PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
Ministry of Higher Education and Scientific Research
Mohamed Khider University — BISKRA
Faculty of Exact Sciences, Natural Sciences and Life

Department of Computer Science

Order n°: Startup RTIC 8/M2/2023
Thesis

Presented for the Academic Master’s degree in

Computer Science

Option: Information and Communication Networks and Technologies (RTIC)

A deep learning-based approach for IOT
software vulnerability location

By:
OMRANI ABIR

Defended on 03 /07 / 2023, in front of the jury composed of:

Naidji llyes MCB President
Boukhlouf Djemaa MCB Supervisor
Mouaki Bennani Nawel MAA Examiner

Academic year 2022-2023






ACKNOWLEDGEMENTS

I am grateful to everyone who has supported and assisted me during this journey. First
and foremost, I would like to thank Allah for guiding me and enabling me to complete this

work. I am thankful for His blessings and guidance throughout the process.

I want to express my sincere thanks to all the individuals who have provided their
support and assistance. [ am especially grateful to my parents for their unwavering support
and encouragement. Their belief in me has been a driving force behind my success. [ would
also like to express my deep appreciation to my supervisor, Dr. Boukhlouf Djemaa, for
her support and valuable guidance throughout this study. You have provided me with

important academic support and guidance.

I also want to extend my gratitude to my Uncle Dr. Khenfri Fouad for his exceptional
guidance and invaluable assistance. He has dedicated his time and expertise to help me,
and his guidance and motivation have been a source of strength for me. May Allah reward

him abundantly and grant him good health and well-being.

I would like to express my sincere gratitude to the Teachers of Entrepreneurship for their
guidance, support, and mentorship, enabling this project to become part of a startup

enterprise. I am truly grateful to all of you for your assistance and expertise in this domain.

Lastly, I would like to thank all those who have offered their assistance and support in
bringing this study to fruition. I appreciate their collaboration and valuable contributions

to the successful completion of this work.

I extend my heartfelt thanks to everyone involved, and I wish them all the best in their

endeavors.



DEDICATION

I dedicate my graduation with love and gratitude to my dear father, who have been a
strong support and a source of inspiration throughout my educational journey. I thank
you from the bottom of my heart for your valuable guidance and boundless love.
Additionally, I dedicate my graduation to my beloved mother, who has been the
shining star in my life and the secret to my success. I sincerely thank her for her
continuous support and prayers, which have contributed to my inspiration and

achievements.

I would also like to express my gratitude to my uncle Fouad, who played a significant
role in encouraging and supporting me. Through you, I have learned perseverance and

dedication. Thank you for all the valuable advice and guidance you provided.

I dedicate this accomplishment to my sister and brothers, who have been true support
and family to me in every stage of my life. With your presence and continuous
support, I have been able to reach this special day. You are my strength and a source

of inspiration.

Finally, I dedicate my graduation to my supervisor, Dr. Boukhlouf Djemaa, who
provided me with assistance and support throughout this academic journey. Thank

you for your guidance.



Abstract

In a connected world, security is one of the most significant challenges faced by indi-
viduals and organizations. Internet of Things (IoT) software, particularly its operating
systems, device management, advanced computing, and communication protocols.., are
vulnerable to security loopholes, exposing them to the risks of hacking and exploitation.
To address this issue, our work proposes a deep learning-based approach to effectively
detect vulnerabilities and accurately identify their locations in IoT software, specifically
focusing on operating systems using C/C++ language. By harnessing the power of deep
learning algorithms, we aim to enhance the accuracy and efficiency of vulnerability de-
tection.

Our work contributes to the field of IoT security by providing a specialized software
tool for detecting security vulnerabilities and improving overall security and reliability of
[oT operating systems. We strive to protect individuals and organizations from security

threats and enhance trust in the usage of IoT technology.

Keywords : IOT security, Vulnerability, Deep learning, Common Weakness Enumera-

tion (CWE), Convolutional Neural Networks (CNN).



uadla

i ) el et Clasas sall 5 ) 81 a5 ) ol ST e sl 5 ) and o iYL Jaalie alle
Leia y=3 duial ol jafl ¢ Jlat¥) Y K gig g9 5 ) shaiall Auc gall 5 5 jea¥l 500l 5 Lelindin ddail Lald g (e LiY)
Y 5 31 AV e sl
Jlad < Ll ge 3paa 5 Chaall Jalss LY Gaeall aledll o a8 e 55 Uie 5 e oy ¢ 5aY) 138 dalladl
aball sy 63 58 (e g s pial) dafiion AC/C A8 aladinly Lol Aadail (adWl s eolesY) o ) gl p (B
Al ail) el eli g A8 jadl Gaanl)
D AaaY) ol jadll LSy duacadie dgna y Bl 8 g OVA (e i) c ) el Jlae A e g e aaliy
s AaieY) gl e Ol sall 5 3 a1 Alea ) Caagd LI i ) Qs dadail 48 55 ga 5 alall e

i) s ) A aladiul A&

Gl (CWE) ALl Caracall Jalas alaxd ¢ é:ma_‘\ eﬂﬂ\ ¢ cazall ¢ iy Cad ) Alas :MJS\ clalsly
(CNN) Al Luaal



Résumé

Dans un monde connecté, la sécurité est I'un des défis les plus importants auxquels
sont confrontées les individus et les organisations. Les logiciels de I'Internet des objets
(IoT), en particulier leurs systémes d’exploitation, la gestion des appareils, I'informatique
avancée et les protocoles de communication, sont exposés a des failles de sécurité, les ren-
dant vulnérables aux piratages et aux exploitations.

Pour remédier a cette situation, notre projet propose une approche basée sur 'apprentissage
profond pour détecter efficacement les points faibles et les localiser avec précision dans
les logiciels IoT, en mettant 'accent sur les systemes d’exploitation utilisant le langage
C/C++. En exploitant la puissance des algorithmes d’apprentissage profond, nous visons
a améliorer la précision et 'efficacité de la détection des vulnérabilités.

Notre projet contribue au domaine de la sécurité de I'loT en fournissant un outil logiciel
spécialisé pour détecter les vulnérabilités de sécurité et améliorer la sécurité globale et
la fiabilité des systemes d’exploitation de I'loT. Nous nous efforcons de protéger les indi-
vidus et les organisations contre les menaces de sécurité et de renforcer la confiance dans

'utilisation de la technologie de I'ToT.

Mots clés : 10T sécurité, Vulnérabilité, Deep Learning, Enumération des faiblesses

communes (CWE), Réseaux neuronaux convolutifs (CNN).



Table of Contents

Table of Contents 8
List of Figures 12
List of Tables 15
General Introduction 16
1 Internet of Things Vulnerabilities 18
1.1 Imtroduction . . . . . . . ... 18
1.2 Definition of IOT . . . . . . . . .. ... 18

1.3 Architecture of IOT . . . . . . . . ... 19
1.3.1 Perception Layer . . . . . . . ... ... ... ... ... 20

1.3.2 Network Layer . . . . .. ... ... . ... 22

1.3.3  Application Layer . . . .. . . ... ... .. .. ... ... .. 23

1.4 TOT Applications . . . . . . . . . . .. 24
1.5 TIOT Technologies . . . . . . . . . . . . .. 29
1.6 IoT Characteristics . . . . . . . . . . . . . 32
1.7 Vulnerabilities . . . . . . .. ..o 35
1.7.1  What is a Vulnerability? . . . . . ... ... ... 35

1.7.2  Vulnerabilities in the IoT . . . . . . . . ... ... ... .. ... 35

1.8 TIOT Attacks . . . . . . . . . 38
1.8.1 Definition of IoT attacks . . . . . . ... ... ... ... ..., 38

1.8.2 IoT attack surface areas . . . . . . . . .. .. ... ... ..., 39

1.8.3 Different types of IoT attacks . . . . . .. ... ... ... .... 39

1.9  IoT security goals . . . . . . . . . . ... 41
1.10 Conclusion . . . . . . . . .. L 44



2 Detection and location of vulnerabilities in IOT

2.1
2.2

24

2.5

Introduction . . . . . . ...
The Open Web Application Security Project (OWASP) . . . . ... ..
2.3 Top 10 vulnerabilities in IOT . . . . . . . . . ... ... ... .. ....

2.3.1
2.3.2
2.3.3
2.34
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10

Weak, guessable, or hard coded passwords . . . . . . . ... ...
Insecure Network Services . . . . . . . . . .. .. ... .. ....
Insecure Ecosystem Interfaces . . . . . .. ... ... .. ... ..
Lack of Secure Update Mechanism . . . . ... ... ... ...
Use of insecure or outdated components . . . . . ... ... ..
Insufficient privacy protection . . . . . ... .. ... .. ....
Insecure data transfer and storage . . . . . . . .. ... ...
Lack of device management . . . . . . .. ... .. ... ... .
Insecure Default Settings . . . . . ... ... ... ... .. ...

Lack of physical hardening . . . . . . . . .. ... ... .. ...

Vulnerability Detection methods in IOT . . . . .. ... ... ... ...

24.1
24.2
2.4.3
244
2.4.5
2.4.6
246.1
2.4.6.2
2.4.7
24.7.1
24.7.2
24.7.3

Dynamic analysis . . . . . ... .. ... ...
Automated static analysis . . . . ... ... L
Fuzzing . . . . .. o

Web Application Scanners . . . . . . . . ... ... ... ..

Machine Learning . . . . . . . . .. .. L Lo
Definition of machine Learning . . . . . . . ... .. ... ...
Different types of Machine Learning . . . . . .. ... ... ...
Deep Learning . . . . . . . . ...
Definition of Deep Learning . . . . . . ... .. ... ... ...
How it works 7 . . . . . . . ..

Some deep learning methods . . . . . . .. ... ... ... ...

Related Work . . . . . . . .,

25.1

2.5.2

A deep learning based static taint analysis approach for IoT soft-
ware vulnerability location . . . . . . .. ... .. ...

Identifying Vulnerable loT Applications using Deep Learning

45
45
45
46
48
48
48
48
48
49
49
49
49
49
50
20
20
o1
ol
o2
52
52
23
57
27
o8
29
61

63
64



2.5.3 iDetect for vulnerability detection in internet of things operating

systems using machine learning . . . . . . . .. ..o 65

2.6 Conclusion. . . . . . . . 66
Conception 67
3.1 Introduction . . . . . . .. L 67
3.2 System presentation . . . . . .. ..o 67
3.2.1 System objective . . . . .. ... 67
3.2.2  Global Architecture of the system . . . ... ... ... ... .. 68

3.3 Detailed system design . . . . .. ... oL 69
3.3.1 Datacollection . . . . . ... ... oL 71
3.3.2 Data processing . . . . . . . ... 72
3.3.3 Training model . . . . . . . ... L 74
3.3.4 iVulnDetect evaluation . . . . . . .. ... 0oL 76

3.4 Design by UML (Unified Modeling Language) . . . . . . . .. ... ... 76
34.1 Use Case Diagram . . . . . .. .. ... ... ... ... ..., 76
3.4.2 Class Diagram . . . . . . . . .. .. 7
3.4.3 Sequence Diagram . . . . . . .. .. ... 80
3.4.3.1 Sequence Diagram for Login . . . . ... ... ... ... .. .. 80
3.4.3.2 Sequence Diagram for Register . . . . . . . ... ... ... ... 80
3.4.3.3 Sequence Diagram for Detection Vulnerabilities . . . . . . . . .. 81

3.5 Conclusion. . . . . . ... 82
Implementation and results 83
4.1 Introduction . . . . . . . . .. 83
4.2 Development Environment . . . . . . .. . ... 0L 83
4.2.1 Programming Languages . . . . . . . . . . .. ... ... ... 83
4.2.1.1 Python . . . . . . . . 83
4.2.2  Software Tools . . . . . . . ... 84
4.2.2.1 Google Colab . . . . . . . . ... 84
4.2.2.2 PyCharm . . . . . . . .. . 85
4.2.3 Design Tools . . . . . . . . .. 86
4231 Qt Design . . . . . . 86

10



4.2.4 Database Tools . . . . . . . . . . 86

4241 XAMPP . . .. 86
4.2.5 Conception Tools . . . . . . . .. ... 87
4.25.1 Modelio . . . . . . . . 87

4.3 Library Tools . . . . . . . . .. 87
4.3.1 TensorFlow . . . . . . . . . ... 87

432 Keras . . . . . 88
433 PySideb . . . . .. 89

4.4 Structureof Data . . . . . . . . ..o 89
4.4.1 Dataset Description . . . . ... ... ... o0 89
4.4.2 Data processing . . . . . . ..o 93
4.4.3 Model training . . . . .. ..o 94
4.4.3.1 Dataset Split . . . . . . . ... 94
4.4.3.2 Model Selection/ Creation . . . .. ... ... ... ....... 95

4.5 Model Testing . . . . . . . . .. 99
4.5.1 Evaluation Metrics . . . . . . .. ... 99
4.5.2 'Testing with data test . . . . . . . ... ... ... ... ..... 101

4.6 Results of Model Evaluation for TinyOS . . . . .. ... ... ... ... 104
4.6.1 Comparison of Results . . . . .. .. .. ... ... ... ..... 106

4.7 Presentation system . . . . .. ..o Lo 107
4.7.1 Database . . . . . . ... 107
4.7.2 Interfaces of the system . . . . ... .. ... ... ... 108
4.7.2.1 Login Interface . . . . . . . . ... Lo 108
4.7.2.2 Registration Interface . . . . . . . . ... .. ... ... ... .. 110
4.7.2.3 Subscription Interface . . . . . . . .. ... ... ... 112
4.7.2.4 System Interfaces . . . . . . .. ..o 113

4.8 Conclusion. . . . . . . . 120
General conclusion 121
Bibliography 123

11



List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Three-tier IOT Architecture .[5] . . . . . . ... .. ... ... ... .. 20
IOT Applications.[15] . . . . . . . . ... . 24
Smart home.[45] . . . .. L 25
Smart healthcare.[64] . . . . . . . .. ..o oL 26
Smart transportation.[62] . . . ... o Lo 27
Smart Agriculture.[88] . . . . ... 28
Smart grids.[54] . . . . ..o 29
ZigBee.[31] . ... 30
[oT Characteristics.[47] . . . . . . . . . . ... 32
Different IOT Attacks.[17] . . . . . . . .. ... . o 40
DDoS attack.[4] . . . . . ... 41
IoT security goalss.[47] . . . . . . ... L 43
The Open Web Application Security Project (OWASP) Logo . . . . . . . 46
OWASP Top 10 Internet of Things.[72] . . . . . . . ... ... ... ... A7
Types of Machine Learning.[41] . . . . . .. .. ... ... ... ... .. 53
Supervised learning .[49] . . . . ... oo 54
Types of supervised learning.[21] . . . . .. ... ... 0L 54
Unsupervised learning.[50] . . . . . . .. ... L oo 55
Types of unsupervised learning .[50] . . . . . . . .. ... ... ... ... 56
Reinforcement learning.[48] . . . . . . ... ..o L 57
The architecture of a Deep Learning model.[90] . . . . . ... ... ... 58
Convolutional Neural Networks(CNNs) architecture .[87] . . . . . . . .. 60
Recurrent neural networks(RNNs) architecture.[39] . . . . ... ... .. 60
Long short-term memory networks node.[75] . . . . . ... ... ... .. 61
Technique flow chart of their proposed approach.[70] . . . . .. ... .. 64

12



2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Overview of the approach.[68] . . . . . ... ... ... ... ... .... 65

Global Architecture of the system. . . . ... .. ... ... ... .... 69
The System Architecture with Detailed Components. . . . . . . . .. .. 70
Example of data cleaning. . . . . . . ... ... 0oL 73
Example of data vectorisation. . . . . . . . . . ... ... ... ... ... 74
Convolutional Neural Network (CNN) model steps. . . . . ... ... .. 75
Use Case Diagram. . . . . . . . . . . ... 7
class diagram. . . . . . ... 79
Sequence Diagram for Developer Login. . . . . . . ... .. .. ... ... 80
Sequence Diagram for Developer Register. . . . . . .. .. .. ... ... 81
Sequence Diagram for Detection Vulnerabilities. . . . . . . .. ... . .. 82
Python logo. . . . . . . . . 84
Google Colab logo. . . . . . . . .. . 84
PyCharm logo. . . . . . . . . . 85
Qt Design logo. . . . . . . . . 86
XAMPP logo. . . . . . . o 86
Modelio logo. . . . . . . .. 87
Tensorflow logo. . . . . . . . . .. 88
Keraslogo. . . . . . . . . 88
PySide6 logo. . . . . . . . 89
Part of Benign Codes. . . . . . . . .. ... .o 90
Part of vulnerable codes. . . . . . . . ... 93
Part of vulnerable codes. . . . . . . . ... oL 93
Function using regular expressions for data cleaning. . . . . ... .. .. 94
Code for split dataset. . . . . . . . . . ... ... ... ... ... ... 95
Training model accuracy. . . . . . . . .. ... Lo 98
Evaluation Code for the Test Data. . . . . . .. .. ... ... ... ... 101
Confusion matrix of TinyOS evaluation. . . . . .. ... ... ... ... 106
Database phpMyAdmin with XAMP. . . . . .. .. ... ... ... ... 108
Interface login. . . . . . . . . 109
Interface login error. . . . . . . ... 109

13



4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33

Error in registration interface. . . . . . . .. ... L 110

Register interface. . . . . . . . . ... 111
Error accept condition in registration interface. . . . . . ... ... .. 112
Suscription Interface. . . . . . . .. ..o 113
Starting iVulnDetect. . . . . . . ..o 114
Dashboard Interface. . . . . . . . . . ... oL 114
Test vulnerabilities Interface. . . . . . . . ... . ... ... .. 115
Upload source code. . . . . . . . . . ... 116
Click bottom Detect. . . . . . . .. .. ... 116
Detection Results Interface. . . . . . .. .. .. ... oL 117
Report generated by our system. . . . . ... ... 0L 118
Account interface. . . . . . . ... Lo 119
Help and support of our system. . . . . . .. .. ... ... ... ... 120

14



List of Tables

1.1
1.2

2.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

technologies in IOT field.[91] . . . . . . . .. ... ... .. .. ... 22
Protocols used in the IoT field. [91] . . . . . . ... ... ... ... ... 23
Table shows Brief overview of related work. . . . . . ... ... .. ... 62

The releases of IoT operating systems that were used for dataset collection.[9] 72

The 54 types of Common Weakness Enumeration (CWEs).[1][10] . ... 92
Summary of model layers and parameters. . . . . . ... ... ... ... 98
Confusion Matrix . . . . . . . . ... 101
Classification Metrics. . . . . . . . .. ... Lo 103
Results of TinyOS classification Metrics. . . . . . . . .. ... ... ... 105
Comparison testing data of CNN model . . . . . . ... ... ... ... 107
Comparison TinyOS evaluation . . . . . . ... .. ... ... ... ... 107

15



General Introduction

The rapid growth of the Internet of Things (IoT) in recent years has resulted in the
integration of various smart devices. These devices rely on specialized operating systems
designed specifically for the IoT environment. However, the widespread adoption of IoT
devices has raised concerns about their security and vulnerability to cyber-attacks. Soft-
ware vulnerabilities in IoT can expose critical information, compromise system integrity,
and potentially lead to catastrophic consequences. [101][95].

The identification and location of software vulnerabilities in different Internet of Things
(IoT) software present notable hurdles, primarily stemming from the intricate nature and
wide array of IoT devices. Conventional security methods often prove inadequate when
applied to IoT systems, given the resource limitations, constrained processing power,
and the dynamic and heterogeneous environments in which they function. As a result,
innovative and effective techniques must be devised to tackle the distinctive attributes

associated with IoT software vulnerabilities.[42].

This work proposes a deep learning-based approach to tackle the problem of IoT software
vulnerability location, with a specific focus on IoT operating systems. Deep learning has
demonstrated remarkable success in various domains, such as computer vision, natural
language processing, speech recognition, text analytics, and cybersecurity [89].

By leveraging the power of deep learning algorithms, our aim is to enhance the accuracy
and efficiency of vulnerability identification and localization in IoT operating systems.
Our proposed approach consists of several key steps. Firstly, we collect a diverse and
comprehensive dataset of IoT OS vulnerabilities. This dataset serves as the foundation

for training our deep learning models. We will employ technique preprocessing to enhance

16



General Introduction

the dataset’s quality and ensure its representativeness.

Next, we design and implement a deep learning architecture suitable for vulnerability
location in [oT operating systems. This architecture is convolutional neural networks
(CNNs).The deep learning model is trained using the collected dataset. To evaluate the
effectiveness of our approach, we conduct extensive experiments using a variety of IoT
operating systems. The performance of our deep learning model is assessed through mea-

suring accuracy, precision, recall, and F1-score.

Additionally, we will develop software to facilitate the discovery of vulnerabilities, utiliz-
ing the trained model.

The manuscript is structured into four chapters:

e Chapter one introduces the basic concepts of IoT, its attacks, and vulnerabilities.

e Chapter two presents the top 10 important vulnerabilities in IoT based on orga-
nizations such as the World Security Organization (OWASP), along with different

vulnerability detection methods. A review of related work is also included.

e Chapter three focuses on the general system design, detailed system components,

model testing, and provides UML diagrams.

e Lastly, chapter four provides implementation details and presents the obtained re-

sults.

17



Chapter

Internet of Things Vulnerabilities

1.1 Introduction

[0T (Internet of Things) security refers to the measures and technologies used to
protect IoT devices, networks, and data from unauthorized access, theft, or damage.
With the increasing number of IoT devices being connected to the internet and the
increasing volume of sensitive data being collected and stored, [oT security is becoming
a critical concern. In this chapter, we describe at first what Internet of Things (IoT) is,
which structure it usually has and, we continue by IOT technologies, then we talk about

vulnerabilities types in IOT and the last thing about IOT security goals.

1.2 Definition of 10T

The lack of a standardized definition of IoT is a natural consequence of the diversity of
[oT and the quick advancement brought about by the extensive research being conducted.
Consequently, various definitions have been put forth by researchers and standardization

organisations, including:

e Definition by ITU (International Telecommunication Union)[44]: “The
Internet of Things is a global infrastructure for the information society, enabling
advanced services by interconnecting (physical and virtual) things based on existing

and evolving interoperable information and communication technologies.”

18



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

e Definition by IERC (European Research Cluster)[93]: “A dynamic global
network infrastructure with self-configuring capabilities based on standard and in-
teroperable communication protocols where physical and virtual 'things’ have iden-
tities, physical attributes, and virtual personalities and use intelligent interfaces,

and are seamlessly integrated into the information network.”

e Definition by ISOC (Internet Society)[86]: “The term Internet of Things
generally refers to scenarios where network connectivity and computing capability
extends to objects, sensors and everyday items not normally considered computers,

allowing these devices to generate, exchange and consume.”

1.3 Architecture of 10T

A generic high-level architecture composed of three layers has been introduced in

the literature:[27]

e Perception layer: representing the physical layer of objects and combining all

attributes.

e Network layer: The network layer focuses on transmitting and processing the

data collected by the perception layer.

e Application layer: which refers to the level of an application that effectively

implements software that offers a specific service.

19



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

Application Layer %

i Cloud / Servers '
_|_

2
Netwerk Layer
Routers and Gatewa ¥5

A /I\

——

Perception Layer

Sensors and Actuators
. ]
md o .:

Figure 1.1: Three-tier IOT Architecture .[5]

1.3.1 Perception Layer

The Perception Layer is responsible for gathering and processing data through physical
sensors in the IoT system. This layer comprises various sensors and actuators that enable
functionalities like location tracking, temperature measurement, weight sensing, motion
detection, vibration monitoring, acceleration measurement, humidity sensing, and more.
To accommodate the diverse range of objects, standardized plug-and-play mechanisms
are necessary within the perception layer for seamless configuration of heterogeneous
devices[11].The three-layer IoT architecture encompasses several key features and capa-

bilities of smart objects:[58]

e Communication: smart objects can establish connections with each other and
access Internet resources to exchange data, update their status, and collaborate to

achieve common objectives.

e Identification: each object must have a unique identifier to distinguish it from

others within the IoT system.

20



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

e Addressability: objects can be directly accessed and interacted with remotely,

allowing for remote configuration and interrogation.

e Sensing and actuation: smart objects are equipped with sensors to gather infor-
mation from the surrounding environment and actuators to manipulate physical or

digital entities.

e Embedded information processing: smart objects possess computational capa-

bilities to process sensor data and control actuators based on the obtained results.

e Localization: objects are either aware of their physical location or can be precisely

located within the IoT system.

e User interface: objects can communicate appropriately with users via displays or

other interfaces.

Table 1.1 presents a range of technologies used to implement these various features in
smart objects [24].Several hardware platforms available in the market, such as Raspberry
Pi, Arduino, Beaglebone Black, etc., offer these features and serve as popular choices for

[oT development.

21



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

Table 1 Used Technologies

Frequency IDentification (RFID), etc.

Communication Zigbee, Bluetooth, Wifi, Near Field Communication (NFC), Radio-

Re-sponse (QR), etc.

Identification Electronic Product Code (EPC), Ubiquitous Code (uCode), Quick

ete.

addressability Sensing | [Pv4, IPv6 Micro Electro-Mechanical Systems (MEMS) e Micro-
and Actuation Opto-Electro-Mechanical Systems (MOEMS), embedded sensors,

System-on-Chip (SoC)

Embedded informa- | Field Programmable Gate Array (FPGA), Programmable Logic

tion processing Controller (PLC), microcontrollers, Single-board computer,

terface trol, etc.

Localization User in- | Global Position System (GPS), Galileo, etc. Displays, remote con-

Table 1.1: technologies in IOT field.[91]

1.3.2 Network Layer

The Network Layer plays a crucial role in processing and transmitting data received
from the Perception Layer. It utilizes various network technologies, including wireless
and wired networks, as well as Local Area Networks (LAN), to establish communication
channels between devices. Common transmission media employed in this layer include
FTTx, 3G/4G, WiFi, Bluetooth, Zigbee, UMB, infrared technology, and others. Given
the substantial volume of data involved, it becomes imperative to have a robust mid-
dleware for efficient storage and processing. Cloud computing emerges as the primary
technology for this purpose, offering a reliable and dynamic interface for data storage
and processing. Research and development efforts focused on the processing aspect are
pivotal for the future advancement of IoT. There are a large number of protocols that

can be used in IoT. Table 1.2 shows some of the most used protocols, grouped according

to the ISO/OSI model.[6]

22



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

Application Layer
COAP, MQTT, AMQP, XMPP, DSS
Service Discovery: mDMS, DNS-SD, SSDP
Security: TLS, DTLS

Transport Layer
TCP, UDP

Network Layer
Addressing: IPv4/IPv6
Routing: RPL, CORPL, CARP, etc.

Adaption Layer
6LOWPAN, 6TISCH, 6LO, etc.
Data Link Layer
IEEE 802.15.4, IEEE 802.15.1 (Bluetooth), LPWAN (LoRaWAN;, etc.), RFID, NFC
(ZigBee, etc.), IEEE 802.11, IEEE 802.3, IEEE 1901 (WiF1i), (Ethernet), (PLC)

Physical Layer

Table 1.2: Protocols used in the IoT field. [91]

The widely used communication technologies include ZigBee, Bluetooth low energy (BLE),
IPv6 over low power wireless personal area networks (6LoWPAN) and long-range wide
area network (LoRaWAN). The 6LoWPAN protocol was created to meet wireless sensor
networks. WSN is composed of devices characterized by low computational power that
often have to minimize energy consumption. In specific applications, such Gateway may

be necessary.[40]

1.3.3 Application Layer

The application layer is the third layer of IoT systems that provides services
to users through mobile and web software. Based on the latest trends and usage of
smart things, IoT has many applications in this technologically advanced world Residen-
tial/Home/Building, Transportation, Healthcare, Education, Agriculture, Business/Commercial,

Power Distribution System, etc.They have become smart due to IoT system and many

23



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

services.[94] Some of the software technologies currently widely used to manage the enor-

mous amount of data provided by devices are:

e Cloud computing, when services such as data storage or processing are provided by

a set of pre-existing, configurable and remotely accessible resources in the form of

a distributed architecture.

e Edge computing, when data processing is partially distributed to peripheral net-
work nodes to improve the performance of 10T systems This level also includes the

management of the format of the processed data.

Among the many commercial platforms used to deploy IoT applications, some examples

include Amazon AWS, Microsoft Azure, Xively, Firefox WebThings Gateway, etc. [58]

1.4 10T Applications

[oT offers a wide range of applications to improve people’s daily lives and activities.

Figure 1.2. Shows possible examples of IoT applications:[40]

Smart Cities
*Water distribution
«Waste management

>
[{[IIE!

Smart Homes AN Energy Engagement
-Smart door lock f j E A -Grid automation
-smart bulbs { . Wireless grid communication
«smart thermostat
Health care @ Wearables
« Heart rate and blood @,O . Fitness and activity monitor
« pressure monitor

Transportation Q '

. Agriculture

* Traffic management .

+ 10T makes easy parking ﬁ . Snjart farmln.g ) ] .

« Vehicle location monitoring «Climate monitoring and forecasting

«Crop monitoring

Smart Manufacturing 3
*Industrial communication L \'C q Cars
« Production flow monitoring 5 i
tt & . -Engine management

«Improve field service scheduling

Figure 1.2: IOT Applications.[15]

e Smart home: is a home that is equipped with IoT (Internet of Things) devices

and technology that allows homeowners to remotely control and automate various

24



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

systems and appliances( Show Figure 1.3). These devices are connected to the in-
ternet and can be accessed and controlled via a smartphone, tablet, or computer,
from anywhere in the world[40]. These functions include lighting, Heating Ventila-
tion Air Conditioning (HVAC), security, and home appliances like washers, dryers,
ovens, and refrigerators. With the use of Wi-Fi, users can remotely monitor and

manage these systems, which are typically connected to the Internet of Things.[84]

Weather

Air

Conditioning oA

(-:. Audio @ Media Play

Figure 1.3: Smart home.[45]

Smart healthcare: refers to the use of IoT (Internet of Things) technology in
healthcare settings, including hospitals, clinics, and individual homes. This tech-
nology includes devices and systems that can collect and transmit healthcare data,
such as patient vitals, medication adherence, and activity levels. enables the col-
lection, transmission and storage of patients’ physiological information. such as
insulin pumps and heart monitors, which can transmit real time data to healthcare

providers and alert them to potential issues.[40]

25



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

Smart Hospital

Emergency Response Smart Home
Vo =
| (BB |
L+ .
Lﬁ%

Smart Gadgets

Technician
On-body Sensors

Figure 1.4: Smart healthcare.[64]

e Smart transportation: [oT technology has the potential to revolutionize com-
munication, control, and information processing across diverse transportation sys-
tems. This technology has far-reaching applications across various aspects of trans-
portation, including vehicles, infrastructure, and drivers or users. By facilitating
dynamic and efficient interaction between these components, 0T enables inter-
and intra-vehicle communication, smart traffic control, intelligent parking, logistics

management, safety, and road assistance, among other benefits.[46]

26



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

Figure 1.5: Smart transportation.[62]

e Smart industry: known as Industrial IoT (IIoT) uses machine-to-machine tech-
nology to automate the process of manufacturing with insignicant human interven-
tion. The IToT aims to optimize industrial processes, increase efficiency, and reduce
costs by collecting and transmitting real-time data on various aspects of the man-
ufacturing process, from production output and energy consumption to machine
performance and supply chain management. It includes the use of predictive main-
tenance systems, asset tracking, energy management, robotics and automation, and

logistics optimization to improve productivity and sustainability.[40]

e Smart Agriculture: involves the use of IoT sensors and machine metrics to
provide farmers with data and recommendations to enhance their farming practices,
ranging from livestock management to harvesting. A prime illustration of this is
the smart greenhouse, where farmers previously relied on manual intervention to
regulate the greenhouse environment. With the integration of IoT technology, the
greenhouse’s humidity, temperature, sunlight, air quality, air flow, and soil condition
can be automatically recorded, analyzed, and adjusted, thereby improving efficiency

and yield.[88]

27



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

v
¥ . = ¥ ¥ N
L
- S .@\-
'x' Combine v Security Bot Farm Drone
Harvester
P = - =,
Y v L‘H.H\ ‘/.»" ~
| o o — ) >
| » - - H‘H\;ﬂ__,.—"'_-_- - ---""—-..,_L‘(.»"'// (’,r”'
_ /" SMART -
Farm Data = /
arm Cats \. FARMING / 2
= - — L - 'u._\‘ -
. ] i ) r——
Ny .

Self-driving Tractor Field Sensor Watering System Agricultural APP

Figure 1.6: Smart Agriculture.|[88]

e Smart retail: enables the tracking of goods while they are being transported or

stored in warehouses. To track the status of a retail item, sensors can be fastened

to it. Several smart shopping systems were created to offer customers intelligent

services and so attract more customers.[40]

e Smart grids: is a typical example of an [oT application that tracks, manages, and

measures electricity use. It makes it possible to control electricity efficiently and

dependably, offers energy savings, and lowers problems with/failures with power

grids.[40]

28



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

Unclear

. power plant
Factories Themal

power plant

,‘1

Homes

Hydraulic
power generation

Renewable energy Photovoltaic

Cities and offies

Wind generator

Ecological vehicle

Figure 1.7: Smart grids.[54]

1.5 IOT Technologies

There are many technologies involved in IoT implementation: [61]

¢ Radio Frequency Identification (RFID): is an important technology for mak-
ing objects clearly identifiable. A sticker-like transceiver microchip that can be ac-
tive or passive depending on the type of application [32]. An active tag is connected
to the battery. That is, active tags are always active and therefore continuously
transmit data signals, whereas passive tags only become active when triggered [92].
An RFID system consists of her RFID tag associated with a reader that, when
triggered by the generation of an appropriate signal, emits the identity, location, or
other details of an object [100]. Emitted object-related data signals are transmitted
using radio frequencies to the reader, which transfers the data to a processor for

analysis.[32]

Near Filed Communication (NFC): is a relatively new technology for short-
range wireless communication. It functions in the unlicensed Radio Frequency band
of 13.56 MHz and has an operating distance of up to 20 cm, although this distance
may be longer in certain circumstances. The communication distance, however,

primarily depends on the size of the antenna, which is usually quite small when

29



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

integrated into a mobile phone. Consequently, the communication distance for an

NFC-enabled mobile phone is generally limited to approximately 3 to 5 cm.[93]

e Wireless Sensing Network (WSN): is a network of distributed autonomous
devices that use sensors to keep track of environmental or physical factors at various
locations, such as temperature, sound, vibration, pressure, motion, or pollution.
can be utilized for a wide range of purposes, including military use, detecting forest

fires, and monitoring metrics on human bodies.[61]

e IoT Wireless Technologies: The IoT ecosystem relies heavily on wireless tech-

nologies to link and aggregate IoT devices with the Wireless Sensor Gateway.[61]

o ZigBee: ZigBee is one of the newest and most sophisticated wireless technologies
that is being widely incorporated into home automation and smart devices around
the world. It has been established expressly as an open global standard to address
the special requirements of low-cost, low-power wireless networks for device com-
munication (also known as machine-to-machine or M2M networks). The 2.4 GHz,

900 MHz, and 868 MHz unlicensed bands are used by the ZigBee standard.[31]

Figure 1.8: ZigBee.[31]

e Bluetooth: is a wireless technology that connects various devices, including mo-

bile phones, laptops, and other network devices, over short distances. We use it to

30



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

move files around or move a little bit of data. At a data rate of 1Mbps, we use this
technology over a short range of 50 to 150 meters. It makes use of 2.4-2.485GHz
Ultra High Frequency radio waves. Smartphones, smartwatches, laptops, wireless

speakers, and wireless headsets all use Bluetooth technology.[55]

e Z-Wave: is a wireless technology that allows point-to-point communication over
a distance of up to 30 meters. It is designed for low-data-rate applications, such
as controlling household appliances, lights, HVAC systems, wearable health care
devices, access control, and fire detection. Z-Wave operates in the unlicensed in-
dustrial, scientific, and medical (ISM) frequency band of around 900 MHz and
provides a transmission rate of up to 40 kbps.[97] Wireless Fidelity (Wi-Fi): Wi-Fi,
also known as the IEEE 802.11x standard, is the most common way to connect
devices wirelessly to the Internet. Your laptop, smartphone and Tablet PC are
equipped with Wi-Fi interfaces and talk to your wireless router and provide you

this way access to the Internet.[31]

e 6LoWPAN: Low-power wireless personal area networks, often known as 6LoW-
PAN, are a well-liked wireless communication standard. Using [Pv6, 6LoWPAN
facilitates communication using the IEEE 802.15.4 protocol. Between the com-
munication and transport layers of 802.15.4, this standard creates an adaptability
layer. Any other IP-based device can communicate with 6LoWPAN devices over
the Internet. The choice of IPv6 is made possible by the size of its addressing space.
6LoWPAN networks use a gateway (WIFI or Ethernet) to access the Internet [55].
It is especially made for Internet of Things (IoT) devices with minimal computing

power and power consumption.[61]

e LoRa: Long-range (LoRa) network is a low power communication technique that
Semtech, a corporation, owns the patent for. It was originally established in 2008,
and there isn’t much information available about this protocol. This protocol’s
advantages include its high degree of dependability, moderate cost, and low power

consumption over a long distance. Nevertheless, the data rate is only 50Kbps.[96]

e Sigfox: the SIGFOX technology, developed by the company of the same name, is

designed to establish wireless networks in an unlicensed frequency band. This tech-

31



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

nology uses a proprietary ultra-narrowband (UNB) modulation and has a limited
uplink connection. The low bit rate used in this technology allows communication

over long distances with very low transmission power.[63]

1.6 IoT Characteristics

The Internet of Things (IoT) is a complex system with various characteristics that
differ across different domains. While there are many characteristics, some of the key

ones are described by (Chandrashekhar, 2016) as follows:

Characteristics ’
Intelligence

Heterogeneity

Enormous Dynamic
scale Nature

Figure 1.9: IoT Characteristics.[47]

1. Sensing
which is essential for IoT to function. Sensors detect changes in the environment

and provide data on the status of objects or interactions with the environment.

32



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

Sensing technologies enable capabilities that replicate a real-world awareness of the
physical world and its inhabitants. Although sensing information is just analog
input from the physical world, it can offer a comprehensive understanding of our

complex world.[47]

2. Connectivity
The internet of things is becoming more prevalent, and as a result, devices are
now more connected than ever. This connectedness, which is the ability of gadgets
to communicate and exchange information, offers many potential for companies
to build new goods and services. Anything from refrigerators and cars to pets
have been connected by the internet of things, allowing for remote control and data
sharing between them. According to predictions, the internet of things will continue
to grow quickly in the years to come, giving businesses a significant way to interact
with customers and increase sales. This connectivity can be facilitated by wired

LAN and wireless technologies including Wi-Fi, LPWAN, LoRa, and ZigBee.[88]

3. Security
As the number of devices connected to IoT continues to increase, there is a corre-
sponding rise in vulnerabilities such as data breaches and security issues. A security
breach in a single IoT device can have a significant impact on the security of an
entire network. Due to their resource limitations, many IoT devices are unable to
support advanced security features and may lack the computational power needed
to implement robust security protocols. For instance, sensors used for temperature
detection may not be capable of handling advanced encryption or other security
measures. Currently, there is no widely accepted industry standard for [oT se-
curity, and organizations typically have their own specific security standards and

frameworks.[97]

4. Intelligence
[oT is intelligent because it combines algorithms, computation, software, and hard-
ware. [oT ambient intelligence improves the characteristics that allow IoT objects
to respond intelligently to a particular scenario and assist them in carrying out
particular activities. Despite the widespread adoption of smart technologies, in-

telligence in the Internet of Things (IoT) only refers to a way of communication

33



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

between devices; user and device interaction is accomplished through graphical user

interfaces and common input methods.[47]

5. Heterogeneity
the devices utilized in [oT are diverse, with varying hardware platforms and network
types. IoT can incorporate devices with different processing capabilities, storage
capacities, and overall architecture. This heterogeneity is a fundamental character-
istic of IoT, enabling its widespread adoption across various platforms and domains.
It allows for numerous devices based on different technologies to interact with each
other without compatibility issues. Cloud Radio Access Network (Cloud-RAN)
and Software Defined Radio (SDR) framework can facilitate heterogeneity in IoT

by adapting to the devices’ communication technology.[97]

6. Dynamic Nature
Objects within an IoT network are capable of changing their state from rest to mo-
tion and vice versa, meaning the system cannot be considered static. The dynamic
nature of the data produced by changes in states such as sleeping and waking up
or connected and disconnected is also an important consideration. The air condi-
tioner manufacturing company example featured in the ”How does it work?” section
highlights the changing number of devices connected to a network. Consequently,
the ability to adapt to a dynamic environment is a crucial characteristic of an IoT

network.[56]

7. Enormous Scale

The quantity of devices that require to be managed which communicate with one
another are abundant larger than the devices connected to the present internet. The
management of information generated from these devices and their interpretation
for application functions becomes a lot of essential. Gartner (2015) confirms the
big scale of IoT within the estimated report wherever it explicit that 5.5 million
new things can get connected each day and 6.4 billion connected things are in use
worldwide in 2016, that is up by 30% from 2015.The report conjointly forecasts
that the quantity of connected devices can reach 20.8 billion by 2020. [47]

34



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

1.7 Vulnerabilities

1.7.1  What is a Vulnerability?

Vulnerabilities are weaknesses in a system or its design that allow an intruder to
execute commands, access unauthorized data, and/or conduct denial-of-service attacks.
Vulnerabilities can be found in variety of areas in the IoT systems. In particular, they can
be weaknesses in system hardware or software, weaknesses in policies and procedures used
in the systems and weaknesses of the system users themselves.[7] IoT systems are made
up of two basic components such as system hardware and system software in which, both
of which are prone to design faults. Hardware attacks are hard to find and repair, even
when they are found, due to hardware compatibility and interoperability, as well as the
time and effort required to fix them. Operating systems, application software, and control
software, such as communication systems and device drivers, all have software attacks.
Program design faults are caused by a variety of variables, particularly human factors
and software complexity. Human flaws are frequently the source of technical attacks.
Creating the project without a plan, inadequate communication between developers and
users, an insufficient resource, abilities, expertise, and failing to manage and control the

system are all examples of not knowing the needs.[14]

1.7.2  Vulnerabilities in the IoT

In the area of big data, the Internet of Things (IoT), and artificial intelligence,
security is a critical concern. The increasing number of smart devices creates a pressing
need to comprehend new security threats on IoT and sensor networks and develop effective

countermeasures against such attacks.[83]

e Software vulnerabilities : pose a significant threat to the IoT ecosystem, with
potential devastating consequences. Adversaries exploit these vulnerabilities to gain
control over IoT devices, compromising their security and functionality. Lack of se-
curity protection mechanisms is a major contributor to IoT device security issues.

Several studies have demonstrated how vulnerable settings, poor authentication,

35



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

and insecure default configurations can be exploited in IoT devices.

For example, Chapman [22] and Rodrigues [85] showcased the exploitation of vul-
nerabilities in ToT devices. Max [52] conducted a security analysis of a smart lock,
uncovering unsafe authentication and default configuration. Fernandes et al[33] re-
vealed compromised security in Smart Home IoT devices when using third-party
apps. Costin’s [25] investigation of firmware upgrades uncovered various vulnera-
bilities.

Cyberattacks leveraging software vulnerabilities aim to leak information or disrupt
the normal operation of targeted systems.A cyber-attack is typically carried out
by a malicious program to either leak information or disrupt the normal opera-
tion flow of a targeted system. Software vulnerabilities can enable adversaries to
gain unauthorized access and control over IoT devices. Given that IoT devices are
low-energy devices, software optimization plays a critical role in reducing power
consumption, especially in remote areas. Firmware vulnerabilities also pose signifi-
cant security concerns, as they can disrupt the regular operation of IoT devices.[66]
Addressing software vulnerabilities in IoT requires implementing robust security
protection mechanisms, secure authentication protocols, and secure default con-
figurations. Regular security audits, firmware updates, and adherence to secure
software development practices are essential to mitigate software-related risks in

the IoT ecosystem.

e Hardware Vulnerability : Sensors play a critical role in collecting real-time data
and transmitting it to IoT devices remotely. These low-power sensors are often used
in power plants to regulate turbine generators and monitor load demands. To en-
sure data security, the data transmitted by these sensors is encrypted before being
sent to the monitoring system. However, attackers may conduct man-in-the-middle
attacks to steal important data or transmit a modified signal to the control center.
Attacks on the Advanced Smart Metering Infrastructure (AMI) provide attackers
with a new entry point to compromise the power network’s data security. These
attacks can result in data theft, power theft, localized or global denial-of-service at-
tacks, and power grid disruptions. Smart meters and data collectors usually interact
through radio frequency methods in the 900MHz ISM band. As many unlicensed

devices compete for spectrum use in the ISM band (industrial, scientific medical

36



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

band), a successful spoofing attack on the ISM frequency is relatively easy to ex-
ecute. The mesh network for data transmission between smart meters, substation
data collectors, and utility analysis centers is particularly vulnerable to masquer-
ade attacks that can inject erroneous monitoring data and disrupt regular power
distribution. In addition, replay attacks can be used to resend old measurements
and tamper with the smart meter without detection in the substation or meter data

management system.|83]

Network Vulnerability : in the IoT are a major concern due to the increasing
number of low-end edge nodes and the prevalence of big data, IoT, machine learning,
and artificial intelligence. Adversaries exploit these vulnerabilities to compromise
sensitive information.

Hackers have successfully compromised Amazon [oT devices like Ring doorbells
and Home security cameras by intercepting unencrypted usernames and passwords
transmitted over the local user network using Hypertext Transfer Protocol (HTTP).
This emphasizes the need for secure communication protocols. Security cameras and
voice assistants, such as Alexa and Google Home, are also at risk of breaches.[57]
The use of UPnP protocols for easy configuration and control of IoT devices fur-
ther amplifies network vulnerabilities. The lack of authentication, validation, and
logging in UPnP protocols allows for various attack methods. IoT devices in smart
home environments are particularly vulnerable if proper security measures are not
implemented. [66]

According to Morgner [67], connecting the Zigbee Light Link base to the host net-
work can lead to leaks of sensitive information due to unsecured key management
from sharing pre-defined keys. Existing key management system classes may not
be suitable for certain scenarios, highlighting the necessity for customized security
measures. To enhance network security in the IoT, it is crucial to implement strong
encryption and authentication protocols, prioritize secure communication channels,
and regularly update IoT devices’ security. Robust key management practices and
secure configurations are essential to mitigate network vulnerabilities and safeguard

sensitive information in the IoT ecosystem.

Chip Level Vulnerability : Chip level vulnerabilities specifically refer to vul-

37



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

nerabilities that exist at the silicon or integrated circuit level. These vulnerabilities
can be inherent in the design or manufacturing process of the chips used in IoT de-
vices.Hardware Trojans (HT's) pose a significant threat to IoT devices, introducing
malicious modifications that can compromise their functionality and security. These
alterations can lead to information leaks, manipulation, and security bypassing. In-
tegrated chips, such as application-specific system-on-chip and field-programmable
gate array devices, are susceptible to digital and analog HTs. Of particular concern
are the cryptography units within IoT devices, which are vulnerable due to their
low power features.

Unlike software bugs that can be addressed through firmware updates, hardware
vulnerabilities like HTs are more challenging and costly to eliminate. They may
even result in permanent damage and service degradation to the affected devices. [66]
To enhance chip-level security, rigorous security measures must be implemented
across the supply chain, including trusted IP vendors and design houses. Hardware
testing and verification processes should be strengthened to detect and prevent the
insertion of HTs. Moreover, countermeasures against side-channel attacks, such as
the use of secure cryptographic algorithms and protection against electromagnetic
emissions, should be adopted to bolster the overall security of IoT devices at the

chip level.

1.8 10T Attacks

1.8.1 Definition of IoT attacks

Attacks are actions taken to harm a system or disrupt normal operations by exploiting
vulnerabilities using various techniques and tools.[19] Attackers launch attacks to accom-
plish objectives, either for their own gratification or to receive retribution. Attack cost
is a measurement of the amount of effort that will be made by an attacker, represented
in terms of their knowledge, resources, and motivation. Attack actors are individuals
who pose a risk to the online environment. They might be lawbreakers, hackers, or even
governments. An attack itself may come in many forms, including active network attacks

to monitor unencrypted traffic in search of sensitive information; passive attacks such

38



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

as monitoring unprotected network communications to decrypt weakly encrypted traffic

and getting authentication information; close-in attacks; exploitation by insiders, and so

on.[7]

1.8.2 1I0oT attack surface areas

The Open Web Application Security Project (OWASP) has published a detailed draft

list of IoT attack surface areas, or areas in IoT systems and applications where threats

and vulnerabilities may exist. Below is a summarization of the IoT attack surface areas:|[2]

Devices: IoT devices themselves can be susceptible to attacks. Components
such as device memory, firmware, network interface, physical interface, and web
service may have security vulnerabilities that can be exploited by attackers. For
example, outdated or unpatched components can serve as entry points for malicious

activities.

Communication Channels: The communication channels used by IoT devices
must be adequately protected to prevent unauthorized access and interception of
sensitive data. Weaknesses in encryption, authentication, or insecure protocols can
allow attackers to eavesdrop on or manipulate communication between devices,

compromising the integrity and confidentiality of the data being transmitted.

Software and Applications : The security of IoT systems can be compromised
through weaknesses in the software and applications that control and manage the
devices. Inadequate security measures, improper authentication mechanisms, or
poorly implemented access controls can provide opportunities for attackers to gain
unauthorized access to IoT devices, manipulate their functionality, or extract sen-

sitive information.

1.8.3 Different types of IoT attacks

Below is a list of some of the most frequent IoT attacks:

39



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

10T Attacks J

[
N

Eavesdropping

Physical
tampering

Malicious code
injection

Brute-force

Privilege
escalation

Man-in-the-middle

Figure 1.10: Different IOT Attacks.[17]

Physical tampering : hackers can readily reach the devices’ physical locations
and grab their data. By gaining access to the device’s ports and internal circuits,

they can also put malware on it or breach into the network.[17]

Eavesdropping: occurs when an adversary intercepts and blocks transmitted
packets in the communication channel, preventing them from reaching the intended
receiver device. RFID devices are particularly susceptible to eavesdropping attacks.
The confidentiality of IoT systems is compromised when eavesdropping takes place

on IoT devices.[69]

Man-in-the-middle: attackers who insert traffic between devices and cloud-
based services can take advantage of unencrypted connections or inadequately se-
cured IoT networks. Communications between two systems are breached, inter-

rupted, or spoof by an attacker.[17]

Brute-force password attacks: cybercriminals can access your system by at-
tempting various word combinations to guess the password. IoT devices have the

easiest passwords to guess since they are designed without security considerations.[66]

40




CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

1.9

Malicious code injection: is a severe form of attack where an attacker gains
access to a node and injects malicious code into the system. This type of attack can
have devastating consequences, potentially leading to a complete network shutdown

or, in the worst-case scenario, granting the attacker full control over the network.[17]

Privilege escalation : attackers can access an [oT device by taking advantage
of flaws, such as operating system errors, bugs in the device, or vulnerabilities that
haven’t been fixed. By further exploiting flaws, they can get into the system, climb

the administrative ladder, and get information that will be useful to them.[66]

Distributed Denial of Service (DDoS): a denial-of-service attack, sometimes
known as a "DoS attack,” aims to prevent users from accessing a computer or
network resource by temporarily or permanently interrupting the services of a host
that is connected to the Internet. Because the incoming traffic flooding a target
during a distributed denial-of-service assault (DDoS) comes from numerous sources,

it is challenging to halt the cyberattack by merely blocking one source.[17]

Slaves
ArTachker — Victim
_D_- | ess]
) | | e
DDoS Attack )

Figure 1.11: DDoS attack.[4]

IoT security goals

In order to protect the IoT environment, all IoT components should achieve the

following security goals:[47]

41



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

1.

Confidentiality: Confidentiality is a critical security feature of IoT systems,
as these devices may contain and transmit sensitive information that must not
be disclosed to unauthorized parties. Ensuring that only authorized individuals
have access to this information is crucial for the protection of user privacy and the
prevention of data breaches. Therefore, [oT systems must implement robust en-
cryption and access control mechanisms to maintain the confidentiality of sensitive

information.[12]

Integrity : The IoT relies on the exchange of data and information between a di-
verse range of devices, making it crucial to ensure the accuracy and integrity of this
data. To achieve this, it is essential to verify that the data is being received from
the correct sender and has not been tampered with during transmission, whether
through intentional or unintentional interference. Maintaining end-to-end security
in [oT communications is key to enforcing data integrity. While firewalls and proto-
cols are commonly used to manage data traffic, they may not guarantee integrity at
endpoints in [oT due to the limited computational power of IoT nodes, which may
not support these mechanisms effectively. Therefore, IoT systems should imple-
ment robust end-to-end security measures that are optimized for low-power devices

to ensure the integrity of data at all stages of transmission.[99]

Availability : The vision of IoT is to connect as many smart devices as possible.
The users of the IoT should have all the data available whenever they need it.
However, data alone is not sufficient for successful IoT implementation. Devices
and services must also be readily available and accessible when needed to meet the
high demands of IoT. Therefore, timely access to devices and services is essential

to realizing the full potential of ToT.[60]

Privacy : It is the process by which an IoT system follows privacy rules or policies

and empowers users to manage their sensitive data.[47]

Non-repudiation : The non-repudiation property refers to the ability to provide
access logs that can serve as evidence in situations where users or objects cannot
deny an action. While non-repudiation is not typically considered a crucial security
property for most [oT systems, it can be essential in certain contexts, such as pay-

ment systems, where both parties must be unable to deny a payment transaction.

42



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

In these scenarios, non-repudiation plays a vital role in ensuring the integrity of the
payment process and protecting against fraud. Therefore, IoT systems that han-
dle sensitive transactions should implement strong non-repudiation mechanisms to

ensure the accuracy and validity of all actions performed.[12]
6. Audibility : Ensures that the IoT system can closely monitor its actions.[47]

7. Accountability : is a crucial aspect of developing secure network security tech-
niques. It adds redundancy and responsibility for specific actions, duties, and the
planning of the implementation of network security policies. While accountability
alone may not prevent attacks, it is essential for ensuring the effectiveness of other
security techniques. Fundamental security issues, such as integrity and confiden-

tiality, may be ineffective without proper accountability measures in place.|7]

8. Trustworthiness : Ensures the IoT system’s ability to prove identity and confirm

e

Non- _
repudiation Audibility
Accountability

Security
Confidentiality Goa I - — Trustworthiness

trust with third parties.[47]

Figure 1.12: IoT security goalss.[47]

43



CHAPTER 1. INTERNET OF THINGS VULNERABILITIES

1.10 Conclusion

In recent years, the Internet of Things (IoT) has been viewed as an essential research
area where physical items will connect via different network protocols. The development
of IoT services has greatly increased the need for a reliable security system.

In this chapter, we analyzed the IOT vulnerabilities and attacks to protect IoT devices,
networks, and data from unauthorized access, theft, or damage. In next chapter, we

present how to detect vulnerabilities in IOT.

44



Chapter 2

Detection and location of vulnerabilities in

10T

2.1 Introduction

Vulnerabilities in Internet of Things (IoT) devices are weaknesses or flaws in the de-
vices’ software or hardware that can be exploited by attackers to compromise the security
and privacy of the device and the data it collects or processes. These vulnerabilities can
arise from various sources and can have severe consequences for individuals, businesses,
and critical infrastructure. Therefore, it is crucial to identify and address IoT vulnerabil-
ities to ensure the security and reliability of IoT systems and protect them from potential
cyber attacks.

In this chapter, we explain methods for detection vulnerabilities, highlighting relevant
work on vulnerability detection in IOT Software.For this work, we aim to apply deep

learning to detect vulnerabilities in the IOT operating system.

2.2 The Open Web Application Security Project
(OWASP)

As defined by the official OWASP website:[73]
The Open Worldwide Application Security Project (OWASP): is a nonprofit foundation

45



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

that works to improve the security of software. Through community-led open-source
software projects, hundreds of local chapters worldwide, tens of thousands of members,

and leading educational and training conferences.

) ownAsp

Figure 2.1: The Open Web Application Security Project (OWASP) Logo

The OWASP Internet of Things Project: is designed to help manufacturers, develop-
ers, and consumers better understand the security issues associated with the Internet
of Things, and to enable users in any context to make better security decisions when
building, deploying, or assessing IoT technologies.

The project looks to define a structure for various IoT sub-projects separated into the

following categories-Seek& Understand, Validate& Test, and Governance.[72]

2.3 Top 10 vulnerabilities in IOT

The Open Web Application Security Project (OWASP) published the ?OWASP Top
10 Internet of Things” list, which identifies the most critical security vulnerabilities for
[oT systems. The varied nature of these vulnerabilities presents a significant obstacle to

developing a comprehensive solution for detecting and addressing them effectively. The

latest version of the OWASP Top 10 IOT list is published (2018) are the following:

46



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

-

= ~

OWAS pTOJI;JlB' \‘

= INTERNETOFTHINGS o .

/ _A -

Weak, Guessable, or Hardcoded Passwords
Use of easily brutef d, pub ilable, or unchangeable credentials, including
s in firmware or client so o

Insecure Network Services
Unneeded or insecure network services running on the device itself, e

o the internet, that compromise the confidentiality, integrity/authenticity, or
availability of infermation or allow unautherized remote control...

Insecure Ecosystem Interfaces

Insecure web, backend API, cloud, or mobile interfaces in the ecosystem outside of the
device that allows compromise of the device or its related components. Common issues
include a lack of authentication/authorization, lacking or weak encryption, and a lack of
input and output filtering.

Lack of Secure Update Mechanism

Lack of ability to securely update the device. This includes lack of firmware validation on
device, lack of secure delivery (un-encrypted in transit), lack of anti-rollback mechanisms,
and lack of notifications of security changes due to updates.

Use of Insecure or Outdated Components

Use of deprecated or insecure software components/libraries that could allow the device to be
compromised. This includes insecure customization of operating system platforms, and

the use of third-party software or hardware components from a compromised supply chain.

Insufficient Privacy Protection
User's personal information stored on the device or in the ecosystem that is used insecurely,
improperly, or without permission.

Insecure Data Transfer and Storage
Lack of encryption or access control of sensitive data anywhere within the ecosystem,
including at rest, in transit, or during processing.

Lack of Device Management B ‘

Lack of security support on devices deployed in production, including asset management, '-,t | %
update management, secure decommissioning, systems monitoring, and response

capabilities.

Lack of Physical Hardening _
Lack of physical hardening measures, allowing potential attackers to gain sensitive
I information that can help in a future remote attack or take local control of the device.

Figure 2.2: OWASP Top 10 Internet of Things.[72]

47



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

2.3.1 Weak, guessable, or hard coded passwords

Numerous IoT devices are shipped with default passwords that are weak and easy to guess
or crack. Frequently, users either do not change these passwords or are not provided with

the means to modify them.[23]

2.3.2 Insecure Network Services

The presence of unnecessary or insecure network services on the IoT device, particularly
those exposed to the internet, can jeopardize the confidentiality, integrity, authenticity,

or availability of information, and may also enable unauthorized remote control.[72]

2.3.3 Insecure Ecosystem Interfaces

The presence of insecure ecosystem interfaces, such as web, backend API, cloud, or mo-
bile interfaces outside of the device, can compromise the security of the device and its
associated components. Common vulnerabilities include a lack of authentication and au-

thorization, insufficient or weak encryption, and inadequate input and output filtering. [34]

2.3.4 Lack of Secure Update Mechanism

The inability to securely update the device is a significant issue that arises due to several
factors, including the absence of firmware validation on the device, insecure delivery
(unencrypted during transit), the absence of anti-rollback mechanisms, and a lack of

notifications regarding security changes resulting from updates.[72]

2.3.5 Use of insecure or outdated components

Over time, software and components become outdated, and vendors may discontinue
manufacturing or software upgrades. In such cases, future patches may not be available,
and if security vulnerabilities are discovered in such products, components, or software

versions, the entire [oT solution may be exposed to a compromised environment.

48



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

The use of deprecated or insecure software or components can also provide opportu-
nities for attackers to compromise the system, particularly when utilizing third-party
software/libraries or features obtained from a compromised supply chain.[43]

2.3.6 Insufficient privacy protection

An IoT device and its ecosystem may contain a lot of personal data. It can be used
insecurely, improperly, or without permission.[23]

2.3.7 Insecure data transfer and storage

Is the failure to encrypt or restrict access to sensitive data. For most [oT devices it is a
major problem. Due to performance leak, they will not be able to use secured protocols
or have custom security systems.|[26]

2.3.8 Lack of device management

The maintenance of IoT devices after deployment is often inadequate. This includes the
management of updates, assets, system monitoring, and other related tasks.[23]

2.3.9 Insecure Default Settings

Devices or systems that are shipped with insecure default settings or lack the ability to

enhance security by restricting operators from modifying configurations pose a significant
risk.[72]
2.3.10 Lack of physical hardening

Can be seen as one of the most obvious problems when it comes to IoT devices. Poor
configu ration and weaknesses can allow attackers to gain sensitive information or could

leave an [oT device exposed for a future remote attack and device takeover.|[34]

49



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

2.4 Vulnerability Detection methods in IOT

In this section, we will introduce some of the tools used to detect vulnerabilities in
software. These tools and techniques are instrumental in identifying potential vulnera-
bilities in a system that malicious actors could exploit to compromise the security of the

system or the platform on which it operates.

2.4.1 Dynamic analysis

Refers to a technique used in vulnerability detection that focuses on identifying
vulnerabilities that occur during the execution or run-time of an application. Unlike static
analysis, which examines the source code or binaries without executing them, dynamic
analysis involves installing the application and simulating user inputs such as inputs,

touches, and clicks.[80]

2.4.2 Automated static analysis

The automated static analysis vocabulary comprises false positives, true positives,
and false negatives. A false positive happens when a tool reports the existence of a fault
that does not actually exist. On the other hand, a false negative occurs when a fault is
present but remains undetected due to the imperfection of static analysis tools, which
may fail to identify all errors. A true positive, on the other hand, is when a tool correctly
identifies a real defect in the product under analysis.

Examples of automated static analysis tools include FindBugs, Programming Mistake
Detector (PMD), and CheckStyle. However, these tools have a significant disadvantage,
which is their tendency to produce a high rate of false positives.[16]

Numerous static analysis approaches have been developed in various research areas aimed
at detecting Buffer Overflow (BOF) vulnerabilities. These approaches can be classified
into six main categories: inference technique, analysis sensitivity, analysis granularity,

soundness, completeness, and language.[29]

20



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

2.4.3 Fuzzing

It is a method of detecting security vulnerabilities in software by inputting invalid or
random data and observing the resulting behavior for unexpected errors or vulnerabili-
ties. Data generation is key to fuzzing, and there are three types of fuzzing: black box,
white box, and gray box. Fuzzing can also be categorized by its data generation meth-
ods: random, mutation-based, generation-based, and direction-based. Random fuzzing
sends completely random input data to the program under test and is useful for testing
how a program reacts to large or invalid input data. Mutation-based fuzzing generates
new variants of input data based on existing samples and heuristics, while generation-
based fuzzing generates program inputs according to some specifications. Direction-based
fuzzing uses program control flow to direct the fuzzing process. There are many research

and tools available for fuzzing, including Sulley, SPIKE, and Peach.[16]

2.4.4 Web Application Scanners

A web application scanner is a powerful tool that automatically examines web appli-
cations for security vulnerabilities. These scanners are not only capable of detecting web
application specific vulnerabilities, but they can also identify evidence of software coding
errors like unchecked input strings and buffer overflows.

Nowadays, there are numerous web application scanners available in the market. Some
of the widely used commercial web application scanners include AppScan, Web Inspect,
Hailstorm, and Acunetix Web Vulnerability Scanner (WVS). Open-source web applica-
tion scanners like Paros and Pantera are also popular among security professionals.[36]

Web application scanners follow a systematic approach to assess the security of an ap-
plication. They crawl through the web pages of an application and perform penetration
testing, which involves actively attacking the application to identify potential vulnerabil-

ities.

51



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

2.4.5 Brick

The Binary Run-time Integer Based Vulnerability Checker (BRICK) is an efficient
approach that detects integer-based vulnerabilities in software during runtime. This
approach produces highly accurate results with minimal false positives and negatives.
The BRICK process consists of three stages. Firstly, it converts the binary code into
an intermediate representation known as Valgrind EXecution environment (VEX) on
Valgrind. Secondly, the dynamic binary instrumentation framework Valgrind intercepts
integer-related statements at runtime and records the necessary information. Finally,

vulnerability detection and localization are performed using a set of checking schemes.[16]

2.4.6 Machine Learning

2.4.6.1 Definition of machine Learning

Machine learning is a vital branch of artificial intelligence (AI) that empowers systems
to learn and develop experience automatically without the need for explicit program-
ming. Unlike traditional programming methods, machine learning focuses on computer
programs that access and use data to improve their performance over time. The learning
process begins with feedback, examples, practical experience, or guidance to search for
trends in data, which is then used to make informed decisions in the future.

The primary goal of machine learning is to enable computers to automatically learn and
adapt without requiring human intervention or assistance. This technology can be ap-
plied to any domain where the relationship between input and output is dependent on
data. Machine learning algorithms learn from data, making it crucial to choose the right
data and prepare it effectively to solve the problem at hand.

The different machine learning models used for forecasting based on input data are cate-
gorized as supervised learning, unsupervised learning, and reinforcement learning. Each
model has its unique strengths and weaknesses, and choosing the right one depends on

the specific requirements of the problem being solved.[76]

52



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

2.4.6.2 Different types of Machine Learning
Figure 2.3 illustrates the three methods by which a machine can learn.[59]
e Supervised Learning

e Unsupervised Learning

e Reinforcement Learning

Machine
Learning

Supervised Unsupervised Reinforcement
Task Driven Data Driven Learn from
(Predict next value) (Identify Clusters) Mistakes

I &3 |

Figure 2.3: Types of Machine Learning.[41]

1. Supervised Learning : is a well-defined method of learning from examples. To
start with, the learner is presented with two sets of data: training data and testing
data. The ultimate goal of the learner is to use the training data as input and
accurately identify the unlabeled values in the test data. In supervised learning,
each pattern is a combination of an input data set and a target value The primary
objective of the supervised learning algorithm is to assess and create a presumed

function of the training data.[76]

23



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

Labeled Data

O Prediction

QO I:l ‘.‘ _'+ |:| Square
A l.\ _|+ )
[ ] /\ /\ Triangle

Model Training

Lables

{ [ ] Test Data

Hexagon Square
Triangle

Figure 2.4: Supervised learning .[49]

Supervised learning can be further divided into two types of problems:

Classification

2 E

Figure 2.5: Types of supervised learning.[21]

_

e Regression : tasks require a learning machine to analyze one dependent
variable and several independent variables, to estimate and comprehend their
relationships in a system. This method is useful for forecasting and prediction,
especially in determining trends and patterns in the data.[18]

— Linear Regression

— Regression Trees

o4



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

— Non-Linear Regression
— Bayesian Linear Regression
— Polynomial Regression
e Classification : the process of Classification involves training a computer
program on a dataset and utilizing the training to categorize data into dis-

tinct class labels. The algorithm is designed to predict discrete values such as

true—false, male—female, spam—mnot spam, etc.[82]

Spam Filtering
— Random Forest
— Decision Trees
— Logistic Regression

— Support vector Machines Classification

2. Unsupervised learning : is based on the principle of learning and improving
through trial and error. In contrast to supervised learning, unlabeled data is used in
unsupervised learning, and the correct answer is not shown to the machine. Instead,
various algorithms are employed to allow the machine to establish relationships by
examining and observing the data. Unsupervised learning is a data-driven (cluster-
ing) learning algorithm that clusters unlabeled data into different groups. The key
aspect of unsupervised learning is the availability of a massive amount of data. The
more data available, the easier it is for a machine to identify and examine trends

that could lead to meaningful clustering.[59]

INPUT RAW DATA

g —> (¥ (e —>Q°~|::

Procesmng

Unlabeled data

Figure 2.6: Unsupervised learning.[50]

95



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

The unsupervised learning algorithm can be further categorized into two types of

problems:

Unsupervised Learning

Association

Figure 2.7: Types of unsupervised learning .[50]

e Clustering : is a technique for grouping objects based on their similarities. It
involves categorizing data objects into clusters, with each cluster comprising
objects that share the most similarities and differ significantly from the objects
in other clusters. The objective of cluster analysis is to identify commonalities
between data objects and group them accordingly based on the presence or

absence of those commonalities.[50]

e Association : is a type of unsupervised learning that utilizes rules to identify
relationships among variables within a dataset. These methods are often ap-
plied in market basket analysis and recommendation engines,[30] For instance,
shopping stores may use algorithms based on the Association technique to ex-
amine the connection between the sale of one product and another based on

customer behavior.[65]

3. Reinforcement learning : is a distinct field of machine learning focused on tak-

ing action in a given situation to maximize rewards. It involves different software

26



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

and machines that determine the optimal behavior or path in a particular situa-
tion. Reinforcement learning differs from supervised learning, in which the correct
answer is provided to the model, but in reinforcement learning, there is no ex-
plicit answer. Instead, the reinforcement agent must decide on the best course
of action to complete the given task. By learning from its experiences, the agent
can improve its performance in the absence of a training dataset. Reinforcement
learning has practical applications in various industries, such as robots in industrial

automation. [76]

Environment

T

L Firals

&
T
45 Q}ﬁ W

Agent

Reward, Actions

State

Figure 2.8: Reinforcement learning.[48]

2.4.7 Deep Learning

2.4.7.1 Definition of Deep Learning

Deep Learning is a type of machine learning that uses Artificial Neural Networks
(ANNSs) as its fundamental building blocks. ANNs are designed to mimic the way the
human brain works, comprising of numerous interconnected computational units or neu-

rons’ that work together to solve a task.

o7



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

Unlike traditional machine learning algorithms, which rely on manually engineered fea-
tures, Deep Learning is capable of automatically learning useful features directly from
raw data. The term 'Deep’ refers to the multiple layers of neurons that are used to process
the input data, allowing for more complex and abstract representations to be learned.
Deep Learning has become increasingly popular due to the availability of powerful hard-
ware and the ability to train large models efficiently. This approach has shown superior
performance in handling complex non-linear processes, thanks to its ability to leverage
self-organization and interactions between small units, resulting in better fault tolerance

and adaptability to new data.[74]

2.4.7.2 How it works ?

Deep networks are organized into layers of neurons, with each network typically
consisting of an Input Layer, one or more Hidden Layers, and an Output Layer. The
connections between each pair of neighboring layers are known as weights, which are
responsible for determining the strength of the connections. The nodes within each layer,
commonly referred to as "neurons,” have no direct association with each other. Figure

2.9 provides an illustration of a standard deep neural network architecture.

AN
oto:o
07
AN
.

output layer

A
@
®

input layer
hidden layer 1 hidden layer 2

Figure 2.9: The architecture of a Deep Learning model.[90]

Deep learning is an advanced computing system that utilizes various techniques
from the field of machine learning. It employs a large number of nonlinear neurons
arranged in multiple layers to extract and transform variable values from the input vector,

creating multiple levels of abstraction to represent the data. The optimization of weight

28



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

parameters and bias between neighboring layers is critical to the learning process, as it
helps evaluate the accuracy of the model and allows for better adaptation to the learning
data. When the model achieves maximum precision with optimal parameters, it can be
generalized for real data. The quantity and quality of the training data determine the

degree of learning and, consequently, the accuracy of the models obtained.[39]

2.4.7.3 Some deep learning methods

1. Deep Neural Networks (DNNs): A Deep Neural Network (DNN) represents
one of the most efficient ways to solve problems and is classified as deep learning.
A DNN processes input information and aggregates this data into key learning
points. They are a collection of neurons organized in a sequence of multiple layers,
known as Multilayer Perceptrons (MLPs). DNNs are distinguished from traditional
Artificial Neural Networks (ANNs) by their depth and the number of layers and
nodes (neurons) that comprise the network. When an ANN has two or more hidden
layers, it is known as a deep neural network. DNNs attempt to model complex data

architectures by combining various nonlinear transformations.[13]

2. Convolutional Neural Networks (CNNs) : are a type of neural network used in
deep learning for image processing and computer vision tasks. They are composed of
neurons that self-optimize through learning, similar to traditional ANNs. However,
unlike traditional ANNs, CNNs have specialized layers that perform convolutions
on the input data, allowing them to extract meaningful features from images. From
the input raw image vectors to the final output of the class score, the entire network
still expresses a single perceptive score function, with the last layer containing loss
functions associated with the classes. All of the regular tips and tricks developed

for traditional ANNs still apply to CNNs.[71]

29



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

int
*
id
source code =
new
* data = -
. int <¢— |abels
new [1e]; i
1 l
0]
lexer ] random forest
; classifier
learned source

embedding Con\f'}ﬁgnsonal features

Figure 2.10: Convolutional Neural Networks(CNNs) architecture .[87]

3. Recurrent neural networks (RNNs) : are neural networks that draw inspi-
ration from the functioning of biological neurons in the human brain, which are
considered the center of reflection and must sometimes memorize certain events to
use them later before making a decision. Traditional neural networks do not have
this property, which motivates the operation of a recurrent neural network.

RNNs are feed-forward networks with an internal state (or memory) that takes into
account all or part of the data previously seen by the network, in addition to the
current input data, to adapt their decision. The key idea behind these networks is
the deployment of a recurrent computation using loops in the network architecture.
The network’s output is a combination of its internal state (memory of inputs) and
the last input. At the same time, the internal state changes to integrate this new

input data, allowing information to persist in memory.

Déplié tw tw tw

h.
,__}%J -—r b el ]T[ b | -
(=)

tu tu tu

’fr.::) ’:\‘- ﬁ:ﬁ

-, 3 o, L

Figure 2.11: Recurrent neural networks(RNNs) architecture.[39]

4. Long short-term memory networks, or LSTMs : are a specialized type of
recurrent neural network (RNN) that excel at learning long-term dependencies.

Unlike traditional RNNs, which often struggle to remember information over long

60



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

periods of time, LSTMs are explicitly designed to avoid this issue. They possess
a default capacity for retaining information for extended periods, making them
particularly useful in natural language processing applications. While LSTMs share
the chain-like structure of RNNs, their repeating module is distinct. It consists of
four interacting layers, each with its own unique role. Figure 11 provides a visual

representation of an LSTM node.

Figure 2.12: Long short-term memory networks node.[75]

2.5 Related Work

In the following some other research works that have explored similar topics.

61



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

Ref | Article of Year | Description Dataset Model | Result
[70] | A deep learning- | 2019 | The article presents a | Code Bidirect- | 97,32%
based static proposed approach for | Gadget ional 97,21%
taint analysis detecting and locating | Database Long
approach for vulnerabilities in IoT | = (CWE- | Short
[oT software software. The method | 119), Term
vulnerability combines static taint | (CWE- Memory
location analysis and deep | 399) (BLSTM
learning  techniques
to achieve effective
vulnerability identifi-
cation. The approach
emphasizes tracking
the flow of tainted
data within the pro-
gram and analyzing
how it influences the
program’s behavior.

[68] | Identifying Vul- | 2020 | This paper presents an | Corpusl MLP 92.59%
nerable IoT Ap- approach for the iden- | Corpus2 87.03%
plications using tification of vulnerable
Deep Learning [oT applications us-

ing deep learning algo-
rithms.

9] iDetect for | 2022 | This paper aims to | IoT OS + | RF 96.8%
vulnerability use Machine Learn- | SARD CNN 94%
detection in ing (ML) to create a RNN 85.6%
Internet of tool called iDetect for
Things oper- detecting vulnerabili-
ating  systems ties in C/C++ source
using  Machine code of IoT operating
Learning systems.

Table 2.1: Table shows Br'éle overview of related work.




CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

2.5.1 A deep learning based static taint analysis approach for

IoT software vulnerability location

This article [70] by Weina Niu a, Xiaosong Zhang b ¢, Xiaojiang Du d, Lingyuan Zhao
b, Rong Cao b, Mohsen Guizani e , proposes automatic detection methods software
vulnerabilities, but they often suffer from a high false negative rate. They presented a deep
learning-based static taint analysis approach for automatically locating vulnerabilities in
Internet of Things (IoT) software. This approach alleviates the need for manual analysis
and enhances detection accuracy by considering the program context. They designed
selection rules for taint from the difference file between the source program and its patched
version, and use static taint analysis to determine taint propagation paths. Furthermore,
a two-stage Bidirectional Long Short-Term Memory (BLSTM) model is employed to
detect and locate software vulnerabilities. They evaluated their approach using the Code
Gadget Database, which includes two types of vulnerabilities in C/C++ programs: buffer
error vulnerability (CWE-119) and resource management error vulnerability (CWE-399).
Experimental results demonstrate that their proposed approach achieves an accuracy of
0.9732 for CWE-119 and 0.9721 for CWE-399, outperforming three other models (RNN;,
LSTM, and BLSTM) in terms of accuracy. Moreover, their approach achieves lower false

negative and false positive rates compared to other detection methods.

63



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

Component
I:Patching
comparison

Component
I1:Static taint
analysis

Component
HI:Taint
propagation
paths
transforming

Component
V:loT software
vulnerability
location

Training program(source programs and patched

programs)

Using difflib to obtain Diff file between the
source program and the patched program

r

Step 1:Labelling taints according to

Common to deleted and added
lines; The left of the assignment;

the taint selection principles

v

Step 2:Generating @int propagation

paths using static taint analysis

Step 1:Transforming taint propagation paths
into symbolic representations according to the
cmbedding matrix

' 9

Constrained in the *if™
conditional statement and so on.

Taint selection
principles

Token Vertor

print

v

Step 2:Encoding the symbolic representations
into vectors

L4

CNN-BLSTM neural network with fine-tuned
model

.

Word2vec

hiel Lo

world | Lett, v

Embedding matrix

parametcrs

Lines where two types of

common vulnerabilities:

CWE-119 and CWE-399
appears

Qutput

Figure 2.13: Technique flow chart of their proposed approach.[70]

2.5.2 Identifying Vulnerable IoT Applications using Deep Learn-

ing

This work [68] by Hajra Naeem, Manar H. Alalf |, proposes a method for using deep learn-

ing algorithms to identify vulnerable IoT applications. The method focuses on identify-

ing a specific type of vulnerability that can result in the leakage of sensitive information,

which is accomplished through taint flow analysis. To achieve this, the source code of

[oT applications is analyzed to recover tokens and their frequencies, as well as tainted

flows. Two modules, Token2Vec and Flow2Vec, are developed to transform these tokens

64



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN IOT

and flows into vectors. These vectors are then used to train a deep learning algorithm
to create a model for identifying tainted applications. The effectiveness of this approach
was evaluated using two datasets, and the experiments showed that by combining tainted
flows features with the base benchmark that uses token frequencies only, the accuracy
of the prediction models was improved significantly. Specifically, the proposed approach
improved the accuracy of the prediction models from 77.78% to 92.59% for Corpusl and
from 61.11% to 87.03% for Corpus2.

Labelled Apps

] taintFlows(app)--={ Fls= |
SmartThings SrcToSnk - f,, SrcTasnk,
Apps eSrcTosnk : £, #  e5rcToSnk,
SrcToeSnk : SrcToeSnk, .
* T Data —
eSrcToesnk 1} e5rcToeSnk § raiming L=
¥
Features = v Multi-layer
' U Fis perceptron
X
D= #  Test Data
Token, : f;, App D= W U
Token; : f;, - ™ App, D -> VU
Tokens e ] fJ
Token,, : f, } App D=V}

Figure 2.14: Overview of the approach.|[68]

2.5.3 iDetect for vulnerability detection in internet of things

operating systems using machine learning

The paper [9] by Abdullah Al-Boghdady, Mohammad El-Ramly, Khaled Wassif , pro-
poses using Machine Learning (ML) to create a tool called iDetect, which can detect
vulnerabilities in the C/C++ source code of IoT OSs. The authors used the source code
for 16 releases of IoT OSs, along with the Software Assurance Reference Dataset (SARD),
to create a labeled dataset of vulnerable and benign code using the Common Weakness
Enumeration (CWE) vulnerabilities present in IoT OSs as a reference. The study showed
that only a subset of CWEs is present in the C/C++ source code of low-end IoT OSs.
The authors trained three ML models for vulnerability detection: Random Forest (RF),

65

‘Vulnerable

™~

Mon-Vulnerable



CHAPTER 2. DETECTION AND LOCATION OF VULNERABILITIES IN 10T

Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN). During
the testing phase, RF gave the highest accuracy for binary and multiclass classification,
so it was chosen as iDetect’s ML classifier. The study evaluated iDetect on an unseen
dataset of 322 code snippets taken from TinyOS, and iDetect achieved superior results
compared to all three Static Analysis Tools (SATSs) used to collect the training dataset.
iDetect achieved a macro-averaged F1 score (mF1) of 98.5% and a weighted-average F1
score (WF1) of 98% for multiclass classification, and an F1 score (F1) of 97.8% for binary

classification.

2.6 Conclusion

This chapter covers methods to prevent vulnerabilities in IoT systems, including
the use of machine learning and deep learning. These areas have gained popularity due
to their ability to provide solutions to problems through data analysis. Additionally, we
highlight relevant work on vulnerability detection in IoT software. In the next chapter,
we will design a system that uses deep learning algorithm which has been trained for the

[oT operating system

66



Chapter

Conception

3.1 Introduction

In this chapter, we will present a system for detecting vulnerabilities in IoT operat-
ing systems using deep learning techniques, specifically a Convolutional Neural Network
(CNN) model. Our objective was to design a reliable and efficient system that could
accurately identify vulnerabilities. This chapter is divided into two parts: the first part
describes the global architecture of our system, while the second part details the design
of the proposed model, including each design unit,in addition to the UML diagrams that

explain our system.

3.2 System presentation

We will provide a global overview of our system, describing its objectives and archi-
tecture.
3.2.1 System objective

The objective of the system designed to detect vulnerabilities in IoT operating systems
using deep learning is to improve the accuracy and efficiency of vulnerability detection.

This is accomplished by:

67



CHAPTER 3. CONCEPTION

e Leveraging deep learning models and datasets of Common Weakness Enumeration

(CWE) vulnerabilities specific to IoT operating systems.

e The system can analyze IoT operating system source code in C and C++ languages

to identify patterns and anomalies that may indicate the presence of vulnerabilities.

e Determine the type and location of vulnerabilities in the code, providing a more
effective way to detect and address potential security threats in IoT operating sys-

tems.

3.2.2 Global Architecture of the system

In the following Figure 3.1 the architecture of our system that describes the stages of

the system.

1. Input : takes as input the source code of an IoT operating system written in C

and C++ languages. This source code is the target for vulnerability detection.

2. Deep Learning Model : the input code source is passed through a deep learning
model. The deep learning model is designed to analyze and process the source code
in order to detect vulnerabilities. It utilizes advanced deep learning algorithms
and techniques to analyze the code, enabling it to identify distinctive patterns and

anomalies that could potentially indicate the presence of vulnerabilities.

3. Output : the output of the deep learning model is a prediction indicating whether
the input code source is classified as "non-vulnerable” or ”vulnerable”. This predic-
tion is based on the patterns and anomalies identified by the deep learning model
during the analysis of the code.

We have two possible outputs:

e Non-vulnerable :this output indicates that the code is secure and free from

vulnerabilities.

e Vulnerable :in case of vulnerability detection, the system provides additional

information regarding the type of vulnerability and its location within the code.

68



CHAPTER 3. CONCEPTION

CWE

l Dataset training

Convolution - | Pooling E [ Flattening

| I |

Convolutional Layer Pooling Layer

Input source code Deep learning model

l Output

/N
K v

Vulnerability Non Vulnerability

Type and location

Figure 3.1: Global Architecture of the system.

3.3 Detailed system design

In Figure 3.2 below, we present an overview of the detailed architecture of our system,

and we will explain the steps involved.

69



CHAPTER 3. CONCEPTION

| Data Collection |
o GitHub
L ' _.-’I

./-. ._\I e ~
Source Code of 10T OS - ¢/c++SARD
aﬂﬁ vy amazon dataset @
| @#Eros)  Riot n
S Y, - p
Vulnerable codes of 10T OSs Benign and vulnerable
l codes

Integrating the two datasets into one labeled dataset

//

--J—--\ Final labeled dataset of Benign
D ' and vulnerable codes.csv

AN
.
S~

_l____/
Data Processing
R
e g T
id | " =
source code = 1—» 15

new |—» 73
B “ B =
> 1 [20,50,2,15,72,180,1,7,46,0,4]

—» 7
46

- =lo|=|-

—» 4

Data cleaning Data vectorization

Training model

C AT ) —_— Training Flscore
N2 ﬁ/ calculation

supervised CNN

iVulnDetect Evaluation
Detection

T@S — SUpEWiSEd DL model | Vulnerabilities

- 1 I J model
Types (CWE)+

o Benign GVulnerable —_— :
codes O ode location 9

Figure 3.2: The System Architecture with Detailed Components.

70



CHAPTER 3. CONCEPTION

3.3.1 Data collection

Data collection is a crucial initial stage of our system that involves the acquisition of a
dataset comprising code vulnerable to exploitation by attackers. This is a challenging task
that requires a comprehensive search for suitable data sources. After extensive research,
we discovered a public dataset on GitHub that was introduced in a 2022 article [9]. The
dataset contains vulnerable C/C++ codes for IoT operating systems, and it combines
two distinct sources using Common Weakness Enumeration (CWEs) as a benchmark for
identifying and labeling the vulnerabilities, covering 54 types of CWEs discovered in the
IoT OSs case study [10]. The first source comprises genuine weak code snippets extracted
from the source code of sixteen versions of four distinct IoT operating systems (namely,
RIOT, Contiki, FreeRTOS, and Amazon FreeRTOS) up to their 2020 releases, as shown
in table 3.1. The second source is SARD, a well-documented semi-synthetic C/C++
dataset that enables the creation of a categorized dataset from both benign and weak

code.

71



CHAPTER 3. CONCEPTION

IoT OS Release or Version
RIOT R. 2015.09
RIOT RIOT R. 2017.07

RIOT R. 2019.07

RIOT R. 2020.04

Contiki R. 2.4

Contiki Contiki R. 2.7

Contiki R. 3.0

Contiki R. 3.1

FreeRTOS v. 6.0.3
FreeRTOS FreeRTOS v. 9.0.0
FreeRTOS v. 10.0.0
FreeRTOS v. 10.3.1

Amazon FreeRTOS v. 1.0.0
Amazon FreeRTOS Amazon FreeRTOS v. 1.4.0
Amazon FreeRTOS v. 201908
Amazon FreeRTOS v. 202007

Table 3.1: The releases of IoT operating systems that were used for dataset collection.|9]

3.3.2 Data processing

Data processing is a critical step in any data-driven project because it ensures that
the resulting data is accurate, complete, and consistent. After data has been collected,
it must be processed to extract useful insights and make it suitable for analysis. This
typically involves cleaning and transforming the data, as well as applying machine learning

techniques to generate models that can be used for analysis.

1. Data cleaning : is an essential step to ensure that the data is accurate, complete,
and consistent, which leads to more reliable insights. The goal is to transform
the data into a usable format that can be analyzed effectively. In our project, we
cleaned the input data. For instance, we removed comments, irrelevant characters,

and duplicates using Regular Expression (re) and normalized the text.

72



CHAPTER 3. CONCEPTION

Source code

Data cleaning

\\comments
void printfuart buf (char * buf int len) {
int i;
for (1 =01 < len 1 + +){
printf (“% 02 hhx”, bufl 1 1);}
printf( ™ 7);

X32 printfuart buf X4 X78 buf X18 len X18 i
X14 1 X165 0 1 X83 len 1 X76 X76 X36 X80 02
hhx buf i X36

Figure 3.3: Example of data cleaning.

2. Data Vectorization : is a process of converting text data into a numerical for-

mat that can be easily understood by deep learning algorithms. This involves

transforming text data into a set of features that can be represented as vectors in a

high-dimensional space. There are several techniques such as bag-of-words, TF-IDF

(Term Frequency-Inverse Document Frequency), and word embeddings to convert

the cleaned text data into numerical representations.

In our project, after cleaning the data, we created a vocabulary of C/C++ code.

This vocabulary was used in the text vectorization process, which we performed

using the TextVectorization layer provided by the Keras API of TensorFlow.

73



CHAPTER 3. CONCEPTION

. void printfuart buf char * buf int len int 1
Data cleanlng for i = 0 i < len i + + printf % 02 hhx buf i

printf

¥32 printfuart buf X4 X78 buf X18 len X18 1

VVocabularies Coding X14 i X165 0 i X83 len i X76 X76 X36 X80 02

hhx buf i X36

o [75167 25191191 11291
Text vectorization 101 11191127277122111
171000 0]

Figure 3.4: Example of data vectorisation.

3.3.3 Training model

Training a model refers to the process of teaching a deep learning model to make
predictions or perform a specific task based on a given dataset.
We employed a Convolutional Neural Network (CNN) to train our model, as it outper-
formed other machine learning algorithms in terms of accuracy. The CNN model allowed
us to extract meaningful features from the data and learn complex patterns in the input.
We trained the model through multiple steps, the following Figure 5 shows the CNN

model steps.

74



CHAPTER 3. CONCEPTION

|[2POW NND
)

\ 1hodouQq +
uoljez||ewJioNyIIeg +
na+
asuaqg + nodoiq + 1nodouQ +
inodoug + USHE|d+ g + M3 +
uollezj|ew.ioNYoleg + 3|qeL/iakeq
N3+ Buippaqui3
asuaq +

‘0:=2|gelaujnp uo
1°0:3|geIau|nA UoN 2860
WST
PSTE-

/

Suippaqusa
1003

6°0:2|qeJauINAp

Buipoaua 10y aup

12Ae| siahe| 12Ae| 19he|
Xewyjos ynding pajauuod Ajjn4 uoninjoAuod 3N UOIIN|OAUOD T

JaAe| Suippagqw3

Figure 3.5: Convolutional Neural Network (CNN) model steps.

JaAe| induj

5



CHAPTER 3. CONCEPTION

3.3.4 iVulnDetect evaluation

We evaluated our model with the TinyOS operating system, which is specifically
designed for Internet of Things (IoT) applications, to assess the performance and effec-

tiveness of our model

3.4 Design by UML (Unified Modeling Language)

3.4.1 Use Case Diagram

The diagram depicts the structure of the key functionalities required by users of the
system. It illustrates the relationships between the users (actors) and the objects within
the system. The diagram captures the main interactions and tasks that users can perform

to accomplish their goals within the system.

76



CHAPTER 3. CONCEPTION

S

Admin

Free Registration

|

Activate Account

Upload Source

\:ode ~ includes=

Start Vulnerability
Detection
Login

View Detected

o Vulnerabilities
Check activation

account

Access Help

Generate
Tl Reports
Receive Peruse the 7\\-\_\
Notifications documents
Access settings
Manage Account
- Modify
*=Extend>= - -
c<Exendss notification
preferences

Manage Change
subscription passwords
plan

R Configure Tool

Settings
Manage System

Manage Vulnerability
Database
Generate metrics
and reports

T cloek

3.4.2 Class Di

A class diagram is a powerful tool used to visually represent the static structure of
a system. It consists of classes, their attributes, methods, and the associations between

them. The diagram provides a clear and concise overview of the system’s entities and

Figure 3.6: Use Case Diagram.

agram

7




CHAPTER 3. CONCEPTION

their interactions.

In the following diagram, we have illustrated the class relations of our system, showcasing
the key classes and their relationships. Each class represents a distinct entity or concept
within the system, while the associations between classes depict the relationships and

dependencies among them.

78



CONCEPTION

CHAPTER 3.

pioa:(lng palqoppouonng +

pioa:(uuog palgn)inaiesuenas +

proa:(waog palqo)indres +

(plomssed Bung’|lews

Burng’swenise| bulng‘swenpsiy Bulag) ™ 3w -

aquosqns In

21ep:puaJalsibal +
=ep:BuuuibaqimsiBal +
JupoLedTImsIBay +

uonepossy uonessiboy

aquosqng 1

proa:( g palgo)pipuonng +
ploa:()lesneisibal +
proa:()"moys +

ploa:()7eply +

(wiog palgD)iNEiesUeLal +
(wuiog palqo)indmgas +
proa:() " -

ppouw:(exep Gulns)|Eo -

1sIAeny:(21ep Bulig)erep Buipm -

Bulas:(epoo Bulns)apos buipm -

R poLu:()uo ieziiopan K] -

pioa:(saue|ngedoA” Buipoo~asn ueajoog ua) xew
JUI'SaUNIeR) XeLU JUI'S3 LI NGED oA 151 ARIIY) T Ul -

uea|00g © SaLR|NQeIoA” Bulpm asn -

Buiis :(apo bulgs)apod ueap -
Buing:(su=yo1 Buwg)ezijewou -
Buing:(2pod bulng)sjuaLUILICO™ anoWRl -

U210 08 SIUBLLUILLCO T SA0LLR ] UBS |0 0g) ™ Ul -

s=ys16ay In

181y (emep Bung )™ (o -

Bulns:(zpoo Bulsg)sziuayog -
ploa:(szijewiou

Ul U3 TXeW -
Ul $3IMEa) Xew -
1SIARLY : S31IR|NGR20A -

ueajoog - 2Zi[eLou -
UB2|00g © SIUSLLLLCO aA0LUR] -

uoInezI101989A BleQg

bujuea D eleq

']

T

1l
Buing:(roysuo~Buipoous
uea|oog’sa|qeuen” [eauobages e beuelw uesjoog’ ) Ju’ Bulng) ™ |eo -
Buwg:(A winsweu e obxe0 R0 +
ploA:(S2I|ELUioU U2 |00g 'SIUSLLLLICO 3A0LS . LE3|00g'saliengeoon” Buipoo™asn
UP3|00g ‘Ua[ XBLU JUI'S3UNIR3) XPLW JUI'SILIRNGEDOA 1SITAR L) Ul -

Buisspodd eyeq

T

123[g0:(aanogapod Bung)sanigelauny, 12318 -

Palgoi(aanogapod Bulng) ™ |ea-

1sIfeuy(saugngedon awel 3y fus)iiengedon 1ab -

Bus:(eselep Buwys)elea) dnp” Buiss L Aol -

plon(smos aledldnp anowal

ue3joog’ sanjea” BuISs LT aA0Wa) UBSDOg SaUBINgEI0A aeu” 3y Bung)™ jui-

uea|00g: SMOJ"31e0l|dnpTRADWR -
ues|oog : sanjen” bussIWTaAOWRY -
Bung : sauRINgED0A BWRU By -

pioa : (JAe|dsiquins=y +
ploa:()uonniaxJuompy +

proa:(pnobo) +

ploa:(sweu Bulgg)edojaagaueu +
proa:(1gu ur‘uinpadAy Bulng)uonesoadA) +
Bulng:(zpoo~=0unos
mc_bmvmnelmo._:cmlrcc&lmcc_UcE|ﬁmbkm+
proa:() 3w -

'

proa:(j mous +

ploa:(Jepy +

ploa:(ng palgo)pioucnng +
proa:(sesn~uibo| +
uea|oog:(pJomssed

ey Buuig)piomssed”Ajusa +
uea|joog:(|lewa bulyg)ews”Ajuan +
ploa:(wiog 10=(gO)IN=1e[sUena) +
pron:(wiog palqo)indmas +
proa:() ™ 1wl -

uibo 1n

uonepijep

Palgo = n-

Palqo : s=bpim -
Buing : uonduossp -
Buing = pan -

Bu1gs : =04nos 2po -

ulepw

pioa : (Jeso +

ploa:()anes +

Buins:(piomssed

Bums’iew Buing)uibo| 1oy wiyuo) +

—

ueajoog:(piomssed Buing’|ew buing'swepnse|
Buing’awengsiy Bungpunomoe” Mmau ppy +
uea|oog:(jlew Buwagunome wiyuod +
pion:()aseqeiep Pauu0) -

“eseqeleq

25N

PPOW 1d

ploA - (MDPUIRAUIE Y OPUIA) INBIEISUBLSI +
pIOA - (sopuippule i mopuipa)indmas +

MOpUIMUIEW 1N

Aejdsip

class diagram.

Figure 3.7

79



CHAPTER 3. CONCEPTION

3.4.3 Sequence Diagram

3.4.3.1 Sequence Diagram for Login

The following sequence diagram shows the interactions required for developer login.

per ‘_Login | - iatabase_ [

login(email,password)

¥

Verify_Input_Validity(email, password)

I[Input_correct] database.Confirm_for_login(email, password)

Lt

Return validation result

[True]

Login successful

[False]
Login failed

[Input_incorrect]

messagebox('Invalid email or password.")

Figure 3.8: Sequence Diagram for Developer Login.

3.4.3.2 Sequence Diagram for Register

This diagram explains how to create a new account in our software.

80



CHAPTER 3. CONCEPTION

' register_user(firt_name last_name,
email,password,confirmPassword) Verify_Input_Validity(firt_name,last_name,
email,password,confirmPassword)

¥

[Valid_input Confirm_account{email) !

Availahbility result

[Email available]

Prompt for subscription

ol
4

Choose subscription plan
Add_new_account(firstName,lastName,

email,password)

k 4

k 4

Account creation result

Registration and subscription successful

[Email not available]

Email already registered

[Non_valid_i_npm]

Invalid_input

Figure 3.9: Sequence Diagram for Developer Register.

3.4.3.3 Sequence Diagram for Detection Vulnerabilities

This diagram shows how to discover vulnerabilities and all related operations in our
program, where the source code is entered and using the deep learning model, vulnerabil-
ities are discovered and their types and location are determined, and the system ensures

a view of the detected vulnerabilities with tips to avoid them.

81



CHAPTER 3. CONCEPTION

per : "nWindow -: Model DL :

Upload source code

Start detection extract_functions_from_source_code(source_code)

I:I:| Apply_model_detection()

Results of detect

Process_data

[Non_vulnerability]

Message(Non vulnerable code)

[Vulnerability]

Message(vulnerable code)

Return_table_wulnerabilities{)

Generate report{)

Return vulnerability report

Figure 3.10: Sequence Diagram for Detection Vulnerabilities.

3.5 Conclusion

In this chapter, we presented the design of our system, where we presented the
comprehensive(global) and detailed design and UML diagrams that explain our system.
We also clarified the purpose of our system and detailed and explained its components

(data collection, data preparation and deep learning model).

82



Chapter

Implementation and results

4.1 Introduction

In this chapter, we will introduce the working environment, programming language,
tools, and libraries used in building our system. We will also show the components of the
dataset used and all the stages involved in creating the CNN deep learning model, and
in the end we will show a comparison of our results with other related work, as well as

some pictures of our system interface and how it works.

4.2 Development Environment

The subsequent section provides an overview of the working environment, program-

ming languages, and software tools employed in the development process.

4.2.1 Programming Languages

4.2.1.1 Python

Python is an interpreted, object-oriented, high-level programming language known for
its dynamic semantics. It offers a range of built-in high-level data structures and features
dynamic typing and dynamic binding. These characteristics make Python highly suitable

for Rapid Application Development and as a scripting or glue language for connecting

83



CHAPTER 4. IMPLEMENTATION AND RESULTS

existing components. The language’s simplicity and readability contribute to reduced
program maintenance costs. Python supports modules and packages, promoting code
modularity and reusability. The Python interpreter and extensive standard library are
freely available in source or binary form for all major platforms and can be distributed

without charge.[79]

Figure 4.1: Python logo.

4.2.2 Software Tools

4.2.2.1 Google Colab

Google Colab, also known as Colaboratory or Colab, is a web-based environment
developed by Google Research. It offers a convenient platform for writing and executing
Python code directly through a web browser. Primarily designed for machine learning,
data analysis, and educational purposes, Colab provides users with a powerful toolset.[37]
Colab stands out as an improved version of Jupyter Notebook, offering enhanced fea-
tures and functionality. It was initially introduced by Google to provide free access to
GPUs (Graphics Processing Units) and TPUs (Tensor Processing Units), enabling users
to harness accelerated computing resources without any cost. This aspect makes Colab

particularly attractive for building machine learning and deep learning models.[78§]

80

Figure 4.2: Google Colab logo.

84



CHAPTER 4. IMPLEMENTATION AND RESULTS

Advantage of Colab:|[78]

Its ease of use and zero-configuration setup.

e Users can write and execute Python code seamlessly.

e Benefiting from the collaborative nature of Jupyter notebooks.

e Interactive tutorials to learn machine learning and neural networks.
e Import datasets from external sources such as Kaggle.

e Save your Notebooks to Google Drive.

e Import Notebooks from Google Drive.

e Free cloud service, GPUs and TPUs.

Import or publish directly from/to GitHub.

Additionally, Colab’s integration with Google Cloud APIs suggests a long-term perspec-

tive of building a customer base for Google Cloud services.

4.2.2.2 PyCharm

PyCharm is an Integrated Development Environment (IDE) specifically designed
for Python programming. Developed by JetBrains, PyCharm provides a comprehensive
set of tools and features that facilitate efficient and productive Python development.
PyCharm supports various frameworks and libraries commonly used in Python devel-
opment, such as Django, Flask, and NumPy, providing built-in project templates and

integration for streamlined development workflows.[51][77]

Figure 4.3: PyCharm logo.

85



CHAPTER 4. IMPLEMENTATION AND RESULTS

4.2.3 Design Tools

4.2.3.1 Qt Design

Qt Designer is a powerful tool provided by Qt for designing and constructing graphical
user interfaces (GUIs) using Qt Widgets. It allows users to create and customize windows
or dialogs in a what-you-see-is-what-you-get (WYSIWYG) manner, providing a visual
representation of the interface. Additionally, Qt Designer enables users to test the GUIs

with various styles and resolutions.|81]

Figure 4.4: Qt Design logo.

4.2.4 Database Tools

4.2.4.1 XAMPP

XAMPP stands as one of the most widely used PHP development environments. It
is a comprehensive Apache distribution that includes MariaDB, PHP, and Perl, providing
a seamless and hassle-free setup. XAMPP is an open-source package designed with the
goal of simplifying the installation and usage process, making it accessible even to users

with limited technical expertise.[20]

XAMPP

Figure 4.5: XAMPP logo.

86



CHAPTER 4. IMPLEMENTATION AND RESULTS

4.2.5 Conception Tools

4.2.5.1 Modelio

Modelio is a versatile open-source modeling environment tool that offers com-
prehensive support for the latest industry standards, such as UML 2 and BPMN 2. It
provides the flexibility to extend its functionalities by incorporating additional modules.
The Modelio offers a wide range of free and open-source modules, enabling features like
code management (generation and reverse), adherence to various modeling standards

(including TOGAF, SysML, SoaML), and document generation.|[35]

Figure 4.6: Modelio logo.

4.3 Library Tools

4.3.1 TensorFlow

TensorFlow is a widely adopted open-source platform designed for the development
of end-to-end Machine Learning applications. As a symbolic math library, TensorFlow
utilizes dataflow and differentiable programming to facilitate a range of tasks, particu-
larly in training and inference of deep neural networks. It provides developers with a
comprehensive ecosystem comprising tools, libraries, and community resources to create
sophisticated machine learning applications. Currently, the most famous deep learning

library in the world is Google’s TensorFlow.[53]

87



CHAPTER 4. IMPLEMENTATION AND RESULTS

Figure 4.7: Tensorflow logo.

4.3.2 Keras

Keras[3], a deep learning API, is implemented in Python and operates on the
TensorFlow machine learning platform. It was designed with the primary goal of enabling
rapid experimentation. The ability to swiftly transition from an idea to obtaining results

is crucial for conducting effective research.

Figure 4.8: Keras logo.

Keras is characterized by the following attributes:

e Simplicity: Keras minimizes the cognitive load on developers, allowing them to
concentrate on the core aspects of the problem at hand. While it simplifies the de-
velopment process, Keras is not oversimplified, ensuring that essential complexities

are not overlooked.

e Flexibility: Keras follows the principle of progressive disclosure of complexity.
Simple workflows can be executed quickly and effortlessly, while more intricate
workflows can be accomplished through a clear progression that builds upon the

foundational knowledge you have acquired.

88



CHAPTER 4. IMPLEMENTATION AND RESULTS

e Power: Keras delivers robust performance and scalability, making it a suitable
choice for organizations and companies with demanding requirements. Renowned
entities such as NASA, YouTube, and Waymo employ Keras for their deep learning

needs, attesting to its industry-strength capabilities.

4.3.3 PySide6

PySide6 is a Python binding of the cross-platform GUI toolkit Qt. Applications built
with PySide6 will run on any platform supported by Qt & Python including Windows,
OS X, Linux, iOS and Android. PySide is the official binding for Qt on Python and is
now developed by The Qt Company itself.[98]

G 6

Figure 4.9: PySide6 logo.

4.4 Structure of Data

4.4.1 Dataset Description
The dataset consists of two main categories: Benign Codes and Vulnerable Codes.

e Benign Codes
Benign codes refer to non-vulnerable code samples. These are code snippets or

segments that do not contain any security vulnerabilities, the figure represents a

portion of the benign codes.

89



CHAPTER 4. IMPLEMENTATION AND RESULTS

A B 9]

4385 static void GB2G1 ( ) { char*data;data = NULL ;if (STATIC_CONST_TRUE) { data = (char*) realloc (data, 100"sizeof ( charBenign Code
4386 static void GB2G2 ( ) { char*data;data = NULL ;if (STATIC_CONST_TRUE) { data = (char™) realloc (data, 100"sizeof ( chaiBenign Code
4387 static void GG2B1 ( ) { char " data ; data NULL ; if ( STATIC_CONST_FALSE) { printLine ( "0, fixedstring" ) ; } else { data = Benign Code
4388 static void GG2B2 ( ) { char " data; data NULL ; if ( STATIC_CONST_TRUE) { data = (char*)ALLOCA ( 100*sizeof ( char) ) ;Benign Code
4389 static void GB2G1 ( ) { char " data ; data NULL ; if (staticTrue) { data = (char*) realloc (data, 100"sizeof (char) ) ;if (data Benign Code
4390 static void GB2G2 ( ) { char*data;data = NULL;if (staticTrue) { data = (char*) realloc (data, 100*sizecf (char) ) ;if (data Benign Code
4391 static void GG2B1 ( ) { char " data ; data NULL ;if (staticFalse ) { printLine ( "0, fixedstring” ) : } else { data = (char™)ALLCBenign Code
4392 static void GG2B2 ( ) { char *dataf; dataf = NULL ;if (staticTrue ) { dataf = (char*)ALLOCA (100*sizeof (char) ) ;strcpy ( dataf Benign Code

()

()

()

()

4393 static void GB2G1 { char " data:data = NULL;if ( STATIC_CONST_FIVE==5) { data = (char”) realloc (data, 100"sizecf ( c Benign Code
4394 static void GB2G2 { char * data ; data = NULL ;if ( STATIC_CONST_FIVE==5) { data = (char”) realloc (data, 100*sizecf ( c Benign Code
43895 static void GG2B1 { char * data ; data NULL ; if ( STATIC_CONST_FIVE!=5) { printLine ( "0, fixed string" ) ; } else { data = Benign Code
4396 static void GG2B2 { char " data ; data = NULL ;if ( STATIC_CONST_FIVE==5) { data = (char”)ALLOCA ( 100"sizeof (char) Benign Code
4397 static void GG2B ( ) { char*datag;datag = NULL ; datag = (char*)ALLOCA ( 100"sizeof (char) ) ;strcpy (datag, "AString" ) ; Benign Code
4398 static void GB2G () { char *data;data = NULL ;data = (char™) realloc (data, 100"sizeof (char) ) .if (data == NULL) {exit ( Benign Code
4399 static void GB2G1 ( ) { char*data;data = NULL;if (1) { data (char*) realloc (data, 100"sizecf (char) ) ;if (data == NULBenign Code
4400 static void GB2G2 ( ) { char " data ; data NULL ;if (1) { data (char ™) realloc (data, 100"sizeof (char) ) :if (data == NULBenign Code
4401 |static void GG2B1 ( ) { char “data;data = NULL;if (0) { printLine ( "0, fixedstring" ) ; } else { data = (char*)ALLOCA ( 10(Benign Code
4402 | static void GG2B2 ( ) { char * data ; data NULL ;if (1) { data = (char*)ALLOCA ( 100"sizeof (char) ) ;strcpy (data Value , " Benign Code
4403 | namespace char_calloc_84 { char_calloc_84_GG2B:: char_calloc_84_GG2B ( char “dataCopy ) { data = dataCopy ;data = (char* )AL Benign Code

4404 namespace char_calloc_84 { char_calloc_84_GB2G:: char_calloc_84_GB2G ( char * dataCopy ) { data = dataCopy ;data = (char*) caBenign Code
4405 namespace char_calloc_83 { char_calloc_83_GG2B:: char_calloc_83_GG2B ( char “dataCopy ) { data = dataCopy ;data = (char*)AL Benign Code
4406 namespace char_calloc_83 { char_calloc_83_GB2G:: char_calloc_83_GB2G ( char * dataCopy ) { data = dataCopy ; data = (char*) caBenign Code
4407 \namespace char_calloc_82 {void char_calloc_82_GG2B::action ( char *data_Value05) { :} } Benign Code
4408 | namespