1 = 1− F1 and S2 = 1− F2 are regularly varying at infinity
with tail indices γ1 > 0 and γ2 > 0 respectively. In another word, if we
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assume that both F1 and F2 are heavy-tailed (mentioned that F1 and F2 are
completely known), so there exist two constants γ1 > 0 and γ2 > 0 such
that:

lim
t→∞

S1(tx)
S1(t)

= x
−1
γ1 and lim

t→∞

S2(tx)
S2(t)

= x
−1
γ2 , for x > 0

By a logical sequence and since F1 and F2 are heavy-tailed, then the cen-
soring distribution is assumed to be heavy tailed too (i.e: the CDF of the
observed Z’s noted by H and given by H̄ = S1S2 is heavy-tailed too),
hence:

lim
t→∞

H̄(tx)
H̄(t)

= x
−1
γ , for x > 0

Therefore, the extreme value index of the distribution function (d.f) of
(Z, δ) denoted by γ and given by γ = γ1γ2

γ1+γ2
.

Let (T1, T2) two random variables whose distribution can be modelled
by an Archimedean copula and is subject to dependent or independent
singly right-censoring, V = C̃ (S1(t1), S2(t2)) is a conditionally distributed
variable follows a so-called Kendall distribution KC with the density func-
tion: kC (t) = ϕ(t)ϕ′′(t)

(ϕ′(t))2 , defined on (0, 1].

We take only T1 right-censored and we noted Mk(V|c1, t2) the kth-
moments of V, then:

Mk(V|c1, t2) = E(Vk|T1 > c1, T2 = t2), for k ≥ 1

Relying on the results in Corollary (5.8.1) we have:

Mk(V|c1, t2) = E(Vk|T1 > c1, T2 = t2) =
(
C̃ (c1, t2)

)k (5.9.1)

−k
(
C̃ (c1, t2)

)k
ϕ′
(
C̃ (c1, t2)

) ∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, t2)

)dv.

Assuming that V belongs to a parametric family Vθ = C̃θ(u, v)θ∈Rd , then it
follows that ϕ = ϕθ and KC = Kθ , for the unknown parameter θ ∈ Rd.

If we suppose that Mk(V|c1, t2) = Mk(θ|c1, t2), the equation (5.9.1) can
be written as:

Mk(θ|c1, t2) =
(
C̃θ (c1, t2)

)k− k
(
C̃θ (c1, t2)

)k
ϕ′θ
(
C̃θ (c1, t2)

) ∫ 1

0

vk−1
θ

ϕ′θ
(
vθC̃θ (c1, t2)

)dvθ .

Because of the copula symmetry, the equation (2) in Corollary (5.8.1)
via :

Mk(θ|t1, c2) =
(
C̃θ (t1, c2)

)k− k
(
C̃θ (t1, c2)

)k
ϕ′
(
C̃θ (t1, c2)

) ∫ 1

0

vk−1
θ

ϕ′
(
vθC̃θ (t1, c2)

)dvθ .

which shows the kthmoments of V, when only T2 is right-censored.
Given, the empirical version of the moment estimator presented by
M̂k(V̂|Hj):

M̂k(V̂|Hj) =
1
N

n

∑
i=1

(C̃n(Ŝi (ti))|Hj)
k, for k ≥ 1, j = 1, 2.
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Where V̂ is the survival empirical copula C̃n and Hj represent each case
of censoring. Then, as the natural estimators of moments copula, it is nec-
essary to solve the equation system given by:

Mk(θ|Hj) = M̂k(V̂|Hj), for θ = (θ1, ..., θd) and j = 1, 2.

To obtain the unique solution of θ̂SCCM = (θ̂1, ..., θ̂d) called the singly cen-
sored copula moment (SCCM) estimator of θ.

5.10 Application: illustrative examples

From now, only T1 is considered as a censored variable. Therefore, two
models evaluated, the first is for the Clayton model of one-parameter and
the second is for the Gumbel model of two parameters.

• Clayton model

For the Clayton model of one-parameter, the survival copula is
known by

C̃α(u, v) = u + v− 1 + ((1− u)−α + (1− v)−α − 1)
−1
α ,

with generator ϕα(t) = t−α − 1, α > 0. Applying Corollary (5.8.1),
we can simplify the estimating equations as follow:

E(Vk
∣∣∣ T1 > c1, T2 = t2) = (m)k − kmk ϕ′ (m)

∫ 1

0

vk−1

ϕ′ (vm)
dv, (5.10.1)

for k > 0 and when m = C̃ (c1, t2), represent the ordinary copula. If
we simplify more the formula (6) we can obtain:

E(Vk
∣∣∣ T1 > c1, T2 = t2) = (m)k − kmk−α−1

∫ 1

0

vk−1

(vm)−α−1 dv

By an elementary calculation, we get the kth moments

Mk(α) = mk − kmk−1

k + α + 1
,

where m = C̃ (c1, t2). Hence, for k = 1 the first moments is normally
given by:

M1(α) = m− 1
α + 2

Then, as the natural estimators of moments copula, it is necessary to
solve the equation system given by:

M1(α) = M̂1

which allows us easily find the unique estimator of α given by:

α̂ = 2− 1
m− M̂1
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• Gumbel model

For the Gumbel model of two parameters, where the data are singly
right-censored (suppose that is only T1 in this case). As a result, by
using the procedure given in section (5.9), the two first moments M1,
M2 are given by:

M1( θ| c1, t2) = m− (β−1)(m−α−1)β

αm2α+1

Γ(1−β)Γ( 1
α (αβ+2))

Γ( 2
α (α+1))

= M1(α, β)

M2( θ| c1, t2) = m2 − 2(β−1)(m−α−1)β

αm2α+1

Γ(1−β)Γ( 1
α (αβ+3))

Γ( 1
α (2α+3))

= M2(α, β)

and the estimator θ̂ of θ is the unique solution of the system:{
M1(θ) = M̂1
M2(θ) = M̂2

We will talk about these two models (Clayton and Gumbel) in more detail
in the upcoming simulation section when we will see how they contrast.

5.11 Simulation studies

Taking into consideration that only T1 to be right-censored. A simulation
study was carried out to evaluate the performance of the proposed estima-
tors, based on the Monte Carlo procedure under the Clayton and Gumbel
Archimedean dependence assumption. The results are shown in Tables
(5.4-5.8), we first generate bivariate data from the Clayton and Gumbel
models of T1 and T2 with Pareto margins of parameters γ1 and γ2 re-
spectively. We also generate the censoring variable C1 whose marginal
distribution is a Pareto with γc parameter.

We suppose that γ1 = γ2 = 0.3 and that the corresponding percent-
age of observed data is given by p1 = γc

γ1+γc
, we choose parameter values

corresponding to p1 values 0.95, 0.90, 0.85, 0.80, and we solve the equation
p1 = γc

γ1+γc
to get the pertaining γc-values. Based on the parameters es-

timate procedure in Section (5.9), 1000 replicas to be generated for each
common size n varied for n = 30, 50, 100, 500, 1000, to pick our final per-
formance as empirical evidence of the results gained across all replicates.

Table (5.4), describes the results obtained for the Clayton model of
one-parameter (5.10.1), with unit Pareto margins of shape parameter (0.3),
whose estimator looked with:

α̂ = 2− 1
m− M̂1

,

where, we can see the R.Bias and the RMSE are very close to zero. Once the
rate of dependence τ is increased, we see an improvement in the results of
the estimated parameters α̂ due to a large decrease in R.Bias and RMSE,
which are inversely proportional readings.
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Table 5.4 – Moments estimator performance based on Clayton survival copula of one
parameter under singly right-censored variable.

τ = 0.05 , α = 0.1
N n = 30 n = 100 n = 500 n = 1000

censure R.Bias RMSE R.Bias RMSE R.Bias RMSE R.Bias RMSE

5% -0.0547 0.0640 -0.0549 0.0631 -0.0535 0.0626 -0.0542 0.0625

10% -0.0532 0.0621 -0.055 0.0632 -0.0529 0.0620 -0.0548 0.0642

15% -0.0554 0.0642 -0.0539 0.0632 -0.0532 0.0623 -0.0541 0.0630

20% -0.0536 0.0624 -0.0525 0.0614 -0.0530 0.0619 -0.0553 0.0638

τ = 0.5 , α = 0.2
5% -0.0257 0.0298 -0.0253 0.0291 -0.0255 0.0299 -0.027 0.0311

10% -0.0262 0.0304 -0.0260 0.0299 -0.0264 0.0305 -0.0267 0.0308

15% -0.0262 0.0302 -0.0254 0.0297 -0.0258 0.0299 -0.0254 0.0295

20% -0.0257 0.0299 -0.0257 0.0300 -0.0257 0.0299 -0.0261 0.0302

τ = 0.7 , α = 0.4
5% -0.0130 0.0149 -0.0125 0.0145 -0.0131 0.0150 -0.0127 0.0148

10% -0.0126 0.0145 -0.0126 0.0146 -0.0123 0.0144 -0.0129 0.0149

15% -0.0132 0.0151 -0.0124 0.0144 -0.0125 0.0145 -0.0126 0.0146

20% -0.0127 0.0147 -0.0130 0.0149 -0.0127 0.0148 -0.0126 0.0146

Now, by considering the second model of the Gumbel survival copula
of two parameters, where the two first moments are formulated as (5.10).
Given Kendall’s tau:

τα,β = 4E(Vα,β)− 1,

as an association index (a function of the dependency parameter in
Archimedean copula models), we select the survival copula parameter
values (α, β) that correspond to specified values of τ by using the select
values 0.05, 0.5 and 0.7 of Kendall’s tau dependence assumption values
and the transformed of the underlying survival Gumbel copula

Vα,β = u + v− 1+

(((
(1− u)−α − 1

)β
+
(
(1− v)−α − 1

)β
)1/β

+ 1

)−1/α

as shown in Table (5.5).

Tables (5.6-5.8) shows the results obtained of SCCM estimator
(
α̂, β̂
)

of
(α, β) based on survival copula under the censored variable T1, generated
from the Gumbel copula model of two parameters given in section (5.10)
with unit Pareto margins of shape parameter (0.3).

By looking at three different values of dependency weak (0.05) moder-
ate (0.5) and strong (0.7), the R.Bias and the RMSE of the two parameters
estimate α̂ and β̂ were calculated and are usually given lower values espe-
cially when the dependency increases.
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Table 5.5 – The true parameters of the survival Gumbel copula transformed using
Kendall’s tau.

τ α β

0.05 0.1 1.00

0.5 0.2 1.82

0.7 0.4 2.78

Table 5.6 – Moments estimator performance based on Gumbel survival copula of two
parameters under singly right censored variable (T1) generated from 1000 replications
with unit Pareto margins and shape parameter (0.3). Relative bias and RMSE of the
estimators a are calculated for different censoring values and for weak dependence.

τ = 0.05, α = 0.1⇒ β = 1.00
Sample c1 α̂ β̂

Size R.Bias RMSE R.Bias RMSE
% of censoring 20

30 0.11681 -0.05381 0.06285 0.13100 0.01145

50 0.07223 -0.05428 0.06293 0.09702 0.01185

100 0.03696 -0.05455 0.06302 0.12730 0.01179

500 0.00796 -0.05241 0.06136 0.11346 0.01171

1000 0.00411 -0.05310 0.06181 0.11126 0.01178

% of censoring 15
30 0.15716 -0.05364 0.06258 0.14563 0.01153

50 0.09968 -0.05506 0.06414 0.17947 0.01192

100 0.05382 -0.05405 0.06289 0.14270 0.01125

500 0.01168 -0.05338 0.06219 0.12725 0.01156

1000 0.00591 - 0.05223 0.06111 0.13337 0.01216

% of censoring 10
30 0.22207 -0.05170 0.06076 0.16483 0.01172

50 0.14458 -0.05233 0.06110 0.16214 0.01164

100 0.08509 -0.05438 0.06300 0.14554 0.01151

500 0.01801 -0.05562 0.06412 0.16037 0.01148

1000 0.00892 -0.05353 0.06223 0.14950 0.0117

% of censoring 5
30 0.31617 -0.05347 0.06244 0.17334 0.01160

50 0.25135 -0.05312 0.06190 0.17205 0.01181

100 0.15138 -0.05363 0.06259 0.17993 0.01146

500 0.03666 -0.05295 0.06245 0.1544 0.01162

1000 0.01841 -0.05247 0.06124 0.15832 0.01170
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Table 5.7 – Moments estimator performance based on Gumbel survival copula of two pa-
rameters under singly right censored variable (T1) generated from 1000 replications with
unit Pareto margins and shape parameter 0.3. Relative bias and RMSE of the estimators
a are calculated for different censoring values and for moderate dependence.

τ = 0.5, α = 0.2⇒ β = 1.82

Sample c1 α̂ β̂
Size R.Bias RMSE R.Bias RMSE

% of censoring 20
30 0.12019 -0.02632 0.03015 0.06926 0.00642

50 0.07406 -0.02598 0.03007 0.08484 0.00645

100 0.03829 -0.02558 0.02983 0.08158 0.00641

500 0.00804 -0.02591 0.03011 0.10276 0.00637

1000 0.00394 -0.02579 0.02979 0.08549 0.00643

% of censoring 15
30 0.15611 -0.02605 0.03027 0.0989 0.00657

50 0.10008 -0.02498 0.02906 0.09554 0.00633

100 0.05478 -0.02615 0.03037 0.12623 0.00641

500 0.01088 -0.02536 0.02957 0.09632 0.00631

1000 0.00546 -0.02605 0.03012 0.08785 0.00632

% of censoring 10
30 0.21223 -0.2556 0.02972 0.17075 0.00637

50 0.14818 -0.02544 0.02948 0.09582 0.00644

100 0.08047 -0.02526 0.02945 0.13741 0.00644

500 0.01811 -0.02714 0.03121 0.09872 0.00636

1000 0.00915 -0.02675 0.03072 0.09565 0.00637

% of censoring 5
30 0.30813 -0.02537 0.02939 0.16263 0.00644

50 0.23892 -0.02488 0.02905 0.19983 0.00646

100 0.15392 -0.02639 0.03044 0.09317 0.00640

500 0.03543 -0.02568 0.02995 0.10464 0.00630

1000 0.01844 -0.02517 0.02931 0.10486 0.00637
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Table 5.8 – Moments estimator performance based on Gumbel survival copula of two pa-
rameters under singly right censored variable (T1) generated from 1000 replications with
unit Pareto margins and shape parameter 0.3. Relative bias and RMSE of the estimators
a are calculated for different censoring values and for strong dependence.

τ = 0.7, α = 0.4⇒ β = 2.78

Sample c1 α̂ β̂
Size R.Bias RMSE R.Bias RMSE

% of censoring 20
30 0.11466 -0.01275 0.01476 0.14167 0.00377

50 0.07528 -0.0126 0.01465 0.10573 0.00393

100 0.03747 -0.01287 0.01483 0.08515 0.00389

500 0.00787 -0.01251 0.01446 0.11032 0.00391

1000 0.00421 -0.01285 0.01478 0.08713 0.00385

% of censoring 15
30 0.15831 -0.01260 0.01459 0.14577 0.00394

50 0.10332 -0.01282 0.01485 0.10507 0.00387

100 0.05540 - 0.01303 0.01502 0.13646 0.00385

500 0.01108 -0.01221 0.01427 0.10486 0.00391

1000 0.00590 -0.01276 0.01473 0.10388 0.00389

% of censoring 10
30 0.21203 -0.01244 0.01443 0.12436 0.00384

50 0.14910 -0.01261 0.01460 0.16765 0.00384

100 0.08393 -0.01285 0.01475 0.15731 0.00389

500 0.01785 -0.01252 0.01455 0.1095 0.00395

1000 0.00872 -0.01297 0.01509 0.11251 0.00392

% of censoring 5
30 0.31116 -0.0126 0.01457 0.1568 0.00391

50 0.24405 -0.01236 0.01448 0.17432 0.00389

100 0.15254 -0.01259 0.01466 0.10309 0.00383

500 0.03668 -0.01306 0.01504 0.11537 0.00387

1000 0.01838 -0.01271 0.01469 0.10606 0.00386
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5.12 Application to a Real Data Set

In this part of the paper, we examine the performance of our estimation
procedure given in section (5.3), for a real data set of diabetic retinopa-
thy, which is available in the R software via the survival package (see
Ophthalmol, AM.J (1976) and Therneau, T.M (2015)). Diabetic retinopathy
is a disease that affects people with diabetes and can outcome in vision
loss and blindness. In the study, a significant number of diabetic patients
(times of follow-up for 197 diabetic patients under 60 years old, who are at
high-risk of vision loss) was followed for an extended period. The primary
aim of the study was to assess the efficacy of photocoagulation as a treat-
ment for proliferative retinopathy. For each patient, one eye was treated
with laser photocoagulation, and the other eye was taken as a control.

a. Scatter plots b. Cens and obs data for T1 c. Cens and obs data for T2

Figure 5.2 – Censored and observed points for each T1 and T2 separately of bivariate
survival Gumbel copula.

To model this data, the evaluation that piques our interest is concerned
by the case when the two variables are both censored. To fit the failure
times (T1, T2), we use a bivariate Gumbel family of two parameters with
extreme value margins (Pareto (γ = 0.3)) for both T1 and T2. Taking T1 as
the time to a visual loss for the treatment eye and T2 the time to visual
loss for the control eye.

In the R software (the survival package), the percentage of uncenored
times for T1 is 73% (143 observations) and 49% (96 observations) for T2.
To model this data in our case, we performed a censoring adjustment to
the percentage of censoring time, assumed for 5, 10, 15, 20% for T1 and T2
who have the same tau of censorship the purpose of which is to prove the
efficiency of the estimator in several cases of censoring.

We ran the algorithm presented in section (5.3), by considering
Kendall’s tau as the association index (a function of the dependency pa-
rameter in this application is considered to be the correlation between the
two visual loss times (T1, T2) for the treatment eye and the control eye).
To assess the performance of the considered estimator, we have used the
RMSE and the relative bias (R.Bais) define by:

R.Bais =
1
N

[
∑N

i=1 θ̂i − θ
]

θ
, RMSE=

√√√√ 1
N

N

∑
i=1

(
θ̂i − θ

)2
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Table 5.9 – Relative bias and RMSE of Moments estimator based on a Gumbel survival
copula model from the Diabetic Retinopathy study data.

τ = 0.7 , α = 0.1⇒ β = 2.78
sample % of α̂ β̂ Assoc τ Assoc τ

Size cens R.Bias RMSE R.Bias RMSE before cens after cens

5% -0.0126 0.0146 0.3941 0.0042 0.6967 0.6412

n = 50 10% -0.0126 0.0146 0.4147 0.0041 0.7056 0.5925

15% -0.0128 0.0148 0.3547 0.0041 0.7002 0.5373

20% -0.0125 0.0145 0.3440 0.0042 0.7001 0.4930

5% -0.0125 0.0146 0.4243 0.0043 0.7004 0.6415

n = 100 10% -0.0122 0.0143 0.3818 0.0041 0.6994 0.5849

15% -0.0133 0.0152 0.3613 0.0042 0.7016 0.5376

20% -0.0130 0.0149 0.3585 0.0042 0.6982 0.4859

5% -0.0125 0.0146 0.4102 0.0042 0.7007 0.6426

n = 500 10% -0.0131 0.0150 0.3784 0.0043 0.7000 0.5872

15% -0.0126 0.0146 0.3648 0.0041 0.7000 0.5369

20% -0.0130 0.0150 0.3415 0.0042 0.6998 0.4885

5% -0.0127 0.0147 0.4077 0.0042 0.7003 0.6409

n = 1000 10% -0.0128 0.0148 0.3841 0.0042 0.7001 0.5881

15% -0.0125 0.0145 0.3573 0.0042 0.6999 0.5361

20% -0.0125 0.0145 0.3388 0.0042 0.7003 0.4891

where θ̂i is the CCM estimator (from the considered model) of θ. In Figure
(5.2), (a): shows the scatter plots of the survival Gumbel copula with two
parameters, (b) and (c): shows the censored and observed data for each
variable T1 and T2 respectively.

Table (5.9) shows the relative bias (R.Bias) and the RMSE of the param-
eters estimates under different doubly right-censoring values. The correla-
tion between these two times was supposed to be strong τ = 0.7 (it can be
assumed to be lower in the same way and it also gives good results for the
estimator). This association dependency value presented before and after
censoring (Assoc τ before cens, Assoc τ after cens). For this data set, the
estimator gave the smaller relative bais and RMSE values, which proves
its effectiveness.

5.13 Conclusion and perspective

In this paper, we have presented a semi-parametric estimation method
of a survival copula C̃ based on the classical method of moments under
individually censored of (T1, T2). As a logical continuation of results estab-
lished by Idiou et al (2020) [68], general formulas are given for marginal
survival copula C̃ of such data by the assumption that their underlying
copula is Archimedean. Two models are proposed for this study, the Clay-
ton model of one-parameter and the Gumbel model of two-parameters
proved our theoretical results obtained. Under the Archimedean depen-
dence structure assumption for censored data, a simulation study eval-
uates the performance of our estimator, relative bias, and RMSE formu-
las for estimator are evaluated. This study shows that the new estimator
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works well, where the values obtained are tending towards zero for each
case of small and even large samples. The methodology presented in sec-
tion 5.3, was applied to real data from the Diabetic Retinopathy Study,
which is available in the "survival" package [73],[86], of the R software.
For this data set, the estimator gave the smaller relative bias and RMSE
values, which proves its effectiveness and robustness.

Consequently, this method is preferable if we compare it with the max-
imum likelihood method and other methods ([5], [71]), because of its easy
analytical mathematical form.

Our main result for this study is based on the copula approaches and
the survival analysis, under the Archimedean dependence structure as-
sumption for censored data. Based on these results, we can establish a
new methods checking process of Archimedean copula models for singly
right-censored data. This is one of our recent research areas and the idea
was already established in another paper that is under preparation.

5.14 Appendix

Proof of Corollary (5.8.1)

For k > 1 the kth moments is defined by:

E(Vk
∣∣∣ T1 > c1, T2 = t2) =

∫ C̃(c1,t2)

0
vkdF1 (v, c1, t2) ,

based on theorem given by Wang, we use the conditional distribution
of V when only T1 is censored (V| T1 > c1, T2 = t2), we have

E(Vk
∣∣∣ T1 > c1, T2 = t2) =

∫ C̃(c1,t2)

0
vkdF1 (v, c1, t2)

=
∫ C̃(c1,t2)

0
vk

{
−ϕ′′ (v) ϕ′

(
C̃ (c1, t2)

)
(ϕ′ (v))2

}
dv

= I

To simplify I we pass directly to integration by parts, and we have:

I =

[vk ϕ′
(
C̃ (c1, t2)

)
ϕ′ (v)

]C̃(c1,t2)

0

− k
∫ C̃(c1,t2)

0
vk−1 ϕ′

(
C̃ (c1, t2)

)
ϕ′ (v)

dv

 ,

it follows by changing variables:

I = (C̃ (c1, t2))
k − k(C̃ (c1, t2))

k ϕ′
(
C̃ (c1, t2)

) ∫ 1

0

vk−1

ϕ′(vC̃ (c1, t2))
dv

Which is the kth moments of the variable V, where only T1 is censored.
Because of the copula’s symmetry, the same proof may be used to obtain
the kth moments of the variable V using equation (2) of Corollary (5.8.1),
where only T2 is censored.
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In this chapter, we are interested by copula modeling and its applications
in the analysis of multivariate survival data. We have used the frailty

model for bivariate survival data by considering Archimedean copulas.
Our main idea in this chapter focused to introducing the dependence be-
tween the survival times T1, ..., Td, using an unobserved random variable
W, called frailty model with variable latent. We then focused on the par-
ticular cases of Clayton-Oakes copulas and the model with frailty gamma-
type.
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Abstract

In mathematics and statistics areas, the modeling of Copulas and their
estimation is one of the most important research fields. Copulas have re-
cently become a very important average in the structure dependence mod-
eling between marginal distributions and joint distribution of a couple of
random variables. In this paper, we are interested by Copula modeling and
its applications in the analysis of multivariate survival data. In particular,
the Archimedean copula familly. As well, our main idea is also focused
to introducing the dependence between the survival times T1, ..., Td, using
an unobserved random variable W, called frailty model with variable la-
tent. This paper ended with an application presented on bivariate survival
data in biostatistics fields, analyzed by the Copula procedure of the SAS
software.

Index Term Copula, Survival analysis, Fraitly model, Archimedean
Copulas.

Résumé

Dans le domaine des mathématiques et des statistiques, la modélisa-
tion des copules et leur estimation est l’un des domaines de recherche les
plus importants. Les copules sont récemment devenues une moyenne très
importante dans la modélisation de la dépendance de structure entre les
distributions marginales et la distribution conjointe d’un copule de vari-
ables aléatoires. Dans cet article, nous présentons une synthèse des travaux
récents portant sur cette théorie et ses applications à l’analyse des données
de survie multivariée. De plus, notre idée principale est également axée
sur l’introduction de la dépendance entre les temps de survie T1, ..., Td,
en utilisant une variable aléatoire non observée W, appelée modèle de
fragilité avec variable latente. Enfin, à titre d’illustration, une application
sur des données de survie bivariée issue de la littérature dans des do-
maines de biostatistique est présentée, et analysée par la procédure Proc
Copula du logiciel SAS.

Terme d’indice Copule, Analyse de survie, Modèle de fragilité, Cop-
ules archimédiennes.

6.1 Introduction

Recently, considerable attention has been paid to the problem of inference
about copulas, the term copula comes from the Latin word " copũlae ",
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which means a bond, bond, or union. Among the most important statisti-
cal works in copula theory are those of Hoeffding, (1940) [43], (1941) [44],
who used copulas to study measures of non-parametric associations. He
thus obtained optimal inequalities, providing upper and lower bounds for
particular versions of copulas, cited in the Theorem (bounds of Fréchet
Hoeffding (1957)) [29]. The monographs Deheuvels (1979) [19], Cook and
Johnson (1981) [17], Cherubini et al. (2004) [14], Nelsen (2006) [67], Joe
(1997) [49] and Genest (1993) [33] summarize some extent activities in this
area.

Basically, a copula function is a function which joins or couples mul-
tivariate distribution functions to their univariate marginal distribution
functions, which is confirmed by Sklar (1959) [84], in a theorem bearing
his name, shows that, under certain conditions, there is a unique copula
function C such as :

F (x1, ..., xd) = C (F(x1), ..., F(xd)) (6.1.1)

In various fields of statistics, this function is critical for modeling depen-
dency as (finance, actuarial science, and more recently in biology and
health, etc.). In this context, particularly in the area of health, the study
of the links between the dates of occurrence of a disease, its possible date
of recovery, relapse, and death, several multivariate survival models tak-
ing into account the dependence between random variables are based on
the notion of copulas, often without making explicit reference to them. The
nature of these problems in survival analysis leads to constructing a fam-
ily’s model of multivariate survival functions from univariate marginal
survival functions.

Our aim for this article is to introduce the copula approach to mul-
tivariate survival modeling, this approach appears implicitly in Clayton
(1978) [16], who was one of the first to suggest a survival analysis of the
bivariate association model, and in Marshall and Olkin (1988) [61].

In the epidemiological context, frailty models are models involving an
individual parameter. These epidemiological models assume that a subject
may be more brittle than another and therefore have a greater risk of death
or another pathological event. These fragility models were introduced by
Lancaster (1979) [54], who used a proportional risk model. Vaupel et al
(1979) [91], suggested the application of the gamma model with another
frailty model. Gamma distributions were used due to mathematical at-
tractiveness. They are well known and have simple densities. The appli-
cation of these models in survival is contemporary (Clayton, (1978)) [16].
The main idea is to introduce a dependence between the survival d-times
T1, ..., Td, using an unobserved random variable W.

The article is organized as follows. The second section, is devoted to
a brief presentation of univariate and multivariate survival models, and
copulas specific to them. Section three, is concacred for the copula model
using the Clayton model. In section four, we consider the approach of
multivariate survival models with frailty variable and present the copulas
associated with this type of model. In the fifth section, we use the Proc
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Copula procedure of the SAS software to analyze real data of recurrent
durations in hemodialysis.

6.2 Survival models

Let T be a survival time (also called variable of interest), from now we
noted F, f , S, the distribution function, the density function, and the sur-
vival function for a fixed time t respectively. Usually in survival modeling,
one of the main concepts is the instantaneous hazard rate or the risk func-
tion λ(t) for a fixed instant t given by the formula (4.1.1) (Lancaster, 1990)
[52]. It can be interpreted as the instantaneous rate of death, another ex-
pression of λ is known by:

λ(t) =
f (t)
S(t)

,

the link between the cumulative hazard function Λ and S is given by the
following relation:

S(t) = exp(−Λ(t)),

which allows us to write:

f (t) = λ(t) exp(−Λ(t)) = λ(t)S(t).

Another important concept is the baseline hazard function λ0(t) (Frees
and Valdez (1998) [28]). It intervenes in particular in the widely used
model known by Cox’s model (Cox (1972) [18]), it entails modeling the
risk function λ(t), thus:

λ(t) = exp(XβT)λ0(t),

where X is a vector of covariates, and β is a vector of parameters associated
with these covariates. This regression model (a proportional risks model)
makes it possible to analyze the distribution of durations as a function of
covariates. He is part of a larger family λ(t) = g

(
XβT) λ0(t), where g(.)

any function, presented in Cox’s model as the exponential function.

One of the interests of this model is the interpretation of the param-
eters. Take the example of a covariate Xj which can take two values: 0
if the individual is taking treatment A and 1 if he is taking treatment B.
The coefficient β j, or rather exp(β j) is the instantaneous risk of death rela-
tive to treatment B compared to treatment A. In the multivariate case, the
survival function S(t) is defined by:

S(t1, ...., td) = P[T1 > t1, ...., Td > td],

where T1, ....Td are a d-survival times. The univariate marginal survival
functions Sj(tj), are noted by:

Sj(tj) = P{Tj > tj}
= S(0, ...., 0, tj, 0, ...., 0)

In this article we assume that the survival times are continuous and
take their values in R+. Noting that the relation between the multivariate
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survival function S and the multivariate distribution function F, is not so
trivial that in the univariate case:

S(t1, ...., td) 6= 1− F(t1, ...., td).

On the other hand, the hazard rate and the multivariate hazard func-
tion are given respectively by:

λ(t1, ...., td) = lim
max ∆j→0

P[t1 ≤ T1 ≤ t1 + ∆1, ...|T1 ≥ t1, ...]
∆1....∆d

=
f (t1, ...., td)

S(t1, ...., td)

Λ(t1, ...., td) =
∫ t1

0
...
∫ td

0
λ(s1, ..., sd)ds1...dsd

So, we can conclude that the relation between S and Λ cannot be for-
mulated simply as in the univariate case. For example, we obtain in the
bivariate case:

S(t1, t2) = S1(t1)S2(t2)e−Λ(t1,t2)

The construction of a multivariate survival function is not convenient
when using functions risk directly, as it is generally based on complex
conditional risk rates (Shaked and Shanthikumar (1987) [82]).

6.3 Copula models

a. 1 Survie bivariée

Figure 6.1 – F1(t1) = a + c; F2(t2) = c + d; S(t1, t2) = b; F(t1, t2) = c

A multivariate distribution can be constructed through the use of cop-
ulas in a survival setting. In most cases, we are looking for the lifetime of
statistical members in a certain population, which gives particular impor-
tance to this copula. Here we define a particular copula that is associated
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with this notion of survival and we are mainly interested by the bivari-
ate case. Let’s F (x1, x2) the joint distribution function of the random pair
(X, Y), where CX,Y is the copula of (X, Y), then the survival function of
the couple (X, Y) is:

S (x, y) = P (X > x, Y > y)
= 1− P (X ≤ x or Y ≤ y)
= 1− F (x)− G (y) + F (x, y)

= S1(x) + S2(y)− 1 + CX,Y
(
1− F(x), 1− G(y)

)
,

where S1(x) = 1− F(x) and S2(y) = 1− G(y) the marginal survival func-
tions of X and Y respectivly. So if we define a function C̃ in I2 → I:

C̃(u, v) = u + v− 1 + C(1− u, 1− v) (6.3.1)

We obtain
S (x, y) = C̃ (S1(x), S2(y)) .

Noted that: S (x, y) 6= 1− F(x, y). The application of Sklar’s theorem
to survival functions is immediate: any multivariate survival function is
written S(t1, .., td) = C̃(S1(t1), ..., Sd(td)), where C̃ is a copula, and S1,...,Sd
are the marginal survival functions.

6.3.1 Example: Clayton model

Clayton [1978] considers a bivariate association model for an ordered pair
of individuals. For (T1 and T2) the ages of the first and second member of
the pair, Clayton introduces a function θ(t1, t2) defined as:

θ(t1, t2) =
λ(t1|T2 = t2)

λ(t1|T2 ≥ t2)

This function is interpreted as the ratio of the risk rate of the condi-
tional distribution of T1 given T2 = t2, to that of T1, given T2 ≥ t2.

λ(t1|T2 = t2) = −
∂1S1(t1|T2 = t2)

S1(t1|T2 = t2)

=
∂1,2S(t1, t2)

∂1S(t1, t2)

and

λ(t1|T2 ≥ t2) = −
∂1S(t1, t2)

S(t1, t2)
,

then

θ(t1, t2) = −
∂1,2S(t1, t2)× S(t1, t2)

∂1S(t1, t2)× ∂2S(t1, t2)
= − f (t1, t2)× S(t1, t2)

∂1S(t1, t2)× ∂2S(t1, t2)

Clayton assumes that θ(t1, t2) is constant and equal to a parameter θ,
θ > 0. Then, we have:

∂1,2S(t1, t2)

S(t1, t2)
− θ

∂1S(t1, t2)

S(t1, t2)
× ∂2S(t1, t2)

S(t1, t2)
= 0
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The survival function S(t1, t2) is therefore the solution of the non-linear
partial differential equation of second order:

∂1,2π(t1, t2) + (θ − 1) ∂1π(t1, t2)× ∂2π(t1, t2) = 0

where π(t1, t2) = − ln (S(t1, t2)) . Clayton showed that the solution is
of the form:

S(t1, t2) = [1 + (θ − 1) (a1 (t1) + a2 (t2))]
− 1

θ−1

where a1 and a2 are two non-decreasing functions satisfying
a1(0) = a2(0) = 0, we will give the canonical representation of this sur-
vival function. The univariate marginals of S(t1, t2) are respectively:

S1 (t1) = S1 (t1, 0) = [1 + (θ − 1) (a1 (t1))]
− 1

θ−1

and
S2 (t2) = S1 (0, t2) = [1 + (θ − 1) (a2 (t2))]

− 1
θ−1

noted Sj
(
tj
)
= uj, j = 1; 2, it is easy to show that:

tj = a−1
j

{
u1−θ

1 − 1
θ − 1

}

then

S−1
j

(
uj
)
= a−1

j

{
u1−θ

1 − 1
θ − 1

}
,

where a−1
j (.) and S−1

j (.) the reciprocal functions (and not inverse
power) of aj and Sj respectively. The survival copula associated with the
Clayton model is therefore:

C̃ (u1, u2) = S(S−1
1 (u1) , S−1

2 (u2))

=

[
1 + (θ − 1)

{
u1−θ

1 − 1
θ − 1

+
u1−θ

2 − 1
θ − 1

}]− 1
θ−1

=
{

u1−θ
1 + u1−θ

2 − 1
}− 1

θ−1

By noting α = 1− θ, we find the Archimedean copula of Clayton.

6.4 Frailty model

The frailty model, often known as the frailty model or model with frailty,
is a conditional risk model containing a multiplicative factor. In the con-
text of health, this term implies that one patient may be more brittle than
another, exposing them at a higher risk of death (or worsening of his dis-
ease) than one other.

In this model, a random parameter (called the frailty parameter) is
introduced that could be shared by a group of patients (group effect).
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Integrating this frailty parameter (having a function of appropriate den-
sity and its corresponding Laplace transform) in the bivariate survival
distribution conditional yields the joint survival function from the condi-
tional risk model, where the joined survival functions take the form of
an Archimedean copula. On the foundation it is sometimes claimed that
the frailty model corresponds to a specific model of Archimedean copulas
based on this observation (Manatunga and Oakes (1999) [1], Viswanathan
and Manatunga (2001) [90], Andersen (2005) [2]). This assertion, though, is
confusing because the two modeling approaches are so different in nature.

The main idea is to introduce the dependence between the survival
times T1, ..., Td, using an unobserved random variable W, called frailty.
This corresponds to the modeling of a variable latent (or hidden). Condi-
tional on the frailty W of distribution G, the survival times are assumed
to be independent. Then, the conditional survival function is given by:

S(t1, ..., td|w) = P[T1 > t1, ..., Td > td|W = w]

=
d

∏
j=1

P[Tj > tj|W = w]

=
d

∏
j=1

Sj[tj|W = w].

Thus, the unconditional survival function can be determined as:

S(t1, .., tn) = E(E(S(t1, .., tn|W))

=
∫

S(t1, .., tn|w)dG(w).

We require Marshall and Olkin’s Theorem [61], in order to have a more
interesting representation of frailty models.

Theorem 6.4.1 (Marshall et Olkin (1988) [61]) Let F1, ...Fd the univariate distribution functions,
and G a d-variable distribution function such that G(0, ..., 0) = 1, with the
univariate marginal function Gj, j = 1, ..., d. Noted the Laplace transform of G,
ϕ and also of Gj is ϕj. Let C a d-varied distribution function with all univariate
marginals uniform over I, if Hj(x) = exp(−ϕ−1

j (Fj(x))), then:

F(x1, ..., xd) =
∫

C[H1(x1)
w1 , ..., Hd(xd)

wd ]dG(w1, ..., wd) (6.4.1)

is a d-variable distribution function with marginals F1, ...Fd.

Marshall and Olkin (1988), afterward have studied a particularly inter-
esting and simple case of (6.4.1), (see [35], page 15). Then, the expression
(6.4.1)) becomes:

F(x1, ..., xd) = ϕ1(ϕ−1
1 (F1(x1)) + ... + ϕ−1

1 (Fd(xd))) (6.4.2)

It is a particular case of an Archimedean copula where the generator ϕ is
the inverse of the Laplace transform. We can now state the definition of
the survival functions of frailty.
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Definition 6.4.1 A survival function is said to be frailty if it is written as:

S(t1, .., td) = C̃(S1(t1), ..., Sd(td))

where C̃ is an Archimedean copula with a generator that corresponds to the in-
verse of the Laplace transform of the frailty variable’s distribution W. The gener-
ator is the inverse of a Laplace transform in more generic terms.

6.4.1 Bivariate survival copula and frailty model

The modeling of bivariate survival data is the emphasis of this section.
Consider two "survival times" (T1, T2), which correspond to two dura-
tions for establishing a diagnosis carried out on the same individual by
two different techniques, for example, T1 for radiography (radiographic
(RX)) and T2 for ultrasound (l’échographie (US)). Let S1(t) and S2(t) be
the marginal survival functions for each method (Goethals et al, [37]). A
frailty model is given by:

λij(t) = wiλj,wi(t),

• λij(t) the instantaneous risk function at time t for an individual
i = 1, ..., n, with diagnostic technique j = 1, 2.

• λj,w(t) the risk function at time t for an individual whose frailty is
equal to w and the technique diagnostic j.

• wi the term of the frailty of individual i.

To define the copula models and frailty models, we need a particular
Archimedean copula family where the generator ϕ is the inverse of the
Laplace transform:

C(u, v) = ϕ
{

ϕ−1(u) + ϕ−1(v)
}

,

where ϕ(0) = 1, and ϕ−1(.) is the inverse of this generator, so we only
need a function family ϕ(.). Let gW(.) be the density of the frailty r.v.,
defined on the support [0, ∞[) and ϕW(s), its Laplace transform given by:

ϕW(s) = E {exp(−sw)}

=
∫ ∞

0
exp(−sw)gW(w)dw.

Thus, the conditional survival function of W, is written as:

SW(t1, t2) = C̃(S1,W(t1), S2,W(t2)),

which can also presented by:

SW(t1, t2) = ϕW

{
ϕ−1

W (S1,W(t1)) + ϕ−1
W (S2,W(t2))

}
(6.4.3)

For the frailty model, the conditional survival function is given by:

SWi(t1, t2) = exp[−wi {Λ1,wi(t1) + Λ2,wi(t2)}], i = 1, ..., n
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where Λj,wi(t) =
∫ t

0 λj,wi(s)ds, j = 1, 2, the cumulative hazard function.

As a result, by integrating the frailty in relation to the frailty density a
frailty models joint survival function can be expressed as:

S(t1, t2) =
∫ ∞

0
SW(t1, t2)gW(w)dw

= E[exp {−W(Λ1,w(t1) + Λ2,w(t2))}]

Then, S(t1, t2) becomes:

S(t1, t2) = ϕ {Λ1,w(t1) + Λ2,w(t2)} (6.4.4)

Since the marginal survival function can be written as:

Sj(t) = ϕ
{

Λj,W(t)
}
⇒ Λj,w(t) = ϕ−1(Sj(t)) (6.4.5)

hence, if we replace (6.4.5) in (6.4.4), the joint survival function of the
frailty model becomes:

S(t1, t2) = ϕ
{

ϕ−1(S1(t)) + ϕ−1(S2(t))
}

(6.4.6)

From (6.4.3) and (6.4.6), we notice that the two models are different in
nature because the copula used in the joint survival functions in (6.4.3)
and (6.4.6) is the same but the marginal survival functions are not even
the same.

6.4.2 Clayton-Oakes copula and gamma frailty model

The copula function for the Clayton-Oakes model, is the joint survival
function of a frailty model whose Laplace transform is that of an r.v. with
gamma distribution, i.e. ϕθ(s) = (1 + θs)

−1
θ .

Consider again the example of the durations corresponding to two
diagnostic techniques j = 1; 2 (see [34]). Laplace transform of a gamma
density that have a single parameter θ and its inverse ϕ−1(s) are given by
:

ϕ−1
θ (s) =

(s−θ − 1)
θ

, θ = 0

The joint survival copula function of the Clayton Oakes model can be
calculated directly using (6.4.3):

Sc(t1, t2) = Cθ(S1,c(t1), S2,c(t2))

= [{S1,c(t1)}−θ + {S2,c(t2)}−θ − 1]
−1
θ

The joint survival function for this frailty model becomes:

Sm(t1, t2) = [1 + θ {Λ1,u(t1) + Λ2,u(t2)}]−
1
θ

which allows us to write:
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Sm(t1, t2) =
{

1 + [(S1,m(t1))
−θ − 1] + [(S2,m(t2))

−θ − 1]
}− 1

θ

=
{
(S1,m(t1))

−θ + (S2,m(t2))
−θ − 1

}− 1
θ

This expression resembles the copula form shown previously, but

Sj,m(t) 6= Sj,c(t), ∀j = 1, 2.

See Genest and Werker (2002), for more details.

6.5 Application to hemodialysis data

In this section, we use hemodialysis data published by McGilchrist and
Aisbett (1991), and analyzed by frailty models. The occurrence of infec-
tions in patients with renal failure who were on hemodialysis motivated
this study, this is said by purifying toxins from the blood produced by the
body and eliminating them through an artificial filter.

The catheter, a hollow plastic tube that the doctor inserts into a vein
during hemodialysis, can become infected. The catheter is removed and
the infection is cured after an infection is discovered. A catheter is returned
for the next hemodialysis, etc. For each patient, the duration between each
date insertion of the catheter and subsequent infection are observed. Only
two observations per patient are considered. There may also be censoring
if during the study period one or both infections do not happen.

We will not deal with the censored case here and will consider all times
as observed. McGilcrist and Aisbett treat the censored case with a frailty
model. For this, we use the new SAS procedure (ProcCopula), to estimate
the association parameter and then select the copula that best fits the data.
Future work will examine the copula model’s processing of these bivariate
data in the presence of censoring.

The histograms in Figure (6.2), are those of the marginal durations of
the two recurrence times. The continuous curves represent the theoretical
fitted densities assumed to be Weibull’s. We acknowledge a pretty good
fit.

a. Recurrence 1 b. Recurrence 2

Figure 6.2 – Empirical histogram (Weibull) and fitted densities of the two recurrence
times.
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The corresponding empirical marginal distribution functions at recur-
rences 1 and 2 are shown in Figure (6.3). The updated Weibull distribution
functions from the estimated parameters are represented by the continu-
ous lines.

a. Recurrence 1 b. Recurrence 2

Figure 6.3 – Empirical distribution functions and their estimates (Weibull) of the two
recurrence times.

The Pearson, Spearman and Kendall (tau) correlation coefficient esti-
mates are 0.07522 (with a degree of significance p = 0.6535), 0.01040(p =
0.9506) and 0.01004(p = 0.9298) respectively. The Clayton copula param-
eter θ is estimated to be 0, 00000010536712.

a. Scatter plots b. Clayton Copula: outlines c. Clayton Copula: area

Figure 6.4 – Bivariate empirical distribution and associated graphics of Clayton Copula.

The point clouds ((t1, t2) and (t2, t1)) (a)) are visualized in Figure (6.4),
as well as the contour lines of the bivariate distribution (b) and the sur-
face corresponding to it (c) estimated by a Clayton copula. Frank’s and
Gumbel’s copulas can be obtained in the same way.

Table (6.1) summarizes the results concerning the association parame-
ter θ estimated under different choices of copula models (Clayton, Frank,
and Gumbel). The Akaike Criterion (AIC) allows you to select the optimal
model for your data (smallest AIC value). The choice of Gumbel’s copula
looks the best.
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Table 6.1 – Associated estimation parameter for three models of Copula under Akaike
penalization criterion

Copule θ Std. Error AIC

Clayton 1, 054× 10−7
0 2,0

Frank 0,150408 1,031073 1,97873

Gumbel 1,039736 0,127503 1,89611

The two recurrence times are weakly correlated. These bivariate data
could be analyzed as univariate data. We have presented here a succinct
analysis of the association between the two recurrence times. We did not
analyze the effects of the covariates. It would be interesting to compare the
analysis of the effect of these covariates by considering the data as univari-
ate to that taking into account the bivariate aspect modeled by a Gumbel
copula, retained here by the AIC. It would also be interesting to compare
the covariate effects to those obtained using a model Cox regression with
frailty.

The SAS programs used are given in the appendix.

6.6 Conclusion and perspectives

This article’s purpose was to present copulas and their essential prop-
erties, as well as their application to survival data. Copulas can thus be
used to model the relationships between the components of multivari-
ate survival in a simple and natural way. An additional tool often used
for modeling multivariate survival data is the introduction of parameters
individual random factors often interpreted as parameters of frailty. In
this work, we have used this model for bivariate survival data considering
Archimedean copulas. We then focused on the particular cases of Clayton-
Oakes copulas and the model with gamma-type frailty. For each of these
two models, the copulas used for the functions of bivariate survival are
the same. However, the marginal survival functions are modeled in ways
different.

Then we moved on to health-related survival data applications. Sur-
vival data can also come from reliability studies in the industry. The pres-
ence of censorship, particularly in the univariate case, is a significant chal-
lenge in the study of this sort of data. In the bivariate case, this question
remains largely open. Data analysis of bivariate survival and censored by
copulas is the subject of ongoing work.

In the field of insurance (actuarial) and more generally in finance, the
theory of copulas has been very successful, and in connection with the
theory of extreme values, many copulas have been built and used.

This work also overlooks statistical inference issues, which are often
complex, especially in presence of censorship. Recent research in the field
of copulas is more often statistical than theoretical nature, F. Lounas (2011)
[59], Deheuvels (1979) [19], Genest (1987) [34], Genest and Rivest (1993)
[33], are excellent references on this subject.
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In the realm of medicine, survival data, or continuous quantitative
data, is widely employed for diagnostic or prognostic purposes. Quite of-
ten we also find data of a nature qualitative and discreet (Fontaine, 2017)
[26]. This article prompts several perspectives for future work and the de-
velopment of copula-based models for this type of data.

In the field of copulas, research has also been applied to the develop-
ment of computer aspects, through the publication of programs in the R
language and recently, SAS with "Proc Copula". We used "Proc Copula" to
process the hemodialysis data. Unfortunately, this procedure cannot pro-
cess censored data. Future and useful work will be writing a macro SAS
going in this direction.

The frailty variables, considered here, are latent, not observed, but one-
dimensional. In the example presented, this variable characterized the ef-
fect of the individual on the recovery time currency. These individuals
could come from several hospitals. The differential effect, not observed,
of these centers would then be a latent variable. A future research per-
spective would be the modeling and analysis by copulas of multivariate
lifetimes with latent variables themselves multivariate. Processing such
data is extremely complicated, regardless of computer type.

6.7 Appendix

Program SAS: Proc Copula applied on recurrency hemodialysis data

proc univariate data=recurrences; var recurrence1 recurrence2;
histogram recurrence1 recurrence2/weibull;run;
proc univariate data=recurrences;var recurrence1 recurrence2;
cdfplot recurrence1 recurrence2/weibull;run;
proc corr data=recurrences kendall pearson spearman;
var recurrence1 recurrence2;run;
proc copula data=recurrences;var recurrence1 recurrence2;
fit clayton/marginals=empirical;
simulate /ndraws = 5000 seed = 12345678 marginals=empirical
plots = (distribution=cdf) out = fic1;run;
proc copula data=recurrences; var recurrence1 recurrence2;
fit frank/marginals=empirical;
simulate /ndraws = 5000 seed = 12345678 marginals=empirical
plots = (distribution=cdf) out = fic1; run;
proc copula data=recurrences; var recurrence1 recurrence2;
fit gumbel/marginals=empirical;
simulate /ndraws = 5000 seed = 12345678 marginals=empirical
plots = (distribution=cdf) out = fic1; run;
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Outlook

We close this thesis with some research perspectives that could be the
subject of future research.

• Based on the outcomes of Gripkova and Lopez’s (2015)[39], Lopez
and Saint-Pierre’s (2012)[72], research, our results presented in chap-
ter four can be applied for mixed censoring. This is one of our cur-
rent research topics and the idea is to develop another document
that is under preparation.

• Based on the results given in chapter four, we can establish a new
semi-parametric method checking process of Archimedean copula
models for various censoring patterns (singly or doubly censored).
This is one of our recent areas of research and the idea to establish
in another document that is also under preparation.

• The frailty variables, considered in chapter five, are latent, unob-
served, but one-dimensional. A future research perspective would
be the modeling and analysis by copulas of multivariate survival
times with latent variables themselves multivariate.

• Establish the asymptotic normality of the estimator obtained in
chapter four, by considering the two cases of censoring proposed.

• Study the same method of moments with other types of censored
data (mixed censoring, censored by intervals,...).
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Software Overview

Rsoftware

R is a system for statistical computation and graphics. It provides,
among other things, a programming language, high-level graphics, inter-
faces to other languages, and debugging facilities. This manual details and
defines the R language. It is a programming language and environment
commonly used in statistical computing, data analytics and scientific re-
search. It is one of the most popular languages used by statisticians, data
analysts, researchers and marketers to retrieve, clean, analyze, visualize
and present data. Due to its expressive syntax and easy-to-use interface, it
has grown in popularity in recent years.

R is open-source and free

R is free to download as it is licensed under the terms of the GNU
General Public License. You can look at the source to see what’s happen-
ing under the hood. There’s more, most R packages are available under
the same license so you can use them, even in commercial applications
without having to call your lawyer.

R is popular – and increasing in popularity

IEEE publishes a list of the most popular programming languages each
year. R was ranked 5th in 2016, up from 6th in 2015. It is a big deal for
a domain-specific language like R to be more popular than a general-
purpose language like C. This not only shows the increasing interest in R
as a programming language but also in the fields like Data Science and
Machine Learning where R is commonly used.

R runs on all platforms

You can find distributions of R for all popular platforms Windows,
Linux and Mac.R code that you write on one platform can easily be ported
to another without any issues. Cross-platform interoperability is an impor-
tant feature to have in today’s computing world even Microsoft is making
its coveted. NET platform is available on all platforms after realizing the
benefits of technology that runs on all systems.
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Is R programming an easy language to learn !

This is a difficult question to answer. Many researchers are learning R
as their first language to solve their data analysis needs. That’s the power
of the R programming, it is simple enough to learn as you go. All you
need is data and a clear intent to draw a conclusion based on analysis on
that data.

In fact, R is built on top of the language S programming that was orig-
inally intended as a programming language that would help the student
learn to program while playing around with data. It is a dialect of S which
was designed in the 1980s and has been in widespread use in the statistical
community since. Its principal designer, John M. Chambers, was awarded
the 1998 ACM Software Systems Award for S.

The language syntax has a superficial similarity with C, but the se-
mantics are of the FPL (functional programming language) variety with
stronger affinities with Lisp and APL. In particular, it allows “comput-
ing on the language”, which in turn makes it possible to write functions
that take expressions as input, something that is often useful for statistical
modeling and graphics. R is an implementation of the S programming lan-
guage combined with lexical scoping semantics, inspired by the Scheme.
S was created by John Chambers in 1976 while at Bell Labs. A commer-
cial version of S was offered as S-PLUS starting in 1988. Much of the code
written for S-PLUS runs unaltered in R.

In 1991 Ross Ihaka and Robert Gentleman at the University of Auck-
land, New Zealand, began an alternative implementation of the basic S
language, completely independent of S-PLUS, which they began publiciz-
ing in 1993. It was named partly after the first names of the first two R
authors and partly as a play on the name of S. In 1995, Martin Maechler
convinced Ihaka and Gentleman to make R free and open-source software
under Version 2 of the GNU General Public License.

However, programmers that come from a Python, PHP, or Java back-
ground might find R quirky and confusing at first. The syntax that R uses
is a bit different from other common programming languages. While R
does have all the capabilities of a programming language, you will not
find yourself writing a lot of if conditions or loops while writing code in
the R language. There are other programming constructs like vectors, lists,
frames, data tables, matrices, etc. that allow you to perform transforma-
tions on data in bulk.

Applications of R Programming in Real World

Data Science

Harvard Business Review named data scientists the “sexiest job of the
21st century”. Glassdoor named it the “best job of the year” for 2016. With
the advent of IoT devices creating terabytes and terabytes of data that can
be used to make better decisions, data science is a field that has no other
way to go but up. Simply explained, a data scientist is a statistician with
an extra asset: computer programming skills. Programming languages like
R give data scientists superpowers that allow them to collect data in real
time, perform statistical and predictive analysis, create visualizations, and
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communicate actionable results to stakeholders. Most courses on data sci-
ence include R in their curriculum because it is the data scientist’s favorite
tool.

Statistical computing

R is the most popular programming language among statisticians. It
was initially built by statisticians for statisticians. It has a rich package
repository with more than 9100 packages with every statistical function
you can imagine. R’s expressive syntax allows researchers – even those
from non-computer science backgrounds to quickly import, clean, and
analyze data from various data sources. R also has charting capabilities,
which means you can plot your data and create interesting visualizations
from any dataset.

Machine Learning

R has found a lot of use in predictive analytics and machine learning.
It has various packages for common ML tasks like linear and non-linear
regression, decision trees, linear and non-linear classification, and many
more. Everyone from machine learning enthusiasts to researchers use R
to implement machine learning algorithms in fields like finance, genetics
research, retail, marketing, and health care.
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SAS software

SAS software, standing for Statistical Analysis System, is a proprietary
fourth-generation programming language (L4G) published by SAS Insti-
tute since (1976).

Since (2004), SAS has been at version 9, which corresponds to a major
evolution in the software because it incorporates a new conceptual brick
intended to establish itself in the world of business intelligence software.
It is, therefore, necessary to separate SAS Foundation, which represents
(L4G) alone, and SAS BI, which integrates specific applications.

The development of SAS began in (1966), with a grant from the NIH to
eight (US) universities, to analyze agricultural data. North Carolina State
University led this consortium.

In (1972), the (NIH) withdrew from the project, and SAS Institute was
founded in (1976) to continue the project. The SAS source code then in-
cluded 300,000 lines of code on punch cards. The system was completely
rewritten in C in the mid (1980s), for version (6) of (SAS1).

Traditional SAS software consists of a set of modules to meet the fol-
lowing needs through programming:

- creation and management of databases.
- analytical processing of databases.
- creation and distribution of summary and listing reports.
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Abstract

This thesis combines two interesting branches of statistics: survival
analysis and copula theory. The primary objective is to extend the cop-
ula theory results via semi-parametric estimation, under censored data.
More precisely, we are interested by a copulas semi-parametric estima-
tion, based on the classical moments estimation method, adapted for bi-
variate censored data. There are various kinds of censoring, we are only
look at doubly and singly right-censored data. As theoretical results, gen-
eral formulas were proved with analytical forms of the obtained estima-
tors. According to early research, many asymptotic results obtained in the
framework of non-parametric statistics for right-censored observations are
based on the Kaplan Meier estimator, which estimates the survival func-
tion. Taking into account the results of Lopez and Saint-Pierre (2012) [72],
Gribkova and Lopez (2015) [39], the asymptotic normality of the empirical
survival copula was established for the two cases of censoring. The depen-
dence structure between the bivariate survival times was modeled under
the assumption that the underlying copula is Archimedean. Accounting
for various censoring patterns (singly or doubly censored), a simulation
study was performed efficiency and robustness of the new estimator pro-
posed.

Individual random parameters, which are commonly understood as
frailty parameters, are another tool frequently employed for modeling
multivariate survival data. We implemented this model for two-variable
survival data using Archimedean copulas in the final part of the thesis.
The frailty variables considered here are latent variables that are not ob-
served, are nevertheless one-dimensional. In the example presented, this
variable characterized the effect of the individual on the recurrence time.
Then we looked at Clayton-Oakes copulas in particular, and even the
model with gamma-type frailty. For each of these two models, the cop-
ulas used for the bivariate survival functions are the same. Even so, the
marginal survival functions are modeled in different ways. The applica-
tions for health-related survival data were next examined.

Keywords: Copula, Archimedean copulas models, Semi-parametric es-
timation, Moments method, Survival copula, Right censored data, Frailty
model.
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Résumé

Cette thèse forme une sorte de mariage entre deux branches in-
téressantes de la statistique: l’analyse de survie et la théorie des Cop-
ules. L’objectif principal est d’étendre les résultats de la théorie des
Copules sur la base de l’estimation semi-paramétriques dans le cas ou
les données sont censurées. Plus précisément, nous nous intéressons à
l’estimation semi-paramétrique des copules, en utilisant la méthode clas-
sique d’estimation des moments, adaptée pour des données censurées.
Il existe plusieurs types de censure, nous nous concentrons uniquement
sur les données censurées à droite doublement et simplement. Comme
résultats théoriques, nous avons présenté les formules générales de ce
nouvel estimateur obtenu avec des formes analytiques. Des travaux ex-
istants montre que beaucoup de résultats asymptotiques obtenus dans le
cadre de la statistique non paramétrique pour des observations censurées
à droite, se basent sur l’estimateur de Kaplan Meier qui estime la fonction
de survie. Prise en compte les résultats de Lopez et de Saint-Pierre(2012)
[72], Gribkova et Lopez (2015) [39], la normalité asymptotique de la copule
de survie empirique a établie pour les deux cas de censure présenté. La
structure de dépendance entre les temps de survie bivariées a modélisé en
supposant que la copule sous-jacente appartient à une famille des copules
Archimidéennes. Prise en compte de divers modèles de censure (simple
ou double), une étude de simulation a été réalisée pour chaque cas de
censure, éclairer le comportement de la méthode d’estimation, a montré
l’efficacité et la robustesse du nouvel estimateur proposé.

Un outil additionnel souvent utilisé pour la modélisation des don-
nées de survie multivariée est l’introduction de paramètres aléatoires in-
dividuels interprétés souvent comme des paramètres de fragilité. Dans la
dernière partie de la thèse, nous avons utilisé ce modèle pour les don-
nées de survie à deux variables en considérant des copules Archimédi-
ennes. Les variables de fragilité, considérées ici, sont des variables la-
tentes, non observées, mais unidimensionnelles. Dans l’exemple présenté,
cette variable caractérisait l’effet de l’individu sur le temps de récurrence.
Nous nous sommes concentrés ensuite aux cas particuliers des copules de
Clayton-Oakes et du modèle avec fragilité de type gamma. Pour chacun
de ces deux modèles, les copules utilisées pour les fonctions de survie bi-
variée sont les mêmes. Toutefois les fonctions de survie marginales sont
modélisées de façons différentes. Nous nous sommes intéressés ensuite à
l’applications pour des données de survie relatives à la santé.

Mots clés : Copule, Modèles de copules archimédiennes, Estimation
semi-paramétrique, La méthod des moments, Copule de survie, Données
censurées à droite, Modèle de fragilité.
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