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Abstract

The thesis aims to provide the reader with how to use the most popular method for studying
the existence and uniqueness of the solution and the general energy decay of some wave problems
with strong delay and distributed delay, similar to the Kirchhoff system and the Lamé system.
The first chapter deals with introducing some basic notions in bounded and unbounded operators
and some main theorems in functional analysis. In second chapter, we proved the well-posedness
and an exponential decay result under a suitable assumptions on the weight of the damping and
the weight of the delay for a wave equation with a strong damping and a strong constant (re-
spectively, distributed) delay. Finally ”third and forth chapters”, we proved the global existence
of Kirchhoff’s coupled system and general decay for the coupled system of Kirchhoff and Lamé
with a distributed term delay.

Key words : Distributed delay term, Global existence, General Decay, Lyapunov functional,

Strong delay, Viscoelastic term, Wave equations.



Résumé

Le but de cette these est de fournir au lecteur comment utiliser la méthode la plus populaire
pour étudier I'existence et I'unicité de la solution et la décroissance générale d’énergie de certains
problemes d’ondes a fort retard et retard distribué, similaire au systeme de Kirchhoff et de Lamé.
Dans le premier chapitre, nous avons introduit quelques notions de base sur les opérateurs bornés
et non bornés et quelques théoremes principaux en analyse fonctionnelle. Dans le deuxieme
chapitre, nous avons prouvé l'existence et 'unicité avec un résultat de décroissance exponentielle
sous des hypotheses appropriées sur le poids de 'amortissement et le poids du retard pour une
équation d’onde avec un fort amortissement et un fort retard constant (respectivement, distribué).
Finalement ”troisieme et quatrieme chapitres”, nous avons prouvé ’existence globale du systeme
couplé de Kirchhoff et la décroissance générale pour le systeme couplé de Kirchhoff et de Lamé

avec un terme retard distribué.

Mots clés : Existence globale, Fonctionnelle de Lyapunov, Décomposition générale, Equations

des ondes, Retard fort, Terme de retard distribué, Terme viscoélastique.
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Introduction

Time delays arise in many applications since, in most instances, physical, chemical,
biological, thermal, and economic phenomena naturally not only depend on the present state
but also on some past occurrences, see [68], [62], [26], [38], and [18] and examples therein.
Recently, the control of partial differential equations with time delay effects has become an
active and attractive area of research. In fact, in many cases it was shown that delay can be
a source of instability and even an arbitrarily small delay may destabilize a system which
is uniformly asymptotically stable in the absence of delay unless additional conditions or
control terms have been used.

The aim of this thesis is to study the stability of solutions, the energy decay and the
existence of solution to some wave problems with delay term or distributed delay term.
In fact, we prove that under some assumptions on the parameters in the systems and on
the size of the initial data, the existence of solutions can be proved by using Hille-Yosida
theorem or Faedo-Galerkin method and the general decay of solutions using the appropriate

Lyapunov functionals, by considering the following three problems:

e A wave equation with strong damping and strong delay.
e Coupled kirchhoff system with a distributed delay term.

e Coupled Lamé system with viscoelastic dampings and distributed delay.

More precisely, we will consider at first a wave equation with a strong damping and a
strong constant (respectively, distributed) delay. As mentioned earlier, this delay can be a
source of instability. For instance, Datko in [19] showed that the time delay in the velocity

term can destabilize the system

U (2, 1) = Uge — 2auy (x,t —7), in (0,1) x (0, +00),
u(0,t) = u(1,t) =0, t € (—7,+00), (1)
u(z,0) = ug(x), ur(z,0) = uy(x), in (0,1).

Datko et al. [21] obtained the same result by replacing the internal delay in equation (1)

by a time delay in the boundary feedback control. However, the system without delay is
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uniformly asymptotically stable [16]. In [20], Datko presented two examples of hyperbolic
partial differential equations which are destabilized by small time delays in the boundary
feedback controls.

In the n-dimensional case, it is well-known that the problem

u(x,t) — Au(z,t) + ague(x, t) + awg(z,t —7) =0, in Q2 x (0,+00),
u(z,t) =0, on Ty x (0,400), (2)
%(m,t) =0, on Iy x (0,400),

is exponentially stable in the absence of delay (a = 0,a9 > 0). See |76] and [42]. In the
presence of delay (a > 0), Nicaise and Pignotti [59] examined system equation (2) and
proved, under the assumption that the weight of the feedback is larger than the weight of
the delay (a < ag), that the energy is exponentially stable. However, in the opposite case,
they could produce a sequence of delays for which the corresponding solution is instable.
The same results were obtained for the case of boundary delay. See also [2] for the treatment
of this problem in more general abstract form and [55], [60] and [61] for analogous results
in the case of time-varying delay. When the delay term in equation (2) is replaced by the
distributed delay

/ " (s (.t — 5)ds,

T1

exponential stability results have been obtained in [58] under the condition

T2
/ a(s)ds < ay.

For coupled systems in thermoelasticity Racke [66] considered the following system

U (2, 1) — auge(z,t — 7) + b0, (2, 1) =
Oi(x,t) — dOre(x,t) + bug,(z,t) =0, in(0,L) x (0,00),

where u is the transversal displacement and 6 is the difference of temperature of a beam of
length L, and proved that the internal time delay leads to an ill-posedness system. However,
the system without delay is exponentially stable [57, 33]. Mustafa and Kafini [56] dropped

the time delay in the harmonic term of the elastic equation of system (3) and added a dis-
tributed delay term of the form / 8)0.:(x,t — s)ds in the heat equation and established

an exponential decay result under the assumption

T2
/ p(s)ds < d.
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The time delay in Timoshenko type systems of the form

prug — K(ug + ), =0, in (0,L) x (0,00),
pﬂbtt - bqvbmz + K(uz + 1/}) + u1¢t($, t) + :U/2¢t(x7t - T) = 07 n (07 L) X (Ov 00)7

was proposed by Said Houari and Laskri [69], where u is the transversal displacement and
1 is the rotational angle of filament. They obtained an exponential decay result under the
assumption puy < pp. Kirane et al. [36] extended this result to time varying delay term.
Kafini et al. [34] examined a coupling Timoskenko-thermoelasticity type III system with
time delay and established exponential and polynomial stability results depending on the
wave propagation speeds. Recently Apalara [6] considered the following Timoshenko type

system with thermoelasticity of second sound, in the presence of distributed delay

P1Pt — K(‘px + @Zj)x + nee + / M2 (5) Pt (l',t - S) ds = 07 in (07 1) X (07 00)7
ptht - bwmc + k(@x + ¢) + 7993 = Oa in (07 1) X (07 00)7 (4)
/)3915 + g, + 5%1 = 07 in (07 1) X (07 OO),

| 7q: + Bq+0, =0, in (0,1) x (0, 00),

and proved an exponential decay result under the assumption

T2
[ eolds <
T1

System (4) in the absence of frictional damping (1 = 0) and with the presence of constant
delay instead of distributed delay, was investigated by Apalara and Messaoudi [5], and an
exponential stability was established under a smallness condition on the delay.

In this thesis, we consider the following problem with strong damping and strong delay

u(x,t) — Au(z, t) — pAug(z, t) — peAug(x, t —7) =0, in Q x (0, 00),

u(z,t) =0, on 02 x (0, 00), (5)
u (x,t —71) = folx,t —1), te(0,7),
u(z,0) = ug(x), u(x,0) =uy(z), in €,

where () is a bounded and regular domain of R™, 7 > 0 represents the time delay, p, s
are real numbers such that |us| < py and wg,uq, fo are given data. Our equation can be
regarded as a Kelvin-Voight linear model for a viscoelastic material in the presence of a
delay response. In such a model, we have a spring and two dashpots in parallel whose total

stress is given by the following stress-strain relation
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de(z,t) de(z,t — )
Mo————
dt dt
where ¢ is the strain and 7 is the delay time, and g1 > 0, po are real parameters. For small

o(x,t) =¢e(x,t) +

deformations, the strain is proportional to the deformation gradient ¢ = kVu. Hence, by

substituting in the motion equation
U (z,t) = div o(x, t),

we obtain our equation. We refer the reader to [64] for application of the model when s = 0
in biological tissues. To the best of our knowledge, this problem has not been discussed be-
fore. In the second section, the constant delay term in (5) is replaced by the distributed
delay term of the form — f po(8)Auy(x,t — s)ds, where py : [11,72] — R is a bounded
function and 7 < 7, are two positive constants. We establish well-posedness and expo-
nential decay results under suitable conditions on the weights of the constant (respectively,
distributed) delay and the weight of the damping terms.

After that, we are interested in the following nonlinear viscoelastic Kirchhoff system

with a distributed delay and general coupling terms

(

¢
g |'ugy — M (||Vul|?)Au — Aug + / g1(t — s)Au(s)ds
0

—k1Auy — / pi(e)Au(x,t — 0)do+ av = 0,
Tl t (6)
lvg|'vge — M (|| Vo|]2)Av — Avy + / g2(t — s)Av(s)ds
0

—koAvy — / p2(0)Av(z,t — 0)do+ au =0,

\ T1
where
(x,0,t) € QX (11, 72) X (0,00).

With the initial data and boundary conditions

(u(z,0),v(z,0)) = (uo(x), vo(z)), in Q,

(ue(z,0), ve(2,0)) = (u1(z), v1(2)), in Q, )
(we(z, —t), ve(z, —t)) = (fol(z,1), go(z, 1)), in Q2 x (0,72),

u(z,t) =v(x,t) =0, on 0f) x (0, 00),

where €2 be a bounded domain in R™ with smooth boundary 02, I, « is positive constants.
The second integral represents the distributed delay and pq, o @ [, 72] — R are a bounded

functions, where 71,75 are two real numbers satisfying 0 < 71 < 75, and ¢y, g. are the
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relaxation functions. M is a smooth function defined by

M : R, >R, (8)
r— M(r)=a+br" (9)

with a,b > 0. In 1876 Kirchhoff proposed an equation named after him, which is a gen-
eralization of the D’Alembert equation, as it belongs to the wave equation models, which
describe the transverse vibration of a chain fixed at its end. The problem we are studying
is a description of the axially moving viscoelastic that consist of two heterogeneous wires (
such as electrical wires ) that will have an effect on their movements, especially accelera-
tion, and many authors have addressed these issues, including ([49],[50]), where the proof
of the global existence and the stability of solutions were established. The study of wave
equations with the delay in the last period forms a fertile and active region (see [17], [30],
[31], [32], [46], [67], [73] and [74] ). As the delay appears in many different physical, chem-
ical, biological, and engineering fields, where there is a time difference that can affect the
stability of the system. Recently, Mezouar and Boulaaras [47| have studied the viscoelastic
non-degenerate Kirchhoff equation with varying delay term in the internal feedback, and in
[48] the authors considered the generalized coupled non-degenerate Kirchhoff system with a
time varying delay term, they proved the global existence of solutions and they showed the
exponential stability result.

Finally, we proceeded to the study of another type of equation, we are concerned with

studying the polynomial decay rate of the following Lamé system in €2 x R

¢ )
Uy — At + / g1 (t —s) Au(s)ds — kg Au, — / p1(0)Auy(z, t — o)do = fi (u,v),
0

T1

Uy — Aev + /t go (t — 8) Av (s) ds — ke Avy — /T2 w2 (0)Av(z,t — )do = fo (u,v).
0 n (10)
Equations (10) are associated with the following boundary and initial conditions
u(z,t) = v(z,t) =0, on 002 x Ry,
u(z,0) = ug(x),v(z,0) = vo(x), u(x,0) = uy(z), v(x,0) = vy (x), 2 € Q, (11)
(ug(z, —t), ve(x, —t)) = (folx,t), go(z, 1)), in Q x (0,7),

where € is a bounded domain in R" (n = 1,2, 3), with smooth boundary 0). The elasticity

differential operator A, is given by

Acu = pAu+ (4 A) V (div u) ,
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and the Lamé constants p and A\ are satisfying the following conditions
>0, 0+ A>0.

The parameters ki, ko, 71 and 7 are positive constants with 71 < 7. The functions
f1, fo : [11, 7] — R are bounded. The functions f; (u,v) and fo (u,v) which represent
the source terms will be specified later. After several authors have studied the problems
of coupled systems and hyperbolic systems, their stability is associated with velocities and
are proven under conditions imposed on the subgroup [48|. The researchers also studied
behavior of the energy in a limited field with non-linear damping and external force, and a
varying delay of time to find solutions to the Lamé system [8, 11].

Recently, problems that contain viscoelasticity have been addressed, and many results
have been found regarding the global existence and stability of solutions (see |8, 11]), under
conditions on the relaxation function, whether exponential or polynomial decay. In addition,
in [13]|, Boulaaras obtained the stability result of the global solution to the Lamé system
with the flexible viscous by adding logarithmic nonlinearity, even though the kernel is not
necessarily decreasing in contrast to what he studied [8].

Introducing a distributed delay term makes our problem different from those considered
so far in the literature. The importance of this term appears in many works and this is
due to the fact that many phenomena depends on their past. Also, it is influence on the
asymptotic behavior of the solution for the different types of problems such that Timoshenko
system ([28], [35], [4],[6]), transmission problem [43|, wave equation [59], thermoelastic sys-
tem ([51],[56]).

At the end of this introduction, this thesis is organized as follows:

First chapter

The first is introductory chapter which include some basic notions in bounded and un-
bounded operators and some main theorems in functional analysis.
Second chapter

This chapter is the subject of publication in Journal of Mathematical physics [44]. The
contents of this chapter is organized as follows. In section 2, we present the semigroup
setting of the wave problem (5) with constant delay and establish the existence of a unique
solution. In section 3, we show that the energy associated to the solution of problem (5)
decays exponentially. In section 4, we give a short proof of the well-posedness of the problem
with distributed delay and establish the exponential decay of the solution.

Third chapter

In this chapter, we extend the result obtained by Mezouar and Boulaaras in [48] for a

coupled system (6). We have added the term of distributed delay and established the global
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existence and stability of the solution under conditions on the kernel. This work has been
published in the Journal of Revista de la Real Academia de Ciencias Exactas RACSAM
[23].

The outline of this chapter is the following: In the second section, some hypotheses
related to the problem are given and we state our main result. Then in section 3, we prove
the global existence of weak solutions. Finally, in the last section, we give the stability
result.

Fourth chapter

In this chapter, we extend the general decay result obtained by Baowei Feng in [29] to the
case of distributed term delay, namely, we will make sure that the result is achieved if the
distributed delay term exists. This result has been published in Journal of Function Spaces
( Hindawi) [24].



Chapter 1
Preliminary

In this chapter, we introduce some basic notions in bounded and unbounded operators
and some main theorems in functional analysis. As the semi-groups theory, Lax-Milgram
theorem and Faedo-Glerkin method. We are not trying to give a complete development, but
rather review the basic definitions and theorems, mostly without proof. We refer to [10],
[65], [14], [15], [9], [41], [25], [40], [75], [22].

1.1 Bounded and unbounded linear operators in Banach

spaces

Let (X, ].]|x) and (Y, .|ly-) be two Banach spaces over C [65], [9].

Definition 1. A linear operator A : X — Y is a transformation which maps linearly X in
Y, that s
Alax + By) = aA(x) + BA(y),Vz,y € X and a, f € C.

Definition 2. A linear operator A : X — Y is bounded if there exists C' > 0, such that
[Aully < Cllully, Yue X.

That is, we say that A is bounded if || Au||y remains bounded whenu € {x € X, ||z|, < 1}.
Otherwise, A is said to be unbounded.

Then, we cet

Ax
HAHE(Xy) = sup M, Ve e X,
T sexaro 2zl x

where L(X,Y) is the set of all bounded linear operators from X into Y. Moreover, the set
of all bounded linear operators from X into X is denoted by L(X).
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The preceding inequality holds with C' = ||A|| (the optimal constant).

Definition 3. A linear operator A from X into Y is a pair (A, D(A)), where D(A) is a
linear manifold of X and A is a linear map from D(A) C X toY. D(A) is called the domain
of A.

One says that the operator (A, D(A)) is densely defined if D(A) is dense in X.

For such an operator, its range Ran(A) is defined by

Ran(A) == A(D(A)) ={f € Y| f = Ag for some g € D(A)}.
In addition, one defines the kernel Ker(A) of A by
Ker(A) == {f € D(A)|Af =0}.

Definition 4. The graph G(A) of A is the set {(z, Ax) x € D(A)}. Since A is linear, G(A)
1s a subspace of X X Y. If the graph of A is closed in X XY, then A is said to be closed in

X. When there is no ambiguity concerning the space X, we say that A is closed.

Remark 1.

1. A is closed if and only if {x,} in D(A), {x,} — x, Az, — vy, imply x € D(A) and
Ax =y.

2. If D(A) is closed and A is continuous, then A is closed.

Definition 5. (Resolvent set and spectrum) Let X be a Banach space and let the closed
linear operator A : D(A) C X — X, the set:

p(A)={NeC: [ - A:D(A) — X is bijective}

is called the resolvent set of A and its complement o(A) = C\p(A) the spectrum of A.
For A € p(A) the reverse
R\ A) = (M — A7

s a bounded operator in X called the resolvent of A at point \.

1.2 Strongly continuous semigroups

In this section, we state some definitions and properties of a continuous semi-group of
linear and bounded operators [65], [9], [25].
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Definition 6. A family (T(t))i>0 of bounded linear operators on a Banach space X is
called a strongly continuous (one-parameter) semigroup (or Cy-semigroup) if it satisfies the

functional equation

T(t+s)=T(t).T(s), forallt,s>0, (12.1)
TO)=1 o
and is strongly continuous in the following sense. For every x € X the orbit maps
Ep it = & () =T ()x (1.2.2)

are continuous from Ry into X for every z € X.

The continuity of the orbit maps (1.2.2) at each ¢ > 0 and for each x € X is already

implied by much weaker properties.

Proposition 1. For a semigroup (T'(t)),s, on a Banach space X, the following assertions

are equivalent:
1. (T'(t)),> is strongly continuous.
2. limT(t)x =z for all z € X.
t—0
3. There exist 6 > 0, M > 1, and a dense subset D C X such that
(a) | T(#)|| < M for allt € [0,0],
(b) 11_r)%T(t)x =z forallx € D.

Proposition 2. For every strongly continuous semigroup (T(t)),,, there exist constants
w € R and M > 1 such that
IT@)| < Me™*

for allt > 0.
In particular, if w = 0 then the corresponding semigroup is uniformly bounded. Moreover,

if M =1 then (T'(t))i>0 is said to be a Cy-semigroup of contraction.

Definition 7. [65] (Infinitesimal generator of the semigroup) The linear operator A defined

by
T(H)z —
D(A) = {x € X: limM exists}
t—0 t
wnd Tt (1
Ap =t L2 AT O e DA
t—0 t t

is the infinitesimal generator of the semigroup T(t), D(A) is the domain of A.

10
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Definition 8. An unbounded linear operator (A, D(A)) on X, is said to be dissipative if
Re(Au,u)y <0, Yu € D(A).
Definition 9. An unbounded linear operator (A, D(A)) on X, is said to be maximal dissi-
pative (m-dissipative) if
e A is a dissipative operator.
e J)\y > 0 such that Im(\g] — A) = X.

Theorem 1. [1/] (Hille-Yosida) A linear (unbounded) operator A is the infinitesimal gen-
erator of a Cy-semigroup of contractions (T'(t))i>o0 if and only if

o A is closed and D(A) = X.

e The resolvent set p(A) of A contains Ry and for every A > 0

[(A— A <

> =

)~ HL(X)

Theorem 2. [1/] (Lumer-Phillips) Let A be a linear operator with dense domain D(A) in
X. A is the infinitesimal generator of a Cy—semigroup of contractions if and only if it is a

m-dissipative operator.

1.3 The Hille-Yosida theorem and maximal monotone

operators

In this section, we explain how we may associate a Cy—semigroup to the evolution
equation as a mere consequence of the linearity of the equation and of the existence and
uniqueness result. Throughout this section H denotes a Hilbert space equipped with the

scalar product (.,.), and the corresponding norm ||.|| ;.

Definition 10. (Mazimal Monotone Operators) An unbounded linear operator A : D(A) C
H — H 1is said to be monotone if it satisfies

(Av,v);, >0, Yv e D(A).
It is called mazimal monotone if, in addition, Im(I + A) = H, i.e.,

Vfe H ,Jue D(A) such that u+ Au = f.

11
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Proposition 3. [15] Let A be a mazximal monotone operator. Then
1. D(A) is dense in H,
2. A is a closed operator,

3. For every X > 0, (I + \A) is bijective from D(A) onto H, (I + NA)™! is a bounded
operator, and ||(I +AA)" |z < 1.

Definition 11. Let A be a mazximal monotone operator. For every A > 0, set

Jy = (I +XA)"" and Ay = < (I — Jy);

> =

Jy is called the resolvent of A, and A, is the Yosida approximation (or regularization) of
A. Keep in mind that ||Jx|| gy < 1.

Theorem 3. [15] (Hille-Yosida) Let A be a mazimal monotone operator. Then, given any

ug € D(A) there exists a unique function

u € C([0,00); H)NC([0,00): D(A))

satisfying
W au=0, on [0.+00)
a ot T el (1.3.1)
u(0) = wo.
Moreover p
lu(t)| < |uo| and d—ltt — |Au(t)| < |Auo|, ¥t > 0.

Remark 2. The main interest of theorem 3 lies in the fact that we reduce the study of an
"evolution problem" to the study of the "stationary equation” u + Au = f (assuming we

already know that A is monotone, which is easy to check in practice) [15].

Theorem 4. [15] (Hille-Yosida) Let (A, D(A)) be an unbounded linear operator on H.

Assume that A is the infinitesimal generator of a Cy-semigroup of contractions (T'(t)),,-

1. For ug € D(A), the problem (1.3.1) admits a unique strong solution

u(t) = T(t)ug € C° (Ry; D(A)NCH (R, H) .

2. For ug € H, the problem (1.3.1) admits a unique weak solution

u(t) € C° (Ry; H).

12
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1.4 Semigroups for delay equations

In this section, we present a systematic semigroup approach to linear partial differential
equations with delay, we will see that the appropriate setting for linear delay differential
equations is that of an abstract Cauchy problem in an appropriate Banach space.

Everybody who has had a basic Ordinary Differential Equations course knows that the
fundamental solution to equation (1.3.1) is given by the exponential function ¢ — e!4. More

Az is the unique solution of equation (1.3.1)

precisely, for every z € C the function u(t) := e'
with initial value x.

Let us now modify equation (1.3.1) slightly by considering
' (t) = Au(t — 1), t >0,

where 7 > 0. Do we still find an exponential function solving this equation of course, the
function ¢t — e does not work anymore and there is no other matrix B € £ (C) such that
t — e'B is a fundamental solution. Nevertheless, the answer is still "yes" provided we look
at it in the right setting.

To do so we have to change our finite-dimensional viewpoint into an infinite-dimensional
one. Take a Banach space X and consider a function u : [—7,00) — X. For each t > 0, we
call the function

u o €[-1,0l»u(t+o)eX,

history segment with respect to ¢t > 0. The history function of w is then the function
hy @ t— uy

on R, . A delay differential equation is of the form

d

u'(t) = s

(t) =@ (u(t),us) t >0, (1.4.1)
where ¢ (.,.) is an X-valued mapping. The explanation for this terminology follows.

In many concrete situations, the derivative u'(¢) actually depends on u(t) and on u(t—7)
for some fixed 7 > 0 (often with 7 normalized to 7 = 1) and one has to study differential
equations of the form

u(t) = U(u(t), u(—7)), (1.4.2)

for some function ¥ from X x X into X. Thus, interpreting ¢ as time values of u have an

effect on «' with a certain delay 7. If we now define ¢ as

13
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pu(t), u(=7)) = W(u(t), u(=7)),

we arrive at equation (1.4.1).
We will show in this section that this point of view allows us to read delay equations as

vector-valued ordinary differential equations.

Hypothesis 1. (The standing hypotheses) Assume that

(Hy) X is a Banach space;
H?2 D(B) C X — X is a closed, densely defined, linear operator;

(H2) B
(H3) Z is a Banach space such that D(B) <z 4 X;
(Hi) 1<p< oo, fe LP(-1,0,Z) and z € X
(H5) @ : WbHP([-1,0],Z) — X is a bounded linear operator, called the delay operator
and
(H6) &, = X x L"([~1,0], Z).

Under these hypotheses, and for given elements x € X and f € LP([—1,0],Z2), the

following initial value problem will be called an (abstract) delay equation (with the history

parameter 1 < p < 00)

'(t) = Bu(t) + Puy,

u(0)

0:

Sy

(1.4.3)

T

e

Definition 12. We say that a function u : [—1,00) — X is a classical solution of (1.4.3) if
(i) u € C([-1,00), X) N CY([0, 00), X),
(it) u(t) € D(B) and u; € WHP([-1,0],Z
(7i1) w satisfies (1.4.3) for allt > 0.
“P([~1,00), Z). Then

Lemma 1. [10] Let u: [—1,00) = Z be a function that belongs to W,
t — uy of uis continuously differentiable from R™ into LP([—1,0], Z)

) for allt >0,

the history function h,, :

with derivative p p

By means of Lemma 1, we can now transform classical solutions of (1.4.3) into classical

solutions of an abstract Cauchy problem.

Corollary 1. [10] Let u : [—1,00) = X be a classical solution of (1.4.3). Then the function

Ut (“@) ) €&, (1.4.4)

Uy

14
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from Ry into &, is continuously differentiable with derivative

U't) =AU (t),

where
B @
A= d ,
0 —
do

d
where T denotes the distributional derivative, with domain
o

DM%z{(j)ED@%XWWQJﬂL@:ﬂm:m}

Thus every classical solution u of (1.4.3) yields a classical solution of the abstract Cauchy

problem
0,

U (t) = AU ()t >
() )7 (1.4.5)

)
:<f

By adding the following to our standing hypotheses: (H7) (A, D(.A)) is the operator on
&y defined as

on &,.

with domain

We need to show the closedness of the operator (A, D(A)).

Lemma 2. [10] Under Hypotheses (H1)—(HT), the operator (A, D(A)) is closed and densely
defined on &,.

Corollary 2. [10] The abstract Cauchy problem (1.4.5) associated to the operator (A, D(A))
on the space €, is well-posed if and only if (A, D(A)) is the generator of a strongly continuous

semigroup (T'(t))e=0 on E,. In this case, the classical and mild solutions of (1.4.5) are given

15
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by the functions

fort > 0.
Now we introduce the following notation.

Definition 13. By m : £, — X, we denote the canonical projection from &, onto X.
Similarly, by m : €, — LP([—1,0],Z) we denote the canonical projection from &, onto
Ly ([_17 0] ) Z)

Proposition 4. [10] For every classical solution U of (1.4.5), the function

u(t) = | (T oW®) #1=0,
S f@) irtel-10)

is a classical solution of (1.4.3) and (mg oU)(t) = uy for allt > 0.

At present, we transfer the notions of well-posedness and of mild solution, known from

abstract Cauchy problems and semigroups to (1.4.3).

Proposition 5. [10] Let u be a mild solution of (1.4.3). Then u satisfies f(f u(s)ds €
D (B), f(f usds € WHP([—1,0], Z), and the integral equation

¢ t
x + B/ u(s)ds + CI>/ usds, fort >0,
u(t) = 0 0

f), for a.e. t € [—1,0).

1.5 Stability of semigroup

In this section we start by introducing some definitions about strong, exponential and
polynomial stability of a Cy-semigroup. Then we collect some results about the stability of

Cp-semigroup.

Definition 14. Assume that A is the generator of a strongly continuous semigroup of con-
tractions (T'(t))i>0 on X. We say that the Cy-semigroup (T'(t))i>o is

e Strongly stable if
lim |7 (¢t)ully =0, VuelX.

t——+o0
e Uniformly stable if
lin 17 (6)] g, = 0

t——+o00
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e FExponentially stable if there exist two positive constants M and € such that

T (t)ully < Me ully, Vt>0,VueX.

e Polynomially stable if there exist two positive constants C' and o such that

IT () ully < Ot |lully, Vt>0,Yu € X.

Proposition 6. Assume that A is the generator of a strongly continuous semigroup of

contractions (T'(t))i>0 on X. The following statements are equivalent
o (T'(t))i>0 is uniformly stable.

o (T(t))t>0 is exponentially stable.

1.6 The theorems of Stampacchia and Lax—Milgram

Definition 15. A bilinear form a : H x H — R is said to be

(i) Continuous if there is a constant C' such that
la(u,v)| < C'ul |v|, Yu,v € H.
(ii) Coercive if there is a constant o > 0 such that
a(v,v) > alv)®, Yo € H.

Theorem 5. [1/] (Stampacchia) Assume that a(u,v) is a continuous coercive bilinear form
on H. Let K C H be a nonempty closed and convex subset. Then, given any ¢ € H*, there

exists a unique element u € K such that
a(u,v—u)>{(p,v—u), Yo € K. (1.6.1)

Moreover, if a is symmetric, then u is characterized by the property
1 1
u € K and ¢ (u,u) — (¢, u) = min 24 (v,v) = (p,v) ¢, v E K. (1.6.2)

Corollary 3. [1/] (Lax—Milgram) Assume that a(u,v) is a continuous coercive bilinear form

17
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on H. Then, given any ¢ € H*, there exists a unique element u € K such that
a(u,v) = (p,v), Yv € H. (1.6.3)

Moreover, if a is symmetric, then u is characterized by the property

ue H and %a (u,u) — (¢, u) = min {%a (v,v) — (gb,v}} , veEH. (1.6.4)

1.7 Faedo-Galerkin method

Definition 16. Let H be a separable Hilbert space and f a family of finite dimensional vector
spaces satisfying the axioms:

1. V, CcV,dimV, < cc.

2. Vi, =V, when V,, < cc.
In the following sense: there exists V,, dense subspace in V', such that for all u € V,,, we can
find a sequence {un}, . satisfying:
for all n,u, €V, and u, — u in 'V when n — oo.

The space V,, is called a Galerkin approzimation of order n.

The scheme of the method of Faedo-Galerkin

Let (P) to be the exact problem for which we want to show the existence of a solution
in a function space built on a separable Hilbert space V. Let u to be the unique solution of
the problem (P).

After having made a choice of a Galerkin approximation V,, of V' it is necessary to define
an approximate problem (P,) in finite-dimensional space (V},) having a unique solution (u,).
Then, the course of the study is then as follows:

Step 1: We define the solution w,, of the problem (FP,).
Step 2: We establish estimates on u,, (called a priori estimate) to show that w, is uniformly
bounded.
Step 3: By using the results that u,, is uniformly bounded, it is possible to extract from
{tn},en- a subsequence {uj,}, . Which has a limit in the weak topology of the spaces
involved in the estimations of step 2.

Let u to be the obtained limit.
Step 4: We show that u is the solution of the problem (P).
Step 5: Results of strong convergences.

The objective is to build an approximation process which ultimately provides us with a

proof of the existence of solution, this process amounts to approaching u, (z,t) as a linear
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combination of functions of the bases w; such that
U (2,8) = Y i (Hwi,  (2,t) € QA x [0,T].
i=1

For more detail see [41].
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Chapter 2

Well posedness and exponential stability
in a wave equation with strong damping

and strong delay

2.1 Introduction

In this chapter, we consider a wave equation with a strong damping and a strong
constant (respectively, distributed) delay. We prove the well-posedness and establish an
exponential decay result under a suitable assumptions on the weight of the damping and
the weight of the delay. Thus, we consider the following problem with strong damping and
strong delay

u(x,t) — Au(z, t) — p Aug(z, t) — peAu(x,t —7) =0, inQ x (0, 00),
u(z,t) =0, on 02 x (0, 00),
u (x,t —71) = fo(x, t —1), te(0,7),
u(z,0) = ug(x), uz,0) =u(x), in €,

(2.1.1)

where () is a bounded and regular domain of R™, 7 > 0 represents the time delay, p, s
are real numbers such that |us| < py and wg,uq, fo are given data. Our equation can be
regarded as a Kelvin-Voight linear model for a viscoelastic material in the presence of a
delay response.

In the second part of this chapter, the constant delay term in (2.1.1) is replaced by
the distributed delay term of the form — f: p2(8)Auy(x,t — s)ds, where ug : [r, 2] = R
is a bounded function and 7, < 7y are two positive constants. We establish well-posedness

and exponential decay results under suitable conditions on the weights of the constant
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(respectively, distributed) delay and the weight of the damping terms.

2.2  Well-posedness

To the best of knowledge, problem (2.1.1) has not been discussed before. We establish
the existence of a unique solution by the use of the semigroup theory. For this purpose, we

introduce, similarly to [59], the new variable
2(x, p,t) = w(z, t —71p), pe(0,1), € t>0.
Consequently, we have
Tz (z, pot) + 2,(z, p,t) =0, pe(0,1), x €, t>0.

So, problem (2.1.1) takes the form

/

u(x,t) — Au(z,t) — 1 Aug(z, t) — peAz(z,1,t) =0, inQ x (0,00),
Tz(x, p,t) + 2,(z, p,t) =0, in Q x (0,1) x (0, 00),
u(z,t) =z (z, p,t) =0, on 0N x (0, 00), (2.2.1)
w (x,t —7) = folz,t —7), te(0,7),
| w(z,0) = ug(z), up(x,0) = uy(w), in Q.

We consider the following Hilbert space
H = Hy () x L*(Q) x L* ((0,1); Hy (),
equiped with the inner product
_ 1
<¢> ¢> = / (Vu.Vu +vv) de + 7 | pa] / / V2z.Vzdpdz,
H Q QJo

for all ¢ = (u,v,2)", 5(&, 7,2)" e
For ¢ = (u,v,2)" , where v = u, system (2.2.1) can be rewritten as

(2.2.2)

o+ Ap=0,
¢(0) = ¢0 = (u07u17z(' - Tp))a
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where the operator A : D (A) C H — H is defined by
—v
Ap = —Au — p Av — psAz (., 1)
1

—Z
7_P

with domain
D (A) = {(u,v,2) € H/u+ pv + pez (.,1) € H*(Q), 2,2, € L* ((0,1), Hy () , 2 (.,0) = v} .

We have the following existence and uniqueness result:

Theorem 6. Assume that
2| < pur. (2.2.3)

Then for any ¢o € H, problem (2.2.2) has a unique solution
¢ € C([0,+00), H).
Moreover if ¢o € D(A), the solution of (2.2.2) satisfies
¢ € C([0,+00), D(A)) N C'([0, 4 00), H).

Proof. We will use Hille-Yoside theorem [15, 39]. For this purpose, we start by showing that
A is monotone. So, for ¢ € D(A), we have

(Ao, ), / Vou.Vudz +/ [—Au — 1 Av — s Az(., 1)) dz

+|,u2|/ /Vz Vz,dxdp
—,u1/ |Vv]2da:—|—,u2/Vv.Vz( |ﬂ2|/\V 1)[*dx
Q Q

—|'L;—2|/Q]Vv|2dx. (2.2.4)

Using Young’s inequality for the second term of (2.2.4), we arrive at

(Ab, &), > (1 — |pia]) / Vot > 0

by virtue of (2.2.3). Hence, A is monotone.
Next, we show that A is maximal. That is, for each F' = (f, g, h)" € H we have to find
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¢ € D(A) such that
b+ Ap=F (2.2.5)

ie.
Uu—v= fa
v—Au— i Av — pAz(, 1) =g, (2.2.6)

TZ + 2, =Th.

The first and the third equations of (2.2.6) give "formally”

p
z2(p)=(u— fle "+ Te’”/ h(~y,.)e " dry. (2.2.7)
0
Clearly, we have z(.,0) = u — f = v. Replacing in the second equation of (2.2.6), we get
u— kAu =G, (2.2.8)

where

=1+ p1 + pee™™ >0,
G =g+ f— (1 +poe ) Af +7pze™™ [ Ah(y,.)e7dy € H™H(Q).

Over Hj (Q) we define the bilinear form

B(u,w):/uw—i—kz/VU.Vw
Q Q

and the linear form
L (w) = <G7w>H—1><H3 :

A simple calculation shows that B and L satisfy the conditions of Lax-Milgram theorem

and thus, the exists a unique u € H} (Q) satisfying
B (u,w) =L (w), Yw € Hy (). (2.2.9)
Consequently, v =u — f € H} () and
2 ()20 (op) € HL(9).
Using (2.2.7), we get z € L*((0,1),H; (©)). Thus, (2.2.5) has a unique solution ¢ =

(u,v,2) € H.
Replacing Af by A (u—v) and Te™" fol Ah (v,z)e’dy by Az (z,1) — e "Aw in the right-
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hand side of (2.2.9) and using Green’s formula, we obtain

/ﬂuv+/9V(u+,ulv+ugz(x,1)).Vw:/Q(f—f—g)w, Yw e Hy (2) .

The standard elliptic regularity theory [15], gives

u+ v+ ppz (1) € H2(9Q).

Therefore
A(U+/L1?J+MQZ(.,1)) :g+f—u€L2(Q)

Consequently ¢ € D(A). This shows that A is maximal. Thus, Hille-Yosida theorem
guarantees the existence of a unique local solution to problem (2.2.2). This completes the

proof of theorem 6. O

2.3 Exponential stability

In this section we state and prove our stability result. First, we introduce the energy

associated to the system (2.2.1)

1 1 !
E(t) = —/ut2 (x,t) dx + —/ \Vu(z,t)|* dz + Gl // \Vz (z,p, 1) dpdz.  (2.3.1)
2 Ja 2 Ja 2 JaJo
Our main result is given by the following theorem

Theorem 7. Assume that |uz| < w1 and (ug,uy, fo(.,7.)) € D(A) . Then the solution of

(2.2.1) satisfies, for two positive constants n,w, the estimate
E(t) <ne ™ Vvt >0.

The proof will be established through the following three Lemmas:

Lemma 3. Assume that
il < . (2:3.2)

Then the energy E (t) satisfies, along the solution (u,z) of (2.2.1), the estimate

E'(t) < — (1 — |p2l) /Q Vg (z, )| dz < 0. (2.3.3)
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Proof. Multiplying the first equation of (2.2.1) by u, integrating over {2, we obtain

/ﬂ (2, )y (2, t) d — / Au(z, tyu (z,t) do

Q
— / Auy(x, t)uy (x,t) de — MQ/ Az(x, 1, t)uy (x,t) de = 0.
Q 0

Integration by part and recaling the boundary conditions, we have

1d
—— t)d —— t)|"d
5% u? (x,t) x—l—zdt/wux )P dx

(2.3.4)
—i—ul/ IV (z,t)| d!E+M2/ Vz(z,1,t).Vu (z,t)de = 0.
Q Q

Multiplying the second equation of (2.2.1) by |us| z, integrating over (0, 1) x €2, using inte-
gration by parts, we get

1 1
ey /Q / Vzi (x,p,t) Vz(x,p,t)dpdx + |ps| /Q / Vz,(z,p,t) . Vz(x,p,t)dpdr =0,
0 0

which can be written as

d 1
el & [ [ vs o of e+ 2 19z opae -2 [ 9u @opac-o

(2.3.5)
Summing up (2.3.4) and (2.3.5), we get
E(t)=— (/M - @) / |V (2, 1) do — ,ug/ Vz(x,1,t).Vu (z,t) do
Q Q
- M/ \Vz (z,1,1)) dx.
2 Ja
Young’s inequality and (2.3.2) yield then the desired result. O
Lemma 4. The functional
Fi(t) = / upudx
Q
satisfies, along the solution of (2.2.1), the estimate
1
Fl(t) < —5/ |Vl dz + C’/ V| da + ,ug/ Vz(z,1,1))° dr, (2.3.6)
Q Q Q

for some positive constant C'.
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Proof. The differentiation of Fi(t) gives
Fl(t) = / uldr + / ul (u + pyug + poz(x, 1,t)) do
0 Q

:/ufdx—/|Vu]2da:—u1/Vu.Vutdx—ug/Vu.Vz(z,l,t)dx.
0 0 0 Q

Young’s and Poincaré’s inequalities leads to the desired estimate. O]

Lemma 5. The fonctional

1
t) ::7'/ /6_97|Vz (z, p,t)|* dzdp (2.3.7)
0o Ja

satisfies, along the solution of (2.2.1), the estimate

1
() g/mt (x,t)\de—eT/ ]Vz(:c,l,t)]Qdm—TeT/ /\vz(x,p,t)mxdp.
Q Q 0 Q
(2.3.8)

Proof. A direct differentiation of (2.3.7) using the second equation of (2.2.1), gives

1
F(t) = —2/ / e "Vz(x,p,t) . Vz,(z,p,t)dedp

// |VZ (2. p, 1) dadp
1
- [ d—(e*’”|w<sc,p,t>|2)d:cdp—r | [ ez wpof s
0o Jaap 0o JO

1
:—/6_T|VZ([L‘,1,t)|2d$—T/ /e_"T|Vz(x,p,t)|2dxdp—l—/|Vut (z, )| da.
Q o Ja Q

Thus, (2.3.8) follows immediately. O

Proof of theorem 7

To complete the proof of Theorem 7, we define the Lyapunov function
L(t):=NE(t)+cF(t)+ Fy (1), (2.3.9)

where N and e are positive constants to be chosen carefully. By inserting (2.3.3), (2.3.6)
and (2.3.8) in (2.3.9), we obtain
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£ £ =N (s~ al) [ V(o0 da
Q
_ g / Vo (z, )| de + EO/ |V (z,1)) do + eug/ \Vz(x,1,t)| dx
Q Q Q
1
+ / \Vay ()| de — e_T/ \Vz(z,1,t) de — Te_T/ / Vz (z, p,t)|° dzdp.
Q ) 0o Ja
Thus,
L) <~ (N () —2C = 1) [ [Vuldo =5 [ (Va0 ds
Q Q
1
- TG_T/ / \Vz (z,p,t)|° dedp — e —eu3) / \Vz(z,1,t)]* de.
0o Ja Q
It suffices to choose € so small such that
e T —eus >0,
then pick N large enough such that
N (py = |pe|) —eC =1>0

and £ ~F. Thus we arrive at
L(t) < —wL(t),
which yields, by integration,
L(t) < L(0)e ™™ Vt>0.

The use of L ~FE again gives
E(t) <ne ', Vvt >0.

Hence, the desired result.
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2.4 Wave equation with internal distributed delay

In this section we will extend the result obtained in the section 3 to the case of

distributed delay, namely, we consider the following problem:

uy — Au (2, t) — pp Auy (x,t) f e (s) Auy (z,t — s)ds =0, in Q x (0, +00),

u=0, on I' x (0, 4+00),
w(z,0) = ug (z), u(z,0) = uy (), in €,
u (x,—t) = fo (x,—t), 0<t<m,

(2.4.1)

where 71 < 75 are two positive constants and ps : [11, 2] — R is a bounded function.

As in section 2, we introduce the new variable z, given by

z(z,p,t,s) = u (x,t — ps).

It is easy to check that
sz (x,p,t,8) + 2, (z,p,s,t) =0. (2.4.2)

Thus, system (2.4.1) becomes

([ wy — Au(z,t) — Auy (1) fTQ pe (s) Az (x,1,s,t)ds =0, in Q x (0,+00),
sz (x,p,s,t) +2,(z,p,5,t) =0, in Qx(0,1) x (11, 72) x (0,400),
u=0, on I x[0,400),
u(z,0) =ug (z), u (x,0) =uy (x), in Q,

| 2 (%, p,5,0) = fo(z,—ps), in Qx(0,1) X (11,72).

(2.4.3)

2.4.1 Well-posedness

In this subsection, we prove by means of the semigroup theory, the well-posedness of

system (2.4.3). We introduce the following Hilbert space:
H = Hy (Q) x L*(Q) x L* ((0,1) x (11,72); Hy (Q)) ,

equiped with the inner product

T2 1
Z/Vu.Vﬂ+/v.5+// s | o (s)|/ Vz(z,p,s).VZ(x,p,s)dpdsde,
Q Q QJn 0
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for ¢ = (u,v, z)T, b= (u,v, E)T € H. Let v = wuy, then system (2.4.3) takes the form

QSI + A1¢ = 07
¢ (0) = do = (uo, w1, fo (- — ps)),
where A; : D (Ay) € H — H is the operator defined by
—v
A= | —Du(z,t) —mAv (z,t) — [ |2 (s)| Az (,1,1,5) ds

1
- t
Szp (xapa 75)

with domain
D(A) = {ng’H, (u—i—,ulv—i— (/:m(s)) z> € H*(Q),z,2z,€ L*((0,1), Hy () ,2(0,.) :v}.

For the well-posedness, we have the following result:

Theorem 8. Assume that

> / | ()] ds. (2.4.4)

T1

Then, for any ¢o € H, problem (2.3.4) has a unique solution satisfying
¢ € C(]0,400[,H).
Moreover, if ¢g € D (A;) then
¢ = (u,v,2) € C"(]0,+00[,H) N C (]0,+00[, D (A)).
Proof. 1Tt suffices to show that A; is monotone and maximal and use Hille-Yosida theorem.

First for ¢ € D (A;), We have

(A10,0),, = —/QVu (x,t) Vo (z,t)dr
_ /Qv (x,1) {Au (,t) + mAv (z,t) + /Tz pe (8) Az (z,1,t,8)ds| dx

T1

T2 1
+// | o (s)\/ VzNVz,(x,p,t,s)dpdsdx
QJr 0
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strong delay
/]Vv (z, 1)) +/Vv (/ Q(S)Vz(:v,l,t,s)ds) dx

// |12 (s !/ (IVz (2, p, 5,1)|?) dpdsdz.

The use of Cauchy Schwarz inequality gives

Atz m [ 1900 =5 [l (s)las [ [Fo(@0P de

1 2
S (e epes) e
2 Jo \J,
1 2 1 2
+_// ‘/1/2 (S)HVZ (-T,l,t,s)‘zdsdm——// |Iu2 (S)HVZ(%OJ,S)Fdex.
2 QJr 2 aJn

Taking into account that z (.,0,.,.) = v, we get

(i1 2 5 (- /:mxsnds) [1votop =0

by virtue of (2.4.4). Therefore, A; is monotone.
Next, we show that A; is maximal. That is, for each F' = (f, g, h) € H, we have to find

¢ € D (A;) such that
¢+ A =F,

ie.,
u—v = f,

v—Au(z,t) — pAv (z,t) — f: lpa ()| Az (x,1,t,s)ds =g, (2.4.5)
Sz ($7p7t7 S) + Zp (x>p>t7 S) = Sh'

Using similar arguments as for the first problem, we get

z2(pyy.)=(u—f)e " +1e /Op h(v,.)e*dy.

Thus, z(.,0,.) = v and
2,2, € Hy (Q).

Replacing v by u — f in the second equation of (2.4.5), we get

u—kAu =G, (2.4.6)
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where

~ 2
=ttt [ e lus)lds

T1

and

G=g+f- <M1+/TQ€SW2(5)|CZS) Af

T1

T2 1
+ 7'/ |2 (s)] e_s/ Ah (y,7)e*dyds € H ' (Q).

T1 0

The variational formulation corresponding to (2.4.6) takes the form

B (u,w) =L (w), (2.4.7)

where B is the bilinear form defined over HZ () by

E(u,w):/uw—i—(l—i—ul—l—/ e_smg(s)\ds)/Vqu
Q 1 Q

and L is the linear form defined over H} (Q) by

L{w) = <é’w>H—1xH5 '

One can easily see that Band L satisfy the conditions of the Lax-Milgram theorem. Con-
sequently, (2.4.7) has a unique solution v € H] (). Therefore, v = u — f € H} () and
2,2, € Hy ().

Replacing Af by A (u— f) and e* fol Ah (y,x)e"®dy by Az (z,1,s) — e*Av in (2.4.7),

we arrive at

/Quw—k/ﬂv(u—i—,ulva/Tzug(s)e‘sz(x,l,s)ds) .Vw:/(f+g)w,‘v’wEH3(Q)

T1

which gives, by the standard elliptic theory,

u—i—uw—l—/ po (s)e Sz (x,1,8)ds € H* ().

T1

Therefore,

A(U+[L1U—I—/TQ,MQ(S)G_SZ(.,]_,S)dS) =f+g—ucL*9).

71
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Consequently, (2.4.5) has a unique solution (u,v,z) € D (A;). This shows that A; is
maximal. Thus, the Hille-Yosida theorem guarantees the existence of a unique solution to
problem (2.4.5). This completes the proof of Theorem 8. ]

2.4.2 Exponential stability

In this subsection, we prove our decay result.

Theorem 9. Suppose that py and ps satisfy (2.4.4) and that (ug,uq, fo) € D(A;1). Then

the solution of (2.4.3) satisfies, for two positive constants 1, w the estimate
E(t) < ne ™' vt > 0.

The proof will be established through the following Lemmas:
First, we define the energy associated with the solution of (2.4.3) by

1 1 T2
E(t) =3 [/S]ufdx—l-/S)quFdaH—/Q/o / s |2 ()| |Vz (z, p,t,8)|* dsdpdz | . (2.4.8)

Lemma 6. Suppose that pu, uo satisfy (2.4.4). Then the energy given by (2.4.8) satisfies,
along the solution of (2.4.3), the estimate

E() < — (m - (/ o (5))] ds)) /Q IV (2, 8)]? dz < 0. (2.4.9)

Proof 1. A differentiation of E (t) gives
E, (t) /uttutd:ﬁ—l—/VU Vutdx
// / spo (8)Vz(x,p,s,t).Vz (z,p,s,t)dsdxdp.

Using (2.4.3) and integrating by parts, we get

_ —Ml/ |Vut (l’,t)|2d:p— // |N2 (S)|VZ (:L‘,l,t,s),Vut (Jj7t) dx
Q QJ1
1 1 ) d )
2 )0 ) |2 (S)Id—pfvz(iv,p,t,b‘ﬂ dsdxdp
:—,ul/ ]Vutfdx—// |2 ()| Vz (2,1,t,8) . Vuy (z,t) de

——// | ()| |V (2,1, £, 5)|* dsda 4+ = </ o (s ]ds)/]VuA dx.
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strong delay

Young’s inequality leads to the desired estimate.

I :/utudx
Q

satisfies, along the solution of (2.4.3), the estimate

Lemma 7. The functional

1 m
I (t) < —5/9]Vu]zdx—l—c/Q]Vutfdx—l—c/Q/ o (8)| |V 2 (2,1, t, 5)|” dsdz,
T1

for a positive constant c.

Proof 2. The differentiaton of I, (t), using (2.4.3), yields

I (t) = / (Au + pAuy +/ pe (s) Az (x,1,t, ) ds) udx + / uidz
Q Q

T1

—/ ]Vu|2dx—u1/Vut.Vudx
Q Q

—// pe (s) Vz (z,1,t,s) .Vu(z,t) dsda:—l—/ufda:.
QJn Q

Young’s inequality gives

——/\Vu| da:+u1/\Vut\ dx

+ (/ s (s |ds)// 1o (5)] |V 2 (z,1,t, 5)]? d:vds+/ 2dx.

Then Poincaré’s inequality leads to the desired estimate.

Lemma 8. The functional

1 T
=///’wwwwmwmmmﬂ%mm
QJO T1

satisfies, along the solution of (2.4.3), the estimate

eﬁ// 12 ()] V= (2, 1,1, ) > dsd
QJn
+ </ s (s )|ds)/|Vut(x t)|* dsda

/ / / s |z ()] [V= (2 p , ) dsdpde.
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Proof. The differentiation of I5 (t) yeilds

1 T2
BO =2 [ [ [ e a6V (0pits) V.t s) dpdsd,
QJO T1

Using the second equation of (2.4.3), we have

T 1 d
—— [ [ e 9 1 192 @it dpdsi,
QJn 0 dp
T2 1 d )
—— [ [Tl [ 419z @t dpisda
QJn 0 dp
T2 1
[ sl [ e Ve @t ) dpdsi
QJn 0
Thus,
T2
I (t):—// a (3)] V2 (2, 1,1, 5) |2 disd + (/ 12 (s)|d5>/|Vut|2dx
1 1 Q
[ st |/ 52 V2 (2, p, 1, 5) dsdp

and the desired estimate follows immediately.

2.4.3 Proof of theorem 9

To complete the proof of theorem, we define the Lyapunov functional
L(t)=NE({t)+ 1, (t)+ MI(t),

where N and M are positive constants to be specified later.
Differentiating £ and using (2.4.9)-(2.4.11), we obtain

£ < - {N(ul / \MQ()|ds)—c—M(/ o (s |ds)}/wut (2, D) da
——/\Vu z, 1)) dz — (Me™™ — ¢ // o (8)| |V 2 (2,1, t, 5)|* dads
—e_TQM/ // slus (8)| V22 (z, p,t, s) dsdpda.
0 QJn

34



Well posedness and exponential stability in a wave equation with strong damping and
strong delay

It suffices to choose M large enough such that
Me™™ —c¢ >0,

then, pick N large enough so that

N(m—/: i 5] s —c—M(/: a5 ds) >0

and £ ~ E. Thus, Poincaré’s inequality leads to

L)< =AE(t), Yt >0,
for a positive constant A. The fact that £ ~ E yields

L (t) < —wL(t), vVt > 0.
An integration over (0,t) gives

L)< LO)e ™Vt >0.

The use of L ~ E again leads to the desired inequality.
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Chapter 3

Global existence combined with
exponential decay of solutions for
coupled kirchhoff system with a
distributed delay term

3.1 Introduction

This chapter deals with the proof of the global existence of solutions of nonlin-
ear viscoelastic Kirchhoff system with a distributed delay and general coupling terms in a
bounded domain. The current study is performed by using the energy method along with
Faedo-Galerkin method and under some suitable conditions in coupling terms parameters.
In addition, we prove the stability result by using the multiplier method.
In the present chapter, we are interested in the following nonlinear viscoelastic Kirchhoff
system with a distributed delay and general coupling terms

i

t
lug) gy — M (| Vul|?)Au — Aug + / g1(t — s)Au(s)ds
0

T2
—k1 Auy — / w1 (o) Aug(z,t — p)do + av = 0,
m . (3.1.1)
lvg|'oge — M (|| Vo]|?)Av — Avy + / g2(t — s)Av(s)ds
0

T2
—koAvy — / p2(0)Avy(z,t — )do + au = 0,

\ T1

where
(x,0,t) € QX (11, 72) X (0,00).
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system with a distributed delay term

With the initial data and boundary conditions

(u(x,0),v(z,0)) = (up(x), vo(x)), in €,

(ug(x,0),v(x,0)) = (ur(x), v1(x)), ?n Q, (3.1.2)
(ug(x, —t),v(x, —t)) = (folz,t), go(z,t)), in Q x (0,72),

u(x,t) =v(x,t) =0, on 02 x (0, 00),

where €2 be a bounded domain in R” with smooth boundary 0, [, « is positive constants.
Here, A denotes the Laplacien operator, the second integral represents the distributed delay
and 1, o : [11, 2] — R are a bounded functions, where 7, 79 are two real numbers satisfying

0 <7 <79, and g1, g5 are the relaxation functions. M is a smooth function defined by

r— M(r)=a+br, (3.1.4)

with a,b > 0.

3.2 Preliminaries

In this section, we present some materials which will be used in order to prove our
main results. We have the following assumptions:
(A1) g;: R, - Ry, i=1,2 are C' functions satisfying
g9(0) >0, a— / gi(s)ds =k >0, 1=1,2. (3.2.1)
0
(A2) There exists a positive constants ; satisfying

9:i(t) < =&gi (), i=1,2, t=0. (3.2.2)

(A3) Consider that 0 < I < v satisfying
(3.2.3)

Let us introduce the following notations

(g08)(t) = / gt — ) 6(t) — é(s)[?ds.
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As in [59], taking the following new variables

Z(xapa o, t) = Ut<$,t - Qp)a
y(%ﬂa 0, t) = Ut(mat - Qp)v

then we obtain
oz (x, p, 0, 1) + 2p<37> p;0,t) =0, (3.2.4)
Z(.%’, 0, 0, t) - ut(x7t)’
and
t t)=20
oye(x. p, 0,t) +y,(, p, 0,t) =0, (3.2.5)
y('xv 07 0, t) - Ut(x7 t)

Consequently, the problem (3.1.1) is equivalent to

(

t
lug) gy — M (| Vul|?)Au — Aug + / g1(t — s)Au(s)ds
0

—k1Auy — / wi(0)Az(z, 1, 0,t)do + av = 0,

T1

t
o' — M(|V0][2)Av — Avy + / galt — 5)Av(s)ds (3.26)
0

T2
—koAvy — / p2(0)Ay(x, 1, 0,t)do + au = 0,

T1
ta($7;07 0, t) + Zp('ruoa o, t) = Oa
Qyt(xvpv o, t) + yp('rapa 0, t) = 07

where
(x,p,0,t) € Q2 x(0,1) x (11, 72) X (0,00).

The system together with the initial data and boundary conditions

([ (u(,0),v(x,0)) = (uo(x), vo()), in Q,
(wi(z,0), v(,0)) = (ur(z), v1(z)), in €,
(we(x, =), v(x, —t)) = (fo(, 1), go(x, 1)), in Q2 x (0,72),
u(z,t) =v(x,t) =0, on 0N x (0, 00),
z(z,p, 0,0) = folz, po), in Q x (0,1) x (0,72),
L y(z,p,0,0) = go(z, po), in Q% (0,1) x (0, 7).

We need the following lemma.
Lemma 9. Assume that

T2
[ @l <k i=v2 (3.2.7)

T1
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system with a distributed delay term

The energy functional E, defined by

1 b
BO) = g (It + Ill3) + 5ty (190 4 ool
1 ¢ 1 t
#3(o= [ aorts 1w+ 3 (= [ atsras) ool
2 0 2 0

3 (17l + 1900} + S01 0 T0)(0) + 302 V)0

1 1 T2
w5 [ e(m @IV @IVl dodp+ o [wode. (528
0 T Q
satisfies
! 2 2 1 / 1 /
2(1) < ~MIVul+ (V) + gt o Vu)t) + (g0 Vo))
(3.2.9)

—5a DIV ~ Sa@ Vel <o,

where X is a positive constant.
Proof. Multiplying the equation (3.2.6); by u; and the second equation (3.2.6)3 by vy, then

integration by parts over 2, and using (3.1.2), we get

d 42 4 b oy+1y , 1 ' 2
{HQH ullf3 + 5 9l 4+ 5 (0= [ autelas ) 19l
1 1 1
#3ITul + 50 Tu)0 | - Jlst 0 Tu)0) + G Va0

T2
-k ||V (8)]]2 + / Vut/ p1(0)Vz(z, 1, o, t)dgdx—i—oz/ wvdr = 0,
Q

d 1 ¢

E{HQH ull+ 5 IV 4 5 (= [ topas ) ool
1

F3IVul? + 5020 Vo0 b -

T2
ko ||V (1) |* + / Vvt/ p2(0)Vy(z, 1, o, t)dodx + a/ viudr = 0.
Q Tl Q

(g4 0 Vo) (1) + 5 0a(1) | V()]

[\DI»—t

(3.2.10)

Now, multiplying the equation (3.2.6)3 by —Az|ui(g)|, and integrating over © x (0,1) X

(11, T2), we get
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sl [ a2 dedp

_ /Q /0 1 / ()| V 2V 2, dodpdz

= [ [ o1 e st

-5/ (o) ((Vz<x,o, 0.0)? = (Va(a, 1,0 t>>2)dgdx

_ %/ (0 |dg/|Vut| dx——//ﬁ 11(0)(V2 (2,1, 0, 1)) *doda

= 3 mtode) 1wl =5 [Tl @IIV= o1 0.0 e

T1

(3.2.11)

Similarly, by multiplying the equation (3.2.6)4 by —Ay|ua(0)|, and integrating the result
over Q2 x (0,1) x (71, 72), we get

d
p /// olp2(0)|(Vy)?dodpda

= 5( [ toide) 15l =5 [ @l vy 1,0 e

(3.2.12)
By summing (3.2.10)-(3.2.12), we obtain
/ 1 1 2 2
E(t) = (91 o Vu)(t) = 591 () Vu)|]” — k[ Ve (2) ]
/Vut wu1(0)Vz(x, 1, 0,t)dodx
1 1 9 9
g0 Vo)(0) — 50D VoD ~ ko[04 (1)
- / " / (0)Vy(x,1, 0, t)dodz
1 , 1 [T 9
w5 Im@lde)1vul =5 [ (@1v (.1 0.0 g
1 , 1 [T 9
+5 |u2 Ndo | IIVuell* = 5 [ |n2(0)|[IVy (2,1, 0, 1) || do.
(3.2.13)
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And by Young’s and Cauchy-Schwartz inequalities, we have

[ 7w [T t@rvsteondets < 5( [ hutoe) 1ve?
Q T1 T1

1 [
L / (V= (. 1, 0, 1) |2do.

2 /.,
(3.2.14)
Similarly, we get
T2 1 T2
[ oo [ lat@rvste e tasts < 5( [ o) 190
Q T1 T1
1 [™
43 [ s@lvy 100 Pde
(3.2.15)

Using (3.2.14) and (3.2.15), we get

F0 < (b= [ m@lde)Ivul - (k- [ "o de ) 19w

T1

1 1 1 1
(g o V) (1) + Lgho Vo)) - LIV - S IV
(3.2.16)
Using hypothesis (3.2.7), we obtain (3.2.8) and (3.2.9). The Proof is complete. O

3.3 Global existence

Theorem 10. Assume that (5.2.1)-(3.2.3) hold. Then given (ug,vo) € (H*(Q)NH(Q))?, (u1,v1) €
(HL(Q))? and (fo,g0) € (H'(2,(0,1), (11,72)))?, there exists a weak solution (u,v,z,y) of
problem (3.2.6)-(3.1.2) such that

(U,U,Z,y) < LOO(R-HHI): Ug, Vg € LOO<R+7 H&(Q)), Ugt, Vit € L2<R+7 H&(Q))a
where

Hi = (H*(Q) N Hy(Q))* x (H(,(0,1), (m1,72)))*.
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Proof. Let uj,vj, z;,y; be the Galerkin basis. For n > 1, let

W, = spanf{ui,ug,....;un},

K, = span{vy,vg,....,v,}.
We define for 1 < j < n the sequences z;(x, 7,p), y;(x, T,p) by
zj(2,0,p) = u;(x), y;(x,0,p) = v;(x).
Then, we can extend z;(z, 0, p), y;(x, 0, p) over L*((0,1) x (0,1) x (71, 72)) and denote

Zn = span{zi,za,....,Zn},

Yn = Span{yb Yo, -eeny yn}

Given initial data ug,vy € H*(Q) N HY(Q), ui,v; € HH(Q) and fo, 90 € L*((2) x (0,1) x

(11,72)), we define the approximations

U =) Gim(t)uy(2),
j=1

U =) h(t)v(2),
j=1

Zm = Z fjm(t>zj(x7 T, p)a
j=1

Ym = Z kjm(t)yj<w77—7p)7 (331)
j=1

which satisfy the following approximate problem

Tttt 45) + MOVt ()P, Vety) + (Vetie, Vi) + v ;)

¢
— / g1(t — 8)(Vuy(s), Vu;)ds + ki (Vun, Vu,)
0

+ [ Im(@I(Van (01,0.0), Vig)do =0,

T1

(el Ve, v3) + MV (D) (Vr, V03) + (Vomar, Voj) + 0t v;)
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¢
—/ Go(t — $)(Vom(s), Vv;)ds + ko (Vo Vu;)
0

4 / 1200 (T (2,1, 0,) , V) do = 0,

T1

(szt(ZU,p? 0, t)a Zj) + (zmp(x7p7 0, t)a Zj) =
(Q?Jmt(%ﬂa o, t)a y]) + (ymp('r7p7 0, t)’ y]) =

0,
0 (3.3.2)

I

with initial conditions

i
2m(0) = 25", ym(0) = yg', (3.3.3)

which satisfies

uft = ug, in H*(Q) N Hy(S),
ul" = uy, in Hy(Q),

vy — vg, in H*(Q) N Hy (),
v = vy, in H)
2" — 29, in L*(Q

y(T)n — Yo, in LZ(Q X (07 1) X (7—177_2))' (334)

Noting that m + ﬁ + % = 1, by applying the generalized Holder inequality, we find

(’umt|lumtt;uj) = /|Umt|lumttujd$
Q
2(1+1 20
< (Lm0 ) eyl 639)
Q

Since (3.2.3) holds, according to the Sobolev embedding the nonlinear terms (for more detail
see (]27])
(|t |"tmte, w;) and (|| Vmie, v5) in (3.3.2) make sense.

First estimate.
Since the sequences ug", v, u}", v}, 25*(., ., 0) and yi*(.,.,0) converge and from (3.2.9) with
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employing Gronwall’s lemma, we find C; > 0 independent of m such that

where
1
Bnl®) = 1 (Il + Tolf32) + @ [ o
Q
b
gy (170 P72 4 [V 2022

1 t 1 t
+§(a— / gl<s>ds)uwm||2+§(a— / gz<s>ds)uwm||2
0 0

1 1 1
3 (1900l 170 1?) + 5010 Vi) 0) + 5020 V)0

/ / (lm (@) 1V 22 + [ >|||Vym||2>dgdp.

(3.3.7)
Using (3.3.6) and (3.2.3), gives
U, Uy are bounded in Ly> (R, Hy(Q)),
Ut Ut are bounded in L2 (R, Hj(Q)),
Zm (2, py 0,1), ym(, p, 0, 1) are bounded in L2 (R, Hy(Q x (0,1) x (11, 72)).
(3.3.8)

The second estimate.
By multiplying (3.3.2)1, (3.3.2)2 by gjmut, hjmu respectively, by summing j from 1 to n,

then

/|umt|l|umtt|2dx+/M(HVum(t)H)VumVumttdl’—i—/|Vumtt|2dm
Q Q Q
t
—i—oz/vmumttdsc—// gl(t—S)Vum(s)Vumttdsdx+k1/VumtVumttd:c
Q aJo Q

T / / 12 (0)| V2 (2, 1, 0,8) Vamudodz = 0,
QJr

/|vmt\l|vmtt\2da?+/M(Hva(t)H)vavattdaj—i-/|vatt|2d:v
Q Q Q
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+a/ U Uy AT — // g2(t — s)Vun(s )vattdsdx+k2/ VU VUed
Q
/ / lp2(0)|Vym (2,1, 0,t) Vopdodr = 0. (3.3.9)
Differentiating (3.3.2)3, (3.3.2)4 with respect to t, we get

(0zmut (2, p, 0, 1) + zmap (2, p, 0,1), 2;) = 0,
(0Ymit(z, p, 0, ) + Ymep(, p, 0, 1), y;) = 0. (3.3.10)

Multiplying (3.3.10); by 2jm: and (3.3.10)2 by ¥jme, summing over j from 1 to n, we have

Ldy ol d -
1 d
3 dt||ymt||2+ ||ymt||2 (3.3.11)

By integrating over (0, 1) with respect to p, we obtain

1d (! 1 )
337 /| elmldo+ 3llemi(e. 1. .01 = Sluma(e. O =0

1d [t 1 |

2dt . ollgmelPdp + S lymi(, 1, 0, )2 = Sllomar(, £)]> = 0. (331

Summing (3.3.9), (3.3.12) and using the fact that M(r) > a, we get

1d (! 1
/ |umt|l|umtt|2dx + ||Vumtt||2 + S 1 QHthHde + _Hzmt(xa ]-7 o, t)||2
Q 2dt 2
1
< =t ||? —/aVumVumttdx—a/vmumttda:
2 Q Q
¢
—I—// g1(t — )V, (s)Vunydsdr — k:l/VumtVumttdx
Q
oT2
[ ] (@1 .1, 008) Vinadeds,
QJrn
l 2 ,  1d ! 2 1 2
’Umt| |Umtt| dZL’ + ||vvmtt|| + 5% QHyth dp+ §||ymt(x7 ]-a o, t)“
Q
1
< —vatt(a:,t)HQ—/avavattdx—a/umvmttdx
2 Q Q
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t
Jr// 92(t = 8)Vuy(s)Vompdsdr — kQ/VUmthmttd:p
QJo

- / / |12(0) VY (2,1, 0,t) VUudoda. (3.3.13)
QJr

Now, we estimate the right hand side of (3.3.13):

Using integration by parts, Young’s and Poincaré inequalities, we have

‘ — a/ Uy Wyt AT
Q

‘ — a/ U Uyt AT
Q

Also, by Young’s inequality, we get

1
< C,a ('rzHWmttW + %me”?). (3.3.14)

Similarly, we get

1
< C*Q<E||Vum||2—|—77|]V1)mtt||2>. (3.3.15)

2
‘/avumvumttdﬂf < 77\|Vumtt\|2+a—HVumH2,
Q 4n
2
/ o Vomeds| < 0l Vomal + Vol (3.3.16)
Q
Similarly, we get
2 k% 2
— k1 | VupuVupudr| < 1]V +4_||vumt”7
0 n
2 k% 2
— / Vo Vonude| < V0l + 2 [Vonl (3.3.17)
Q

and we have

< |V

(a—k)gl(o) ! 2
) / |Vt (3)]Pds,

t
’// 91(t — $)Viy,(s)Vuydsde
aJo

< | Vol

t
‘// 92(t — )V (8)Vu,udsdz
aJo

(a —k)g2(0) [ 2
—i—T/O Vo (s)||“ds. (3.3.18)
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Similarly, we get

T2
L[ in@1Van o1, 0.0) Vnudods
QJn

1 72
< okl Vil + 4 / (| Vzm (2, 1, 0,1) |2de,

/ / 15(0)| Vo (2,1, 0,1) Vorudoda
QJrm

1 72
< kel Vol + - / 12(0) |V (2, 1, 0,0) | Pde.
T1

Substituting (3.3.14)-(3.3.19) into (3.3.13), and by using (3.2.9), yields

/ |umt|l|umtt|2dx + (]. — {T](k?l + 3 + OCC*)}) ||Vumtt||2
Q

1d [* ) 1
S 7. m d a m 717 7t
tagp ), dlemlPdo+ Slamde 100

1
Cy + E(a —k)g1(0)C1 T,

/ |vmt|l|vmtt|2dx + (1 — {n(k‘g + 3+ ozC’*)}) |V Ve ||?
Q

41l 1 [ s 1|| (z,1,0,t)[?
—— — T
9 dt 0 OllYmt P 9 Ymt\ T, 1, 0,

I

IN

1
S CQ + E(CL - k’)gg(O)ClT,

where () is a positive constant that depends on 7, «, a, Cy, CY.

Integrating (3.3.20) over (0,t), we get

¢
//|umt(0)|l|umtt(a)|2dxda
0 Ja

+ <1 — {n(kl + 3+ ozC’*)}> /Ot |V ttse (0)]|*do

1! I
45 [ ellamilPdo+ 5 [ (o1, 0.0) Pdo
0 0

< (Cot pla=RaOCT)T,
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/Ot/Q |Vt ()| [Vmae () [Pdzdr
+<1 - {n(k2 +3+ ozC’*)}) /Ot (Vonn(0)]%do

1 [t ) 1 [t )
+= | ollymel|“dp + 5 Yme (2,1, 0,0)|*do
0 0

2

< (Cz + %(a - k)gg(O)ClT) T. (3.3.21)

At this point, we choose 1 > 0 such that

(1 - {n(kl- +2+ C*oz)}) >0, fori=1,2 (3.3.22)

we obtain the second estimate

t 1 1
[ (190l 4 190 @ Yo 5 [ 0ol + il Yo < Co (3323
0 0

We observe from (3.2.9) and (3.3.23) that there exist subsequences (uy) of (u,,) and (vg) of
(vy,) such that

—\

v) weakly star in L*(0,T, H3(Q)),
(Ukt, Vgt ug, vy) weakly star in L0, T, Hy(S2)),

(g, ve) (u,
) (

(Upst, Veee) — (g, ve) weakly star in L*(0,T, Hy()),
) (
) (

—\

(ze, k) — (2,y) weakly star in L=(0,T, L*(2 x (0,1) x (11, 7)),
(2o, Yke) —  (20,9) weakly star in L>®(0,T, L*( x (0,1) x (11, 72)).
(3.3.24)
Now, we will treat the nonlinear term. From (3.2.9), we get
r 2(141)
I
et 'uel| 20,22 ()) = /0 [ Pl
T
< ¢ / |3V dt < Cy, (3.3.25)
0

where C4 depends only on C,,Cy, T, L.
On the other hand, from the Aubin-Lions theorem (see Lions [41]), we deduce that there
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exists a subsequence of (uy), still denoted by (uy), such that
ug; — uy stongly in L*(0, T, L*(Q2)),

which implies

ugs — uy almost every wherein 2 x R,..

Hence

gt "ty — |ue)'uy almost every wherein Q x R,

Thus, using (3.3.26), (3.3.28) and the Lions lemma, we derive
e "ty — |ug|'uy weakly in L?(0, T, L*(Q)).

Similarly
\Ukt|lvkt — |vt|lvt weakly in LQ(O,T, LQ(Q))

and
(2, yk) = (2,9) stongly in L*(0,T, L*( x (0,1) X (71,72)),

which implies

(zk, yx) — (2,y) almost every where in € x (0,1) x (7, 72) x Ry.

(3.3.26)

(3.3.27)

(3.3.28)

(3.3.29)

(3.3.30)

(3.3.31)

(3.3.32)

By multiplying (3.3.2) by ¢(t) € D(0,T) and by integrating over (0,7"), it follows that

it [ ) O+ [ M 01 (T, Ty
l+1 0 mt mitty Wy 0 m m> 7

+/O (Vumtt,Vuj)gb(t)dt—l—oz/O (U, u;)P(t)dt
_ / / (= 5) (Vi (s), Vay)d()dsdt + by /0 (Ve Vi) (£)d
/ / 1 (0)|(Vzm (2,1, 0,t) , Vu,)o(t)dedt =0,
l+1 i (|Umt|?fmttvvg)¢ dt+/ M|V () |]) (VUm, Vu,)p(t)dt

+ /0 (VOmiz, Vo;)$(t)dt + /0 (tm, vj) 6 (t)dt

—/0 /0 g2(t — ) (Vo (s), Vu,)o(t)dsdt + kzg/o (Vug, Vu,) ¢(t)dt
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system with a distributed delay term

T T
+ / 112(0) | (VY (7,1, 0, 1) , V;)p(t)dodt = 0,
0 1
T

/ (0zmi(x, p, 0,) + 2mp(, p, 0,1), 25)0(t)dt = 0,
0

T
/ (OYmi(z, p, 0,t) + Yymp(z, p, 0, 1), y;)0(t)dt = 0, (3.3.33)
0

forall j =1,...,m.
The convergence of (3.3.24), (3.3.28) and (3.3.30) is sufficient to pass to the limit in
(3.3.33). The proof of the theorem is complete. H

3.4 Exponential decay

In this section, we aim to study the asymptotic behavior of the system (3.2.6)-(3.1.2).
Thus, we use the Lyapunov method. We use ¢ throughout this section to denote a generic

positive constant.

Lemma 10. The functional

1
Fl(t> = H——l 0

+ 2w + 2o

(Iut|’utu + Ivt\lvtv) dx + / (VutVu + VvNu) dz
@ (3.4.1)

satisfies

1
A < oy (hl i) + 5 (190l +1val?)

-1
—)0i+2 + g) (||qul+2 + HVUHH-Q) (3.4.2)
and

1

O < g (lll + dii3) + (9ol + 19017)
k

_E(HVUHQ + ||Vv||2) — b|| V20D — || V|20

e (ml@)mwx,1,g,t>u2+ qu(@)\HVy(m,Q,t)\|2)de

+c( (g1 0 Vu) + (g2 0 Vv) ) — Qa/qudas. (3.4.3)
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Proof. 1) Using Young’s and Poincaré inequalities, we get

I[+1)! (I+1)!
F (1 < l+2 ( l+2 l+2 42
B0 < sl + S+ iz + S

1 k k
3 (17wl + 196?) + 5 (170l + 190l ) + 1o + 22 oo
1 1
g (i + Hvtl\iii) + 5 (19 + 19ul?)
(1+1)
(L 2) (19l 4 wel).

[+2

IN

2) Differentiating F}(¢) with respect to t and using the first and second equations of (3.2.6),

we get

1 1
Fi(t) = /Q (] ure] wde + — 1 Hutﬂéﬁ /Q [vd o] v de + H—l\lthﬁi%
- / Augudr + || Vug|)* — / Avgvdz + | Vo ||* + Ky / VuVudzr + ks / Vo, Vudz
Q Q Q Q
= —(HutHéig + “fUtHéig) / Uut\lutt — Autt} udx +/ U’Ut|l/0tt — Avtt] vdx
IVl + [ Vo2 + by / Vo, Vudz + /@/ Vo, Vodz
Q Q

1
_ (\|uty|§¢g+Hvtugig)ﬂmtuu|ywu2+k1/vutvudH@/wth
Q Q

- ‘

T2

t
av + M(||Vul]*)Au — / g1(t — s)Au(s) ds + k1 Auy + / w1 (o) Az(x, 1, 0, t)dg} udz

t 2
[ au+ M(||Vo|]*)Av — / g2(t — s)Av(s) ds + koAvy + / e (0) Ay(x, 1, o, t)dg} vdx
0

T1

\\

t
= —(IIUt|I§i§+ lv t||§i§)—M(HW||2)IIVU||2+/QW(t)/O g1t = s)Vu(s)dsde

—/VU/TQ [ (Q)Vz(x,l,g,t)dgdw—M(HVUHQ)HVUW+/9Vv(t)/0 g2(t — s)Vu(s) dsdx

o~
—_

/V’U/ e (0) Vy(z, Q,t)dgd:c—l—HVutH2+HVUtHQ—Qa/uvdx.
0

As M(r) = a+ br?, we get

(luelli + lwelli33) = al Val® = bIVu*0FD — o Vo||* = b]| Vo0

F(t) =

¢
+ | Vae||? + [[Vve||? + / Vu(t)/ g1(t — s)Vu(s)dsdx
Q 0

[+1
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T2 t
—/Vu/ w1 (o) Vz(x,l,g,t)dgd:c—l—/Vv(t)/ g2(t — s)Vu(s) dsdx
Q T1 Q 0
v (3.4.4)
—/VU/ e (0) Vy(x71,g,t)dgdx—2a/uvdx.
Q 1 Q

By using Young and Cauchy-Schwartz inequalities and (3.2.1), we obtain the flowing esti-
mates for e > 0

T2
71

5000 [ 09 s
i @lde) [l @195 1 00l

T1 T1

€1 2 1
< — t —
< SIveO P+ 5 (

Similarly, we obtain

T2
T1

‘_/vi (t)/ w2 (0) Vy(x, 1, 0,t)do dx
/TQ |12 (o) d@) /TQ 2 (0)] | Vy(z, 1, 0, 1) ||Pdo.

T1 T1

&1 2 1
< L|vut —
< SIve @+ 5 (

And
/Q Vu(t) /O a1t — $)Vu(s)dsdz
< [ [ e 1¥ut0) (Vats) = Vutodse + [ n(syas) 1900
< 219u )+ 50 ([ a61is) [ [ ante=5)Vuts) - Fu(tdsca

19uF ([ nioras)
< (% T (/Otgl(s)ds)> |V () |2 + 2%1 (/Otgl(s)ds) (910 Vu) (1)

Similarly, we obtain

[90) [t —s19utsiaste < (3 + ([ stsras) ) 1901

s ( / t g2<s>ds) (920 V) (1)

261

Combining all above estimates with (3.4.4), we obtain
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1
RO < g (lall+ loiz2) + (190 + 19al?)

—bHVUHM+1 I

(o [ nrts—a ) iwae - (o | ' ga(s)ds —e) 170l

ve (|u1< V=G 1,001 + (9o, 1. 2.0 ) e

+c((g10Vu) + (920 Vv) ) — 2a /Q uvd. (3.4.5)

By using (3.2.1)

1
RO < g (halis+ lalig) + (19al? + 190l

=Bl V[P0 = B[P0 — (k — 1) [|Vull? — (k — 1) [ Vo]?
T2

+C/ (Im(@)IIIVZ(SJE,1,£J,If)||2 + qu(g)IIIVy(as,1,@,t)||2)d9
71

+c( (g1 0 Vu) + (g2 0 V) ) — Qa/ uvdz. (3.4.6)
Q
Taking e = £, we obtain (3.4.3). O
Lemma 11. The functional
1 t
F(t) = / (Aut - l—|ut\lut> / g1(t — s)(u(t) — u(s))dsdx
Q +1 0
1 t
+/ (Avt ~7 |vt|lvt) / g2(t — s)(v(t) — v(s))dsdx
Q +1 0
satisfies,
1 1
B < (llutlliié Flli3) + 5 (19ul? + 17
((l + 1) )l+20l+222l+1> (||Vu||2(l+1) n ||Vv||2(l+1))
[+2
1 [+ 1)1
ia- k){l + a0 (o Vi) + (o Vo)),
2 [+2
(3.4.7)

And for any eq > 0
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1
(o= 0 I3+ ol

+(52<a R+ acfﬁ) (nwn? ; ||Vv||2)

2

ZM(|Vul)|[Vul? + 2 5 M|V )IIWII2

Fy(t) <

2
Es 5 E2k1 2
_(<a_k>_§<2+kl>)||wt|| + 2 (@92, 1, 0.0 P
€9 2 62k2 2
_((a_k)_§(2+k2))||Vth + 22 () V(e 1, 0.)de
M|V
+{—(“2€u” ), L o (2+k +a0) +sz}(a—k‘)(91 o Vu)
2 2
\Y%
+{_<“2€“” )y L (2+k +ao)+52}<a—k><ggow>
2 2
cq1(0) , , cg2(0)
= g;i )(gloVu) - gzi >(920W). (3.4.8)

Proof. 1) We use Young’s inequality with the conjugate exponents p’ = ﬁﬁ and ¢ =1+ 2,

and by using Holder inequality, we get

‘ - / 11 gy /Ot g1(t — s)(u(t) — u(s)) dsdx‘
_‘ /(\ut|lu1ﬁ)(/t g1(t — s)(u(t) — u(s)) ds) da:‘

[ /“utlut de + — /’/glt—s U(S))dsql
1 [% /Q(Iu Y da + ql,/ﬂ(/o g1t — s)ut) — u(s)|ds)” dm]

+1

< i+ G [ [ (=)™ (60— i) - wio) o] e
(3.4.9)

IN

dz|

-3

IA
— T

We have by Holder’s inequality

41

9 [/ot (gl(t — 8)) +2 ((91(t — s))u%zm(t) _ U(S)D ds] 142 i
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<([onte=91a5)" [ onte =yttt w3 o

(a— k)l“cls”/o VoLt = )/ g1(t = 5)l[Vu(t) — Vu(s) | Vu(t) — Vu(s)|| ds

IN

t t
< (a— R (g /0 91(t — )| Vu(t) — Vu(s) " ds + /0 g1(t )| Vu(t) — Vus)|* ds )

< (a— K2 (g /0 91(t — )[2Vu(t)[* 2 ds + L (100 (1))

< (@ — R)"F1E2 (22 @ = k)| Fu ()] + %(ngu)(t)).

(3.4.10)
Combining (3.4.10) with (3.4.9), we obtain

t
1
‘ —/ 7 1]ut| Ut/ g1(t — s)(u(t) —u(s))dsdx’ < H—2Hutuﬁig

+ (l l‘:_l;_ [(a . k)l—&-lci-&-Z <22l+1 (a o k)||Vu(t)||2(l+1) + %(910VU) (t))]
(3.4.11)

Young’s inequality give

’ /Vut/ g1(t — s)(Vu(t) — Vu(s))dsdx

< LIVul? + 5o~ K)(or o V). (3.4.12)

Similarly, we get

‘ - /g l i plele /Ot g2(t = s)(v(t) — v(s))dsdx

<

1
Sl

o~

(lli—l;l [(a o <22l+1(a — T+ g VU))} (3.4.13)
and
’ /Vvt/ g2(t — s)(Vu(t) — Vu(s))dsdx
< —IIVvt||2 ( — k)(g20Vuy). (3.4.14)

Combining (3.4.11)-(3.4.14), we deduce (3.4.7).
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2) Differentiating F», using integrating by parts and (3.1.2), we get

Fg(t):/Q[Auﬁ—|utvutt}/ Lt — s)(ut) — u(s)) ds da

_l’_

<Aut l+1|ut|ut> /Ot (t — ) (S))—l—gl(t—s)ut(t))ds)dx

+ (Avtt—rvm/z(t )((t) = v(s)) ds da

<Avt 1 |vt|lvt> </Ot (gh(t — s) —v(s)) + g2t — s)vt(t))ds> dz
—a [ o) /0 g1t — 5)(u(t) — u(s)) ds dx

_|_

S— 55— 5—

+/QM(HVU||2)VU(7S)/O g1(t — 8)(Vu(t) — Vu(s)) dsdz
t t
—// gl(t—s)Vu(s)ds/ g1(t — s)(Vu(t) — Vu(s)) ds dx
o Jo 0
¢
—|—k1/QVut/0 g1(t — s)(Vu(t) — Vu(s)) dsdx
T2 t
+/Q/ 1 (Q)Vz(m,l,t,g)dg/o g1(t — s)(Vu(t) — Vu(s)) dsdx
—/Vut/tgit—s Vu(t) — Vu(s)) ds dz
l+1/’ut| ut/ g1(t — s)(u(t) — u(s)) dsdz
vl [ o) ds — i [ ont)as
+04/Qu(t)/0 g2(t — s)(v(t) —v(s)) dsdx
2 t —8)(Vo(t) — Vo(s)) dsdx
+ [ 29l Tee) [ e 5)(Vote) - To(s) dsa
—// QQ(t_S)V’U(S)dS/ g2(t — s)(Vu(t) — Vu(s)) dsdx
QJo 0
—i—kg/QVvt/o g2(t — 8)(Vu(t) — Vu(s)) ds dx

+ /Q / w2 (0) Vy(x, 1,t, 0)do /0 ' galt — 5)(Vo(t) — Vo(s)) ds da
/Wt/tgéts Vo(t) — Vu(s)) ds da

l+1/|vt|vt/92 (t —s)(v(t) —v(s))dsdx
t
[Vl / ga(s) ds — ——[|uy |2 /0 ga(s) ds

l+1
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t 1 t
_ 2 1+2
Lt Dot L4 T+ Is + I+ Ir — || V| /0gl(s)ds—l+1]]ut\\l+2/0gl(s)ds (3.4.15)

t 1 t
19l [ gas)ds = el [ o) ds
0 0

where

L :/QM(Hvu”?)vu(t)/o ot — $)(Vu(t) = Vu(s)) ds da
+/QM(HVUHQ)Vv(t)/O g2(t — s)(Vu(t) — Vu(s)) ds dx,
_/Q/O gl(t—s)Vu(s)ds/O g1(t — 8)(Vu(t) — Vu(s)) dsdx
—// QQ(t—S>V’U($)dS/ g2(t — s)(Vu(t) — Vu(s)) ds dx,
aJo 0
= [ [ @ Va0 [ ot = 5)(Tu(t) - Vu(s)ds da
T2 t
" / | @) Vot 1t 0)de / g2(t — $)(Vo(t) — Vo(s)) ds da,
/Vut/ g1t — 8)(Vu(t) — Vu(s ))dsda:—/Vvt/ gh(t — 8)(Vu(t) — Vu(s)) dsdx,
= l—l—l/’ut‘ ut/ g1 (t — s)(u(t) — u(s) dsdw—m/\vt|vt/ gh(t — s)(v(t) — v(s)) dsdz,
Iﬁ—a/va/O 1t = )(utt) —u(s)ds o+ [ utt) [ aale = 9)0l6) = o) ds
17:/61/9Vut/0 gl(t—s)(Vu(t)—Vu(s))dsda:—i—k:g/QVvt/O g2(t — s)(Vu(t) — Vu(s)) ds dx.

In what follows we will estimate I, ..., I7.

For I, we use Holder’s and Young’s inequalities with p = ¢ = 2, we get

1] < M(|vul?) [ 2 /Q Va(t)ds + 5 /Q ( /Otglu—swu(t)—Vu<s>\ds)2dx}

+M(HVU||2)[522/Q|Vv(t)|2d3:+2;/9 </t92(t_s)|w(t)—vu(s)|ds>2da;}

<M(||vu\|2)[522/Q|vu(t)12dx+Qi(/ >// a1 (t — )|Vu(t) u(s)|2dsd:v}
+ M(|Vol| )[2 /Q|Vv(t)|2dx+2i</ )//92 (t — )| Vo(t) u(s)|2dsdx}
< M(1VulP) IV + 5 (@ - BgroTu)(®))
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M(IVel?) (ZIVe)? + 21< ~ k)(92090)(1)). (3.4.16)
Similarly,
|I2|<22/Q</Otg1t—s|Vu )lds) d:n+2—52 /Otglt—s|Vu (s)|ds>2d:p
+22/Q</Otggts|Vv )lds) dm+— /Otgg(ts\Vvt) V(s )|ds> d
§€22/Q</Otglts )(|Vu(s) — Vau(t)] + [Vau(t) |)ds)2 252(/:5/1 gloVu t)
—|-22/Q</Otgg(t—s )([Vo(s) — Vo) + [Vo(t) ds>2 2;(/;92 ds ggOVv )
< alvu@I?( [ o0as)” + 62+1>(/t 1(5)ds) (gr0Tu) ()

+ Vol [ s0as) + et g [ 0661 d5) 0w

< e2|| Vu(t)[*(a — k)* + (e2 + 12)( ~ k)(groVu)(t) + e[ Vo (t)[*(a — k)?

+ (o2 50 )@~ K)(g20V0) (1),
€2

(3.4.17)

|15 < —= (/ |1 ()| Vz(x,1,t, Q)dg)zdx + 2; </Otgl(t —5)(Vu(t) — Vu(s))ds>2d:c
52 ( 2 (0)| Vy(x, 1, t, Q)dg)Qd:U—l— 21_2 (/th(t — ) (Vo(t) — W(s))ds>2dx
;(/ i rdg)// 1 (@) IV 2(, 1., 0)? doda
2i< ds)// ot — $) [Vu(t) — Vu(s)|® dsdz

m

2 </ ’d9>// |12 (0)| [Vy (2,1, ¢, o) dod
< ds)// g2(t — 8) [Vu(t) — Vu(s)|? dsdx

25

£2

S2</ [k (e |d9)/ 1 (0)| IV 2(2,1,, 0)|* do
T1

£2

2

T2

T ( mQ()rd@) s (1Y@, 1,2, o) do
T1 T

1
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tor ([[1as) [ [ ne=9)19ute) - Vuto)P dsda
tor ([ 1as) [ [ ate =190t~ V(o) s

" . (3.4.18)
<2 (b [ @IVt 0 e ks [ s (019101 o)
4 <“2;2’“> (g10Vu)(t) + @;@m(gzow)(t%

|14 < 2/Q|Vut| dm—}—/ / \gl(t—s)||Vu(t)—Vu(s)|ds> dx

+€2/ |Vvt|2dac+— / \gh(t — s)||Vo(t) — v(s)\ds)de
<*HV t||2+/ 1t —s)) // —gi(t — 8))|Vu(t) — Vu(s)|?dsdz  (3.4.19)

\w||2+/ Lt — ) // gt — $))[Vo(t) — Vo(s)[2 ds dz

0) 92(0)
< &2 2 _ 91( / €2 _ ' .
S5 HVutH 9, (g10Vu)(t) + 5 HVUtH 9%, (920Vu)(t)

As in [54], we can estimate I5 as follows

z+1/‘“t’“t/ g1t = s)(u(t) —u(s)) ds dx
<6/\u |2l+1dx+6/ </ \/ d, ( t—s (t_S)U(s)—u(t)|ds>2dx
<o) ([ 1w dw) -

(t —s) |u(s) —u(t)]* dsdz

cg
< dc 813 [ } / |Vuy 1( ) (g1oVu) (¢).
Similary
z+1/'“t‘l“t/ Ga(t — 5)(0(t) — v(s)) ds da
+ 1
< dcyi) [ G } /|v o — 20 )( oVv) (t).
Consequently
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l

1 < 68 | 20 E0)| 19wl - 4 (ghova) ()
- l (0 (3.4.20)

+ B ) [QE«»] [Vl = 252 (ghoV0) (1),

And
5] < aC. (2 (IVu()|? + [Vo(t)]?) + (“ng) [(g10Vu)() + (92090) ()]}, (3.4.21)
c2 2 il — oVu

1 < kS IVlP 4+ 52 (= K) (@109 u)(D) .

€ k
+ ko (IVorl]® + 57 (a = k) (92070) (1),
€2
Combining (3.4.15) and (3.4.16)-(3.4.22) and taking
€2

2(1+1) [2(y+1 b
265000 |2 E©0)]

)=

we obtain

t 1 t
Ft)=h+L+ I+ Li+1Is+ g+ I7 — ||Vut|]2/ gl(s)ds—l_i_lHutHﬁg/ g1(s)ds
0 0

t 1 t
_ 2 d _ l+2/ d
IVaul? [ aa(s) ds = 33 [ (o) ds
1
< 2y( 2 2 _
< M(|9ulP) (G IVuOI + 5@~ k) (10Vu)(1))

+ MV (ZIVo@IF + 5~ Bg20v0)))

+ea|Vu(®)[(a — k)* + (e2 + 2182)(& — k)(g10Vu)(t)

+e2|Vot)l*(a — k)* + (e2 + 2152)(61 — k)(g20V0)(t)

€ T2 T2
2 (0 [l @191t 0 bk [ e (@191, )P e

1 T
(a —k) (a —k)
2e9 2e9

(g10Vu)(t) +

9:1(0) €2 2 _
9y (g1oVu)(t) + 5 INEl

€ cg1(0 € cg1(0
+ 219l - 2 (g109u) () + Zivul - L (gov0) (0

+ (g20Vv)(t)

92(0)
262

9
+ Vel - (920Vu) (1)

+aC (2 (IVu@®I? + [Vu(t)]?) + (QQ_@]{:)[(gloVu)(t) + (g20V0) (1))

60



Global existence combined with exponential decay of solutions for coupled kirchhoff
system with a distributed delay term

€ k € k
- l~ﬂ§2||Vm||2 + 2—1 (a — k) (g10Vu)(t) + ks 2 ||Vou |2 + == (a — k) (920V0)(t)
15} 2 262

HVWW(/¢m$ﬁk>lilhﬂﬁﬁ<[jm@%ﬁ)\VWW([jm@ﬁ%>

~ et ([ o).
(3.4.23)

Simple calculations and using assumption (A1), we find

1

1+2 [+2
w—mhmmeMHJ

B < -
+(a2 a— k) + acf;) (HWH? i wa)
+

_< 2

1

€9 €2
= M([[Vul*)||Vu]? + 51\4(\\VUHQ)HV@||2

(

€ € gg [T

(a—k)—5 3 - kQ) [Vurll? + k1 / @IV, 1, 0,0)*de
T1

€ € € € T2
(@-0-F-F-RZ)Ivel kT [ h@lIvie e 0P
T1

2 2
M(||Vul?) 1 1 oG 1
MUVulT) — ki— v(a—k
+{ 2y T et )ttt T 1252 (a—k)(g10Vu)
M(|[Vv]?) 1 1 ol
+{ e T\t ) tan e 1”252 (a—k)(g20 Vo)
0 0
_ ol )(gioVU) _ ol )(géow)- (3.4.24)
€92 €2
0

Then, we obtain (3.4.8).

In the next Lemma we introduce the functional used later to obtain the stability result:

Lemma 12. The functional
Lo 2 2
- / / / ge—@p(m(@ﬂ|vz<as,p,g,t>| + [u2(0)| [Vy(a, p, 0,1) )dgdpdas.
QJO T1

Satisfies,
s / / (\m )1V =(z, 1 >12+\u2<g>\|Vy<x,p,@,t>|2)dgdpdx,<3.4.25>
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and
1 T2
BO < -l [ @(|M1(Q)|||V2(w,p,Q,t)HQ+|uz(@)!||Vy(x7p,@,t)||2)d@dp
0 T
o I7ul? + 170?)
i [ (@Mt 1,201 + IVt 0 o, (3020

where n; > 0.

Proof. By differentiating F3, and use the equations (3.2.6)3, (3.2.6)4, we get
1 T2
Fi(t) = —2/ / / e ?lui(0)|V2Vz, (z,p,0,t) dodpdx
QJO T1
1 T2
—2 / / / el (0)[VyVy, (x, p, 0,t) dodpdx
QJOo T1

1 To
_— / / / 0|11 ()| |V=[2 dodpda
QJo T

-/ m1<g>r{e-@\w (21,00 ~ V= (2,0, g,t>|2]dgdx
QJn

1 T
- / / / oe”%|ps(0)| |Vyl* dedpda
QJO T1

T2
- / / |u2<g>|{e—@wy(:c,l,g,m?—|Vy<x,o,@,t>|2}dgdx.
QJn

Using the equality z(z,0, 0,t) = w(x,t), y(x,0,0,t) = v, (z,t) and e ¢ < e 2 < 1, for any
0<p<1, we get

1 2
B0 = = [ [ e (@l + s 19017 ) aody
—/ e‘g(lm(g)IHVZ (z,1,0,) [|* + |p2(0)| [ Vy (2,1, 0, 1) ||2> do

o [ (@ lde) 9w+ (| jalollde) IVl

As —e ¢ is a increasing function, we have —e ¢ < —e™ ™ for any ¢ € |11, 7.
Then, setting 17 = =™ and ky = max(ky, k2), we obtain (3.4.26). O

Theorem 11. Assume (3.2.1)-(3.2.3), there exist positive constants 1 and (y such that the
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energy functional (3.2.8) satisfies
E(t) < Ge SVt > ty. (3.4.27)
Proof. We define a Lyapunov functional
L(t):= NE(t) + Fi(t) + NoFy(t) + N3F5(t), (3.4.28)

where N, NQ, N3 > 0.
First, if we let

then, by (3.4.2), (3.4.7), (3.4.25), we get

IK(t)| <cE(t).

Consequently,
K@) =I[L() - NE(t)] < cE(t)

which yield
(N—c)E(t)<L{Ht)<(N+c)E(). (3.4.29)

On the other hand, by differentiating (3.4.28) and using (3.2.9), (3.4.3), (3.4.8), (3.4.26) and
(3.2.2), we have

£ < ~NA(IVul + [Val?) + Gl o Va0 + 5 (650 V)0

@ Ivul? - Ja@Ivol?

1
try (hall + odiz2) + (190 + 19al?)

k
5 (17l + [0l ) = o — gl

ve [ (Wn(@I9o L .0l + b IF(o, 1, .01 )

+c((g10Vu) + (g20Vv) ) — Za/qudx

Ny
[+1

N (( ke ac*%) (HW\Z ; uwuz)

(a—k) [nutnii% T ||vt||éi§}
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+N2— (IVull )IIVU||2+N2— (Ivol?)[vol?

2k
( e z+k1>)||wt||2+zv2§ [ @I9=t 1,00 e
g9k
(< -2 2+k2>)uwn2 N2 [ IVt 1, 0.0) P
M(||Vu
{ ”262 = 26 (2+k1+a0) +€2}(G_k)(glovu>

{ HZZUH + o <2+k +a0> -i-sg}(a—]g)(ngvU)
cg2(0)

€2

(& / !
—Ny 9l >(910VU) - Ny (950 Vo)

—Nsm/ / (\ul MV z(x, p, 0, )1 + |2(0)| | Vy(z, p, @,t)!!2>d0dp
Nk (nwtn? ; ||wt||2>

T2
o [ (Im(@)IIIVZ(%1,@,t)||2+qu(Q)IIIVy(%1,9,t)||2)d9,

then, we have

! <
£ < l+1

(o) = 1} [l + i3]
— {NA —14+ N, ((a —k)— %(2 + k:o)) — N3ko} (||Vut||2 + ||Vth2>
S OIVuO? - SOVl

- (5= m(ata- w2 +ac2) -1 (vul? + v
+N2%2 (a + bl Vul|) | Vul* + Nf—; (@ + 0 Vul") Vol
VU b
+c((g10Vu) + (920 Vv) ) — Za/ﬂuvdx

(IIVul?)

+ k1 + aC, ) +62}(a— k)(g1 o Vu)
282

{ +2€2 (2

+Ng{% + — 205 (2—|—k2+a0) +52}(a— k)(g2 o Vv)
N

+(7

+Ny
n %) (g, o Vu)(t) + <% + g) (920 V)(t)
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091(0) cg2(0)

)

_N3771/ / (Iul MV, p, 0.0 + 2| Vy(z, p, Q,t)w)dgdp

—N, (910 Vu) — Ny (g5 0 V)

eok 2
= (= =370 [ (lal@IV+Go. 1001 + @IVt 1012 )

By using the inequality

N, N
() < —=bigi(t), i = 1,2
4 gz(t) — 4 €Zg7/<t)7 Z ) )

we arive at

L) < g Nelo— 0= 1} lull + ol

— {N)\ — 14N, <(a — k) — %(2 + k:o)> — Ngk’o} (||Vut||2 + ||Vvt||2)

k
. (5 N, (52((1 k)24 acfﬁ + ai;)) (||Vu||2 n ku?)

b (1= N5 ) IVl + [ Vo[[20+D)

+NQ{% + — 282 (2 + k1 + aC, ) —1—52}(@ — k)(g1 0 Vu)

MUV (o) b e

+c( (g1 0 Vu) + (g2 0 Vo) ) — Za/ uvdz

Q

—%fl (g1 0 Vu)(t) — %fz(gz o V)(t)

# (-2 owuy + (- w2 o vy

N [ [ o1 @193t p. 001 + o) (.. 2,017 ) ey
- (= 220 [T (@191 I + @IVt 1.2 e

Finaly, we obtain
0 <~y Mo 0 - L[l + o] - 20 [ woas

fa e N (0= 10 = 2 ) - 1= Nk (19l + 90
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(1= 22 (Va4 7ol

1 T2
Ny / g(ml(gnnwn? T qu(Q)IIIVyIIQ)dep
0 T

1

k C.
{8 - e (5 = w2+ 5 ) Hiwale + o]

_{% —¢— Nala— k)(zi@(Mo—i—Q-i-ko-i-OéO*) +52>H(91 o Vu) + (gzow)}
{5 -t o v + (6o v

k =
v == w2 [ (1@t 1,001 + a1, 2.0 e

Where h; = min (gl(O),gQ(O)), My = max (M(||Vu||2), M(||VUH2)>, ¢ = min (51,52)

Now, we choose and fixed Ny, such that
a1 = No(a—Fk)—1>0.
After that, we choose g5 such that

063:1—N2%>0,

k a ol
044:{§—N262<§+(6L—]€)2+ 2)}>0

Further, we choose N3 large enough such that

and

k
Qg = N3771 —C— NQEQ?O > 0.
Finaly, we choose N large enough such that

oy = AN + Ny <(a—]€)—%(2+k‘o)>—1—N3k’0>0,

N 1
aS:Tg_C_NQ(a_k><g(M0+2+ko+ozC*)—1—82) >0,
2

and
N CNth

> 0.
4 E9

66



Global existence combined with exponential decay of solutions for coupled kirchhoff
system with a distributed delay term

Thus, we arrive at

L)

< e lll + i3] = oo (19wl + 19002 - 20 [ wods

—ba3<||Vull2 ) 4 Vo2 >) oy [nwu? . ||wu?}
(¢

—a5[ Lo V) + mw]—m / A (ml @NIV=I? + ale >|||w||2)d@dp.
(3.4.30)

This is equivalent

/ 1 @]
L'(t) < N [||Ut||§i§ + ||vt||§i§] — <a2 + g) <||Vut||2 + ||Vvt||2) - 204/qud$
—bag(uwuzw i kuz”*”) oy @rw ; HWH
[<gl o Vu) + <g2ow] o / / (ml @IV + (o >H|Vyu2)dgdp
Qo 2 2
7|wwyﬂwm0. (3.4.31)
And
E(t) < L(t) < e B(t), ¥t > 0, (3.4.32)

using (3.2.8) and (3.2.9), estimates (3.4.31), (3.4.32), respectively, we get
L (t) < —mE(t) — moE'(t),Vt > to (3.4.33)

for some mq, mo, ¢y, co > 0.
A combination (3.4.33) with (3.4.32), gives

R (t) < —MR(t), (3.4.34)

where

R(t) = L) + maE(t) ~ E(2). (3.4.35)

Finally, a simple integration of (3.4.34) over (to,t), gives
R(t) < Rto)e 1), Vit >ty (3.4.36)

Thanks to (3.4.35), we obtain (3.4.27). This completes the proof. O
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Chapter 4

(General decay rate for a coupled Lamé
system with viscoelastic damping and

distributed delay terms

4.1 Introduction

In this chapter, we prove a general energy decay results of a coupled Lamé system
with distributed time delay. By assuming a more general of relaxation functions and using
some properties of convex functions, we establish the general energy decay results to the
system by using an appropriate Lyapunov functional. We are going to study the general

decay rate of the following Lamé system in €2 x R:

t T2
Uy — Agu +/ g1 (t—8) Au(s)ds — k1 Auy — / p(0)Aus(x,t — o)do = fi (u,v),
0

T1

t T2
Vg — A + / g2 (t — s) Av (s) ds — ke Avy, — / p2(0)Av(z,t — 0)do = fo (u,v).
0 T1
(4.1.1)

Equations (4.1.1) are associated with the following boundary and initial conditions

u(z,t) =v(x,t) =0, on 90 x R,
u(z,0) = ug(x),v(x,0) = vo(x), ur(x,0) = uy(x), ve(z,0) = vi(x),z € Q, (4.1.2)
(Ut(SC, —t),Ut(SL’, _t)) = (f0($7t)790($7t))7 in € x (077—2>>

where () is a bounded domain in R” (n = 1,2, 3), with smooth boundary 92. The elasticity

differential operator A, is given by
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Acu = pAu+ (p+ ) V (divu) ,

and the Lamé constants 1 and A are satisfying the following conditions
>0, 0+ A>0.

The parameters ki, ko, 71 and 75 are positive constants, with 7 < 7. The functions
p1, to ¢ [11, 2] = R are bounded. The functions f; (u,v) and f5 (u,v) which represent the
source terms will be specified later.

During this chapter, we have extended the general decay result obtained by Baowei Feng
in [29] to the case of distributed term delay, namely, we will make sure that the result is

achieved if the distributed delay term exists.

4.2 Preliminaries

In this section, we provide some materials and necessary assumptions wich we need
in the prove of our results. We use the standard Lebesgue and Sobolev spaces with their
scaler products and norms. For simplicity, we would write ||.|| instead of ||.||,. Throughout
this chapter, we used a generic positive constant c.

For the relaxation functions ¢g; and g¢,, we assume, for ¢+ = 1, 2,

(A1) g;(t) : R, — R, are nonincreasing C' functions satisfying

g:(0) > 0 and p — / gi(s)ds =1; > 0. (4.2.1)
0

We assume further that, for i = 1,2 :
(A2) There exist two C* functions G; : Ry — R, with G;(0) = G%(0) = 0, which are linear
or are strictly increasing and strictly convex functions of class C*(R;) on (0,7],r < ¢;(0),
such that

gi(t) < =& (t) Gi(g:(t)), Yt >0, (4.2.2)

where &; (t) are C! functions satisfying
&(t) >0, &(t) <0, vt > 0. (4.2.3)
(A3) For the source terms f; and fo, we take

Filu,v) = alu+ vl (w+v) + Blul"T ulv|"T, V(u,v) € [R"2,
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ptl 2
)

fo(u,v) = alu +v|P (u+v) + /3|v|p773v|u|7, V(u,v) € [R"]

with a, 8 > 0. Clearly,

ufy (u,v) +vfy (u,v) = (p+ 1) F (u,0), VY(u,v) € [R"]?, (4.2.4)
where )
F (u,v) = ol 28 ||| Y(u,v) € R, 125
(,0) = gy [t ol 4281l T ] Vo) € [RY (4:2.5)
and OF oF
fl (U’7 ’U) = %7 f2 (U,’U) = % (426)
Further, we assume that there is C' > 0, such that
afz afz —1 -1 .
< P p = <p<6.
‘au (u,v)‘—k‘av (u,v)‘_C’(|u| +vff7), i=1,2 where 1<p<6
(A4)

if n=1,2,p>3, if n=3;p=3. (4.2.7)
So, we have the embedding

2n

H) (Q) — L1(Q) f0r2§q§n_2

ifn>3orq>2ifn=1,2

and
L" — L% for g <.

Let ¢, the same embedding constant, so we have

ll, < e IVelly, VI, < e llvll, for v e Hy (). (4.2.8)
The following remark is proved by Said-Houari el al in |70]

Remark 3. There exist two constants Ay > 0 and Ay > 0 such that
/ i (o) P de < A (4 [Vall? + LIVl i = 1,2 (4.2.9)
Q

As in many papers, we introduce the following new variables

Z(LPa 0, t) = Ut<l',t - Qp)a
y(x, p,0,t) = v, t — op),
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then we obtain

QZt<x7p7 0, t) + Zp<l',,0, o t) - 0’ (4210)
Z(ﬂf,o, 0, t) = Ut(ZE,t),
and
t t)=0
oye(x, p, 0,t) + (. p, 0,t) =0, (4.2.11)
y(I,O, o, t) = Ut(x7t)'

Consequently, the problem (4.1.1) is equivalent to

( t ]
Uy — Aot + / g1 (t —s) Au(s)ds — k1 Auy — / p1(0)Az(x, 1, 0,t)do = fi(u,v),
0 1

t T2
Vg — Aev + / g (t — 5) Av (s) ds — ko Avy — / pa(0)Ay(x, 1, 0,t)do = fo (u,v),
0 T1

ta(x,P, 0, t) + Zp(x)p7 0, t) = 07
0,

\ Qyt(x7 p7 0, t) + yp<x7 107 o, t) =
(4.2.12)
with the initial data and boundary conditions

([ (u(2,0),0(z,0)) = (up(z), vo(z)), in Q,
(ut(x,()),vt(ac,O)) = <u1($),v1(1’)), n Q>
(ug(z, —t),v(x, —t)) = (folx,t), go(z, 1)), in Q x (0,7), (4.2.13)
u(z,t) =v(x,t) =0, on 09 x (0,00),

L (Z(I‘,p, o, 0),y((E,p, o, 0)) = (fo(nyPQ)ago(%PQ))a in € x (07 1) X (077—2)a

where
(z,p,0,t) € 2x(0,1) x (11, 72) x (0,00).

We recall the following notations
t
(h ) :/ h(t—s)e(s)dsde,
0
t
(o) (0= [ hit=s)lo() = (o) ds.
0

Thus, we have the following important property

[t pyads =3p 0o @145 0000 0= [0 = ([ ne)as) ool
(4.2.14)
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The energy modified associated to the problem (4.2.12) is defined by

B=1 [nutw w (- [ 0 (s) d5) IVl + 3+ ) aioul]

+ oo va +n/// ol (0¥ (2. 2,0 dodps]
g [l (1= [ w61 ) 190l + 0+ ) el (42,15
+% (g2 0 V) (¢ +77/// olp2 () IVy (z,p, 0, 1) depdfc}
_/mew.

Q

First, we prove in the following theorem the result of energy identity.

Lemma 13. Assume that .

i (o)l do < ki, i=1,2. (4.2.16)

Then, the energy modified defined by (4.2.15) satisfies, along the solution (u,v,z,y) of
(4.2.12), the estimate

d

S (1)< — 500 () [Vull* + 5 (5} 0 V) (1) — 502 (1) [V + 3 (g5 0 V) (1)

2 2

= (57 ([ @) [ 1

(n;1>//T 11 ()] 1V2 (2,1, 0,0)f dede (4.2.17)
o= () ([ e Wﬂ IVal?

(772 )//ﬁ 2 (0)| |Vy (,1, 0,1)|* dodz <0,

2k 2ko
(12 s (@ do) " (J7 s (o) do)

Proof. First multiplying the equation (4.2.12), by u,; and integrating by parts over Q, we

obtain

for

1 <7 < min - 1L (4.2.18)

[HUtH + ||Vl + A+ p) || divul| ] /Vut/ g1 (t —s)Vu(s)ds

N | —
Q.lg‘
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T2
s 90l + [ V[0 @1, 000) deds = [ £ (u,0) cuda,
Q 1 Q
by using (4.2.14), we obtain

;jt {Hm“ + ( /Ot 91 (s) ds) [Vul]> + (X + p) ||divu))® + (g1 0 V) (t)}

1 1,
=39 | Vaul|® + 3 (g1 0 Vu) (t) + / ufy (u,v) de — ky ||V || (4.2.19)
0

—I—/Vut/ w1 (o) Vz (x,1, 0,t) dodz.
Q 1

Similarly, multiplying the equation (4.2.12), by v; and integrating over 2, we obtain

;f; {Hvt\l +( /g2 (s)ds) Vo] + (A + ) [|divo])* + (g2 © Vo) (¢)

1 1
= ——gg ||VUH + = 5 (gh 0 V) (t) + / Ve fa (u,v) dr — ko HVth2 (4.2.20)

/Wt/ 2 (0) Vy (z,1,0,t) dod.

Multiplying the equation (4.2.12); by —n|u1 (0)| Az (x,p, 0,t) and integrating by parts
over Q x (0,1) x (7, 72), we obtain

1 T
77/// olp (0)| Vz(z,p,0,t) V2 (x,p,0,1) dodpdx
QJO T1
1 T2
z—n/// \1 (0)| Vz(x,p,0,t) Vz, (2, p, 0,t) dodpdz,
QJOo T1

therefore
dtZ// /ﬁ ol (o) [V2 (, p, 0,1)| dodpda
:__// / |11 (Q)|—!VZ (z, p, 0, 1)| dodpdx: (£221)
2 Q 0 T1 dp

T2 T2
— 2 [ [ @1Ve w00 dede 4 3 [ (@] [V a0 doda,
QJn QJr

Multiplying the fourth equation of (4.2.12) by —n|us (0)| Ay (z, p, 0,t) and integrating
over Q x (0,1) x (71, 72), we obtain
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d 1 T2
GO L[ e @119 p 0.0 dsdpc
QJo Jn

1 T2 d
=5 [ [ ] e @1 5 19y 0.0 dodpa (4222

=——// 2 (0)] [Vy (2,1, 0,1)| dodz + 5 // 2 (D) [V (2, )] doda.
T1

For the source term, we have

/Qutfl (u,v)dx%—/gvtfz (u,v)d:ﬁ:/ut (a!u+v!” Y(u+v) + Blul= u|v\p+1>

Q

+/Qvt (a|u+v|p Yu+v) + BT v]u\pH)
:/Q<a|u—|—v|1’—1(u—|—v) (ut+vt)+5<|u|L53u.ut> |v|p +B<|v| 2 vvt> |u|p+1>

d a 28 pu d
. PH L 2 w2 )de=— [ F dz.
pn Q<p+1|u+v| +p+1|uv|2> x dt/Q (u,v)dx

By collecting the previous equations (4.2.19)-(4.2.23), we get

(4.2.23)

d 1 1, &
GE O = =500 [Vl + 5 (610 V) ()~ ka [Vl + | Vo [ (0) V(0.1 0,8) dod
Q 1

1 1, &
— 30 Vol + 5 60 Vo) (0~ ke | Vull + [ Vo [ e (0)Vy (o1, 0.0) dods
Q 1

2 @IV a0l dede+ [ [ @V 0 doda
2 QJn 2 QJ7r

3 [ ] @l 9y Lot deds 2 [ [ e (@) 1Vu (o0 deda,
QJn 0l
(4.2.24)

Using Young’s inequality, we obtain

[vu [ m@vetaotdods < [ [ (Vu/lu@l) (Vim @19 (01, 0.0)) deds
Q 1 QJr

1

1 2 1 2
<5 ([ b @rde) 19wl +3 [ [ @119 (01,007 dodr
T1 0 m

similarly

(4.2.25)
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[ vo [C i@ Vi ot dote < ([Tl @lde) 190
Q T1 T

1
1 2
w5 [ [ @119y o) dod
QJr

This completes the proof. n

(4.2.26)

4.3 General decay

In this section we will prove that the solution of problem (4.2.12)-(4.2.13) decay
generally to trivial solution. Using the energy method and suitable Lyapunov functinal.

In the following, we will present our main stability result:

Theorem 12. (Decay rates of energy) Assume that (A1)-(A3) hold. Then, for everyty > 0
there exist two positive constants oy and ag such that the energy defined by (4.2.15) satisfies
the following decay

E@)gagal<a{é:mg@yu),Vtzg1(@, (4.3.1)

where
1

Gi(0) = [ g G (0) = min {61 (1).G5 (1)},

and & (t) =min{& (¢), & (0)}, g (¢) = max{g: (t), g2 (1)} -

This theorem will be proved later after providing some remarks:
Remark 4.
1. In case [} & (t)dt = oo, Theorem 12 ensures limy_,o E(t) = 0.

2. From (A2), we infer that limy_,, g;(t) = 0. Then, there exists some t; > 0 large
enough such that
gi(t)) =7 = gi(t) <7, Vt > 1. (4.3.2)

As G; are positive continuous functions and g; and &; are positive nonincreasing con-
tinuous functions, then, for all 0 <t < tq,

0<gi(t1) <gi(t) <gi(0) and 0 <& (t1) <& () <& (0),

which tmplies for some positive constants a; and b;,

a; <& () Gi(gi (1) < b

1)
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Consequently,

Q;

9:(0) < —

g: (0) gi(t), fort€[0,ti].  (4.3.3)

3. We also mention Johnson’s inequality, which is very important for proving our result.
If G is a convez function on [a,b], g : Q — [a,b], we have

1 1
G —/g(az)h(a:)d:v §—/G[g(:v)]h(:v)dx,
k Ja k Ja
where h is a function that satisfies

h(z) > 0 and /h(:c)dx:k>0.
Q

To prove the desired result, we create a Lyapunov functional equivalent to E. For this,
we define some functions that allow us to construct this Lyapunov function.
As in Baowei [29] and I. Mustafa [53, 54|, we define

:/°° g: (s)
0 \/Cgi (5) —gi(s

7

) and h; (t) = Cg; (t) —g. (), 1= 1,2, (4.3.4)

for any 0 < ¢ < 1.

Lemma 14. Let (u,v, z,y) be a solution of the problem (4.2.12). Then, the functional

gp(t):/Qu(t)ut (1) d:v—l—/gv(t)vt (t) dx, (4.3.5)

satisfies the estimate

¢ (1) <~ ITu () ~ 20 0P + e O + e (1)

3C¢a
2l

= (A ) [ldiva ()] = (A + p) | divo (2] +

+ 28 2 [Tl + 2552 (o ) O+ @+ 1) [ Flu().o()ds

3]€
s [ @119z @100 deda

3k T2
2// 12 (0)] [Vy (21, 0,)? dod.
T1

3k} 2
(h1oVu) (t) + 8 V]
1

(4.3.6)
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Proof. Taking the derivative of (4.3.5), we obtain

0 :/Q|ut (t)|2dx+/ﬂu(t)utt 0 dx+/ﬂ|vt (t)|2dx—|—/ﬂv(t)vtt (1) da.

From problem (4.2.12) and using integration by parts, we get

@' (8) = [lue ()] + [loe ()]
+ /Qu (1) (Aeu - /0 g1 (t — s) Au(s)ds + k1 Auy + / 2 w1(0)Az(z, 1, 0,t)do + f1 (u, v)) dx

T1

+ /Qv (t) (Aev — /Ot go (t — s) Av (s) ds + kaAv, + /72 pe(0)Ay(x, 1, 0,t)do + f2 (u,v)) dx

= JJuy ()]|” + ||ve (2)]] —kl/QVuVutdx—kg/QVUVvtdx

— ul[Vu @) = (A + ) HdiW(f)HZ)Jr/QVU (t)/o g1 (t —s) Vu(s)ds
/Vu / (0)Vz(z,1, 0, )dg+/ﬂu(t) fi(u,v) dz

= RIS = ot 0 oo O + [ 00 [ a0 =) Vo sy

- [vo@ [ i@yt tendet [ 0o four) i

— e DI + [loe (t)||2—kl/QVuVutdx—kg/QVvVvtdx
(1= [ o615} 19 I = ) i 0
/ Vu (t / (t — 5) (Vu (s) — V(1)) dsda
/Vu / (0)V2(z.1, 0, )dgdx+/ﬂu(t) Fu (u,0) da
(0= [ ) 190 @ = -+ ) e 0
/ Vot / 0 (£ — 5) (Vo (s) — Vo (1)) dsda
/vi( )/ (0 )Vy(x,l,g,t)dgdx—l—/v(t) J2 (u, ) do.

T Q

By using Holder and young’s inequalities, we have
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/ Vu (t / (t— 5) (Vu(s) — Vu (1)) dsdz

S—HV OIIE +2l1// (g1 (t — 5) (Vu (s) — Vu (1)) ds)* do
Iy 2

< 5 IVu @]

3 t 7 (t—S) A— o S 2 )
+2_z1/ﬂ/0 (\/C91(t—8)—gi(t—s)\/ggl(t_s)_gl(t s) (Vu(s) =V (t))d> d
< %nw ol

91 )
(/ NEAOEYAC )// (Co1(t—s)—gi (t—5)) |Vu(s) = Vu(t)|" ds
< gllvu@)l 21 = (hi o V) (t)
(4.3.7)
Similarly, we obtain
/ Vot / g2 (t = 5) (Vv (s) = Vo (1)) dsdz < %HW Ol 3;2’2 (hy o V) (1), (4.3.8)

/Vu / (0)Vz(x,1,p,t)dodx
<G Ivur+5 [ ( A |m<g>|w<x,1,g,t>dg)2dx

T1

< 2iveo + o [ ([ Vi@V im@Ive 1ot >d@)2 (139)

< 2 Ivu o *2?2 ([ mt@ide) [ " htol1v2Ge. 100

3k
< L Ivu P + // (0 [V 2(2, 1, 0, 0)[ do,
T1

and
/W / (0)Vy(z,1, 0, t)dodx

< 2 Ive I +;; ([ wtolde) [ [" (ol 9ot 0P de (@310

3k
< 2| + // 12(0)] [y (e, 1, 0, 1) do.
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The Young’s inequality gives

b [ V) Va0 dr < Va0l + 3 90 0], (4:3.11)
and
kz/w ) Vo () dr < 2 [T O + 502 ||wt< )2, (4.3.12)
For the source term, we have
/u (t) f1 (u,v)dx + / v (t) fo (u,v)de = (p+1) / F (u,v)dz. (4.3.13)
Q Q Q
Combining the equations (4.3.7)-(4.3.13), thus, our proof is completed. O

Lemma 15. Let (u,v,2,y) be a solution of the problem (4.2.12). Then, the functional

¢(t):/Qut(t)/otgl(t—s)(u(s)—u(t>>dsdx+/ﬂvt(t)/otgg(t—s)(U(s)—v(t))dsdx

= () i (),
satisfies for any & > 0 the estimate
/1) < (6 0Aola) [V ()] + 8 aioul + 5ol |90 1)
! Cen+1
# (0= [ aeas)u o+ L o v 0
0

ok / / 11(0)| [V =(2, 1, 0, ) dodz + Sk, [V
QJr

+ (6 + 6M4l) [ Vo ()| + 8 ||divv]|* + 6 A4l ||V (8]
t C 1

(0= [ w@as) o+ e gwovn o
0

T2
+ ok / / 112(0)] V(2 1, 0, 6)|? dodz + 6Ky | Vur]|?
QJr

(4.3.14)

where As and Ay are two positive constants.

Proof. First we begin to estimate ] (t)

Yy (t) = /Qutt (t) /0 g1(t—s)(u(s) —u(t))dsde

+/Qut (t)/otg; (t—s) (u(s) — u(t)) dsde — (/Otgl (s)ds) e ()]

79



General decay rate for a coupled Lamé system with viscoelastic damping and distributed
delay terms

= /Q (Aeu — /t g1 (t —s)Au(s)ds + kiAu+ /7:2 pi(0)Az(z, 1, 0,t)do + f1 (va))

0

([ nte=9 w6 -ty asr)

# [e) [ =5 e —uass— ([ o615 0
= [ [t ) e asas — [ on (615 0
[ 90 [ ot =) (Vo) — Vule) i

— (A +p) /Q divu (t) /0 g1 (t — s) (divu (s) — divu (t)) dsdx

g
o[ ([ movserana / 0= 9) (Vuls) = Vu () ds ) de

+ [ um/:gl — ) (u(s) — u(t)) dsdz
—k:/Vu/Og w () dsdz.

w1<t>=/9ut<t>/tg1<t—s><u<s> u(®) dsds - (/g ()ds) s (0]
( ds) / Vu / w (1)) dsdz
— ) / divu (¢) /0 o (t — 5) (divu (s) — diva () dsdz
(e
— /Vu/ u () dsdz
+ [ ([ st 00 / {(=3) (Fu(s) - Vu(0) ds ) do
# [ 5w) [0=5) ) - ulo)dse

As in previous proof and by using Young’s inequality, we conclude that for any ¢ > 0,
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(u—/otgl (s)ds)/QVu/otgl (t—s) (Vu(s) — Vu(t)) dsdx

. (4.3.15)
<6 [[Vull* + == (hy o Vu) (1)

Similarly and by using the fact ||divul|* < ¢||Vul]®, we have

(A + 1) /Q divu (t) /0 g1 (t — s) (divu (s) — divu (t)) dsdx

4.3.16
C.Cgl ( )
d

< § ||divul)® +

(h1 o V) (1)

The same argument and by using Remark 4, we obtain

/ i (u,0) / g0 (0= ) (u(5) — (1)) s

< 0A, (z1 IVul? + 1 || Vo H) L (hy o V) (t) (4.3.17)

2(p+1 ot C
S‘SAI[ ;p—l)E(O)] (1 IVl + 12 [90]1?) + SEL (0 W) (1)

< 6As (|| Vul® + 12 | Vol?) +

p—1
where Az = [%E (0)}
From (4.3.4), we have

Junto) [ o105 )~ i) dsa
- [ <t>/0th1 (t—s) <u<s>—u<t>>dsdm—/ut <t>/t<gl (t = 5) (u(s) — u (1)) dsd
<6 flu (O + = /(/ Vhi (t —s)y/hy (t—s) (u(s) — u(t))ds)de

+05ﬁ/Q(/Otglu—s)(u(s)—u<t>>ds)2d:c

<8 Jlus (1)) + 5 (/0 hu (s) ds) (o) (8) + S (1, o w) (1)

J

(h1 o V) (t) + 042(?“ (h1 o V) (t)

C
<0 flus (DI + 5
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¢[Cer+1] (4.3.18)

<6l (D + == (a0 V) (1),

and

/Q </72 p1(0)Vz(z, 1, 0,t)do. /t g1 (t —5) (Vu(s) — Vu(t)) ds> du

T1 0
2

§5/Q</ |,u1(g)|Vz(:p,1,Q,t)dg)2dm—|—41—6 Q(/Otgl(t—s)(Vu(s)—Vu(t))ds) dz
<o ([ imtone) [ [ il 91,00 dede + S 0 7 1)

T1

2 cC,
gdkl// (@) 1720, 1, 0,) dodr + “E (hn 0 Vu) ().
QJr

(4.3.19)
Finally, Young’s inequality gives
t
k1 / Vut/ g1(t—s)(u(s) —u(t))dsdx
Q 0
k t ?
< Sky [ Vud]? + —1/ / ot —s) (u(s) —u(®)ds) de (4.3.20)
45 Jo \ o
C,
< 5k, || V|| + & L (o V) (1)
Then
t
@< (6= ([ 0nds) ) hueOIF + 6 rab) [l + ol
0
C 1
+ 0Asly ||V + w (hy o Vu) (t) + 6k ||V |)? (4.3.21)
ok [ [ (@) [95(e. 1,0, deds
QJn
The same steps can be taken to get the next estimate for ¢ (¢),
t
0 < (5 ([ a2(6ds) ) 1o+ @ 4 58 901+ 8 ool
0
C 1
o [Vl + 92T ) 0G0 (1) + 8y |V (4.3.22)

)
QJr
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(r—1)
where Ay = A, [p—HE(O)} P . .
Lemma 16. Let (u,v, z,y) be a solution of the problem (4.2.12). Then, the functional
1 2 2
_ /Q/ / 0e™ (|1 ()| V2 (2, p, 0,8)|* + |12 (0)] [Vy (2, p, 0,)|°] ddodp,
0 T
| (4.3.23)

satisfies the estimate

_6_T2/Q/ 11 (0)| V2 ($71797t>|2d1‘d9—e—m/ﬂ/ 12 (0)] [ Vy (ZE,l,Q,t)|2dde

+ k([ Vus (O + ko [Vor (D = 1 (2) .
(4.3.24)

Proof. Differentiating (4.3.23) with respect to t, we get

d
1) =

1 T2
2 /Q / / 0e™ (|1 (0)| V= (2, p, 0,1) Vit (2, p, 0,1) + 12 (0)] Vi (2 p, 0,8) Ve (x, p ,t)] dxdlodp.
0 T

By using (4.2.10)-(4.2.11), we have
1 pm o o 9 o 9
=- e | (o) 7~ IVz (@, p,0,0)" + |2 (0)| 5~ IVy (@, p, 0,1)["| dwdodp
aJo Jn dp dp

1 T
i 9 ( - 2 o [ _ )
- — (e < op
/Q/O /T1 [Iul (0)] 9 (e Vz(z,p,0,t) )+ Iz (0)] 9 (e \Vy (z,p, 0,1)] )} dxdodp
1 7
- /Q/o / oe~ [‘ﬂl (0)] V2 (, p, 0,8)]* + |12 (0)| |Vy (2, p, Q,t)ﬂ dxdodp.
T1

Thus,

T2
o1 // 2 | ()| |V2 (2,1, 0,) dxdg+(/ " <@>|dg) IV (2, 0,1
T1 T

1

//T e ?p2 (o) IVy (z,1, 0, )| dxzdo + </TQ |2 (0 )|dg> |\Vvt(a:,g,t)||2
L7 e [ 01195 0.0+ i 01190 000 i

Since e~ ¢ is deceasing function over (71, 72), the desired estimate (4.3.24) follows immediately
from (4.2.16). O

The following lemmas are needed to prove the general decay when the functions G; (t) (i = 1, 2)
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are nonlinear. The proof can be found in Mustafa [53].

Lemma 17. The functional

0= [ [ ort= ) 9u o) dsi

where oy (t) = [, g1 (s) ds, satisfies

0,.(1) <~ (910 Vu) (1) + 3 (s — 1) |Vl

Lemma 18. The functional

O (t) = /Q/Ot oo (t — 8) |V ()| dsdz,

where o3 (t) = [~ g2 (s) ds, satisfies

04 (1) < —5 (920 Vo) (1) +3 (1 — o) [ Vo]

Now, we define the following functional

F(t) = NE(t) + Nio(t) + Now(t) + I(2),

(4.3.25)

(4.3.26)

(4.3.27)

where N, Ny and N, are positive constants. It is easy to prove F(t) and E(t) are equivalent,

namely, there exist two positive constants x; and ko such that

By Young’s inequality, we get

Fo< (54543 Bl +
(3 (n- 0 (s) is) o3+ B2
(5 (i [ o) + o5 ) o
+ (g +c% (/Otgl (s)ds)) (910 V) (1)
+ (% +c% (/0th (s)ds)) (920 V) (1)
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N t T2 )
HCIARY olp (0)1Vz (z,p, 0,t)|" dodpdx
QJ0O T1

N t T2
+ (—n+0)/// olu2 ()] |Vy (2, p, 0,)|* dodpdz (4.3.29)
QJO 1

2
N . 2 . 2
+ 5 (A + p) [[|divu||® + ||divo||*] = N [ F (u,v) dz.
Q

Then, for any N there exist k; > 0 such that

F S IilE (t) .
On the other hand, we can fined
N N Ny 2 2
FOz (5 -5~ 5) Dl + o)
N t Ny Ny 2
(5 (o [a@as) -G -3 ) vl
N ! Ny Ny 2
s (5 <u - [ 6 ds) S 67) 7o)
N N t
+ (5 — 072 ( g1 (s) ds)) (g1 0 Vu) (t)
0 (4.3.30)
N N,
+ (? —c— (/ g2 () ds)) (g2 0 Vu) (t)
0
N t T )
+gnte // / olu1 (0] |Vz (x, p,0,t)|" dodpda
QJo T1
N t T2 5
+gnte // / olus (0) |Vy (z, p, 0,t)|” dodpdz
QJO 1
N
5 Ot ) [ldioul? + divo]?] ~ N/ F (u,v) da.
Q

We choose N large enough so that

and

Then, there exist ko > 0 such that

F(t) > wE (t).
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Lemma 19. The functional F(t) satisfies for any t > ty,

F () <=4 (p—0) [Vu@)* =4 (=) [Vo O = uw @] = [l @)

1 1

100V O+ (@ Ve) () +c | Flu(t),o)ds

1 T 1 T
—// / 0| (@)\\VZ(w,p,Q,t)IQdepdx—// / 012 (0)||Vy (z, p, 0, 1) dodpdz.
QJO 1 QJO 1

(4.3.31)

— lldivu (0))* = | divo (O)]” +

Proof. Let

go = min{/otl 91 (s) ds,/otl g2 (s) ds}.

Cg

From Lemmas 14, 15 and 16, noting that g; = (g; — h; we have for any ¢ > t;,

, l
F(t) < — (21N1 Nod (1 + Asly) — N25A4l1> AGIE

l
< 2Ny — Nod (1 + Agly) — N2§A312> Vo ()]

— (goNo — 8Ny — Ny} [ ()] + e 1))

+ 5 L9000 (0 + (0 V) O+ N o+ 1) [ Fu(0),0(0) ds
[N clCea+1]  3NCey]

- |5 - w2 o vy
-N C[C 7Q—I—l] 3N10 72-

B R e el ICRARIU

NO'l

(At ) Ny = 0N [lIdivu ®)]* + || dive (£)|°]

No+e ™

No+e ™ —

Nl%kl — 0Nk

Nlikg
21y

3k?

Ni—1L — 0Ny ky —

20,
3k3

5N2k’2

N1 =2 — 0Nyky —

// ’Ml |V’Z I717Q7 )‘ deI

/Q / 1(0)| [Vy(a, 1, 0, ) doda

k] 1V, (1)

Now - k} 190 ()2 — 1),

o= () (/] etotee)|

21y

where

e () ([ )]
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Taking 0 = 2N , we can get
, I 1 2
F(t) < = (5N =5 L+ Ash) — —A4l1 Vu @)
l 1
S G RO VARE AT
1

= (0= 5 = M) Dl 1 + e 1
+ S (g0 Vi) (0 + (920 90) (0] + Ny (o4 1) [ Flu(®),0(0)do

Q
- g —2¢N; — Cey (2cN2 32];7 )1 (hy o V) (t)
L 1

[N 3NV,

— 5 — 2CN22 — ng (2CN2 2[2 )‘| (h2 @) V’U) (t)

- [0 w5 laion @)1+ aivo 1

[ 3
~[Notem lg—llkl——] / / 12(0)] [V2(2, 1, 0, ) dode

~[No g - Nl—k:z——] | ins(@1196s. 1,00 doda
L T1

215
[ 3k 3k
- v - W3- B pvuope
i 1
[ 3k; 3k
- |vou- w3 -2 - 1.

First, we take N; > 0 large such that

1 l 1
()\+M)N1—§>O,(21N1—§(1—|—A3l1)——/\4l1) ( —l1>,

and

[ 1
(22]\[1 3 (1+ Aszly) — —A4l2) >4 (p—1).

We choose Ny > 0 large enough so that

1
gONZ_i_N1>1.
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Note that
(g7 (s) (g7 (s)

0< < , 1 =1,2
Cgi(s) —gi(s)  —gi(s)
Then, for any s € [0, 00), we get
2
lm— 9 ) o

¢=0(gi (s) — gi! (s)

By using the fact % < g; (s), i =1,2 and using Lebesgue-dominated convergence

theorem, we can get

00 2
lim¢C; = lim/ i (S)/ —0,i=1,2
07 =0y Cgi(s) —gi(s)
Thus, there exist some ( (0 < (o < 1) such that if { < (p, then

1
8|5t +2¢N3]

CC<72 < and CCC’Q <

8 [% + chg]

At last, we choose N large enough and choose ( satisfying

1 1
ZN_26N22>OandC:ﬁ>CO7
so, we arrive at
N 3N N 3N
[5 —2¢N; — Cey (26N22 + 71)1 > 0 and [5 —2¢N; — Ceq (20N22 + 71)} > 0.
1 1
Therefor, we choose N even larger (if needed) so that
. 3 k . 3 k
{Nm—i—e 2—N12—llk1—§1 > 0, Nnj+e 2—N12—l2]€2—§2 > 0,
3k 3k 3ks 3k
Nm — N, =L - == d |Nm— N =2 - == .
[ m 12l1 2}>Ocm [ m 12l2 2}>O
Thus, (4.3.31) is established. O

Proof of Theorem 12. Taking into account (4.3.3) and (4.2.17), we obtain that for
any t > tq,
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/ g1 ( /|Vu — Vu(t —s)|* deds
0

g1

(4.3.32)

— Vu (t — s)[* deds < —cE' (t),

/ g2 ( /\Vv — Vo (t — s)|* deds
0

< — 9:(0) / /|Vv — Vo (t —s)[> deds < —cE' (t).

and

(4.3.33)

Noting (4.3.31), we shall see that there exists a constant m > 0 such that for all ¢ > ¢y,

F'(t) < —mE(t) —cE +c¢ tgl (s) | |Vu(t) — Vu(t —s)|* deds
/ /" (4.3.34)
+c/ g2 ( /|Vv — Vo (t — s)|* dads.

Denote L (t) = F (t) + cE (t). It is obvious that L () is equivalent to E(t). It follows
from (4.3.34) that

L' (t) < —mE(t) + c/t g1 (s) /Q IV (t) — Vu (t — s)|° deds

t (4.3.35)
+ c/ g2 () /Q Vv (t) — Vo (t — s)|” dxds.

t1

We consider two cas

Cas 1. G(t) is linear: By multiplying (4.3.35) by £(t) and using (A2) and (4.2.17), we
obtain

€000 < -me @)+ ) [ (5 [ V() = Tule o) doas
et /g2 /\w Vot — )| duds
< _mel +c/ xorn /\vu(t)—vu(t—s)mxds
/52 g ( /|Vv(t)—Vv(t—s)|2da:ds
<-ms B - [ 409 [ Va0 - Tulo ) dea
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—c/ gh (s /|Vv — Vo (t — s)|* dxds (4.3.36)
< —mg () E(t) — cE' (1),

which gives, as £ (t) is nonincreasing,
[EOLE)+cE®) <E@L () +cE (t) <—mE@R)E(t), V> t. (4.3.37)
Denote K (t) =& (t) L (t) + cE (t). we get

K'(t) < —mé&(t) E(t).

Hence, using the fact that K (t) ~ E (t) we easily obtain

E{t) < creap (—02 /tlt,g(s) ds) .

Cas 2. ((t) is nonlinear: First, we use Lemmas 17 and 18 to deduce that
J(t) = F (1) + 01 (1) + 02 (1)
is nonnegative and it satisfies for some positive constant k£ and for any t > t,

T () < = (=W IVul® = (=) Vo] = [l — [Jod]|

1 1
— || divu||® — || divo]]* — 2 (g1 0Vu) — 1 (g2 0 Vv) + c/ F (u,v)dx
Q

1 T2
—/// ol (0)1Vz (z, p, 0,0)[ dodpdz (4.3.38)

/// oluz ()] |Vy (z, p, 0, t)| dodpda
< —kE(t

Therefore,

k/tE(s)dsg J(t) —J(t) < J(t),

t1
this implies that
/ E(s)ds < oo. (4.3.39)
0

Now, we define I; (t) by
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—q/ /|Vu — Vu(t —s)|” deds
—q/ /|Vv — Vo (t — s)|* dads,

where (4.3.39) allows for a constant 0 < ¢ < 1 chosen so that, for all ¢t > ¢,

and

L) <1, i=1,2. (4.3.40)

We also assume, without loss of generality that [;(t) > 0 for all ¢t > ¢;; otherwise (4.3.35)
yields an exponential decay. Also, we define A\;(¢) and \y(t) by

M (8) ;:—/ g, (s)/ﬂ|Vu(t)—Vu(t—s)|2dxds,

t1

Ao (1) := /g2 /]Vv — Vo (t — s)|* dads.

We observe that \; (t) < —cE’(t), ¢ = 1,2. Noting that G; (¢) is strictly convex on (0, 7]
and G; (0) = 0, then
G;(vx) <vG;(z), i=1,2,

provided 0 < v < 1 and x € (0,r]. By using (A2), (4.3.40) and Jensen’s inequality, we can

obtain
1 t , 9
A (t) = T 0 /t1 L (t) (=g (s))/Qq|Vu (t) — Vu(t —s)|" dzxds

1 ¢ 2

> / {06 ()G 1 (9) [ alVu(®) = Vult =) dods

qult /G1 L) ( ))/ V() — Vau (t — 8)[ deds

- (4.3.41)
> & Gl(]l(t)/h() 6) [ alVu o) = Tt - o) dads)

:&q(t) (/gl /\vu SVt —8) dxds)
zflq(t) (/g1 /\vu CVu(t—s) d:z;ds)

where G is an extension of G such that G is strictly increasing and strictly convex C?
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function on (0, +00), see [53]. We have from (4.3.41)

/ g1 ( /\Vu — Vu (t — s)[* dods < G1 (q;;l(g)) (4.3.42)
Similarly, we have
/ s ( / IV (t) — Vo (t — s)|* dads < G2 (q?;(g)) . (4.3.43)
We infer from (4.3.35), (4.3.42) and (4.3.43) that for any ¢ > ¢,
/ e g1 (1) —1 (g2 (t)

Let us denote
Go (t) = min {G_l_l,G_g_l} )
For gy < r, the functional K; (t) defined by:

ICl (t) = GO (60%) L (t) + E (t)

is equivalent to F, and by using the fact that £’ <0, @/ > 0, and @” > 0, we infer from
(4.3.44) that

Kt (1) = 2o 2D (60 b (t)) L)+ Go (60 E®) > £ +E ()

E(0) £(0) E (0)
E(t) E(t)\ =1 (g (t)
S —mkE (t) Go <80E (0)> + CGO <80E (O) 1 ( 51 (t) ) (4345)

E (t)) (qu( ))
+¢cGo | o7 | G2 .
o (o) & (57
Let G be the convex conjugate of G in the sense of Young (see Arnold [7]), then
—% — -1 —_— — -1
G, (s)=s <G) (s) - G, {(G) (s)], i=1,2, (4.3.46)

and G satisfies the following Young’s inequality

MD; <G, (M)+G;(Dy), i=1,2.
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ny t > 0,
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B1ICo (t)
E(0)

Denote R (t) = . Using (4.3.49), then

R(t)~E(t). (4.3.51)

Since GY% (t) = Gy (eot) + otGj, (got), then, using the strct convexity of Gy on (0,7], we

arrive at G4 (t),G5(t) > 0 on (0,1]. We infer From (4.3.50) that there exists a constant
b1 > 0 such that for all ¢t < ¢y,

R (t) < —bi£ (1) Gy (R(1)). (4.3.52)

Then, by integration over (t1,t), we have

/'t _R/ (S) t ( ) EoR(tl) 1 t ( )
—dszb/fsds:> dszb/fsds
t1 G3 (R (S>> ! t1 €0R(t) SGO (S> ' t1

) (4.3.53)
— r< 267 (u [ew ).

s 1
where Gy (t) = [, G (5)

combination of (4.3.51) and (4.3.53), estimate (4.3.1) is established.

ds is strictly decreasing on (0,7] and lim;,o G4 (t) = 4+o00. A
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Conclusion and Prospects

In this thesis, we have studied the effect of the presence of delay term on the existence
and uniqueness of the solution, as well as rate of decay of the energy of some problems that
involve the wave equation. In the second chapter we have studied the wave equation with
strong delay and distributed delay. We proved the well-posedness and an exponential decay
result under suitable assumptions on the weight of the damping and the weight of the delay.
In the third chapter, we have proved the global existence and an exponential decay rate for
the Kirchhoff’s coupled system with a distributed delay term.

The results we obtained encourage us to expand our study of the effect of delay term
on the existence of solution and stability of solutions to include a broader class of other
physical problems.

In the fourth chapter, we are proved a general energy decay of a coupled Lamé system
with distributed time delay. This result is an extension of what Baowei Feng obtained in
[29]. In order to complete this work, we will later study the existence and uniqueness of a

local and global or blow-up of solution in the next work.
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Abstract

The thesis aims to provide the reader with how to use the most popular method for
studying the existence and uniqueness of the solution and the general energy decay of some
wave problems with strong delay and distributed delay, similar to the Kirchhoff system
and the Lamé system. The first chapter deals with introducing some basic notions in bounded
and unbounded operators and some main theorems in functional analysis. In second chapter,
we proved the well-posedness and an exponential decay result under a suitable assumptions
on the weight of the damping and the weight of the delay for a wave equation with a strong
damping and a strong constant (respectively, distributed) delay. Finally "third and forth
chapters”, we proved the global existence of Kirchhoff's coupled system and general decay
for the coupled system of Kirchhoff and system of Lamé with a distributed delay term.

Résumeé

Le but de cette thése est de fournir au lecteur comment utiliser la méthode la plus
populaire pour étudier l'existence et l'unicité de la solution et la décroissance générale
d'énergie de certains problémes d'ondes a fort retard et retard distribué, similaire au systeme
de Kirchhoff et de Lamé. Dans le premier chapitre, nous avons introduit quelques notions de
base sur les opérateurs bornés et non bornés et quelques théorémes principaux en analyse
fonctionnelle. Dans le deuxiéme chapitre, nous avons prouvé l'existence et l'unicité avec un
résultat de décroissance exponentielle sous des hypothéses appropriées sur le poids de
I'amortissement et le poids du retard pour une équation d'onde avec un fort amortissement et
un fort retard constant (respectivement, distribué). Finalement "troisieme et quatriéme
chapitres”, nous avons prouvé l'existence globale du systeme couplé de Kirchhoff et la
décroissance générale pour le systeme couplé de Kirchhoff et de Lamé avec un terme

retard distribué.
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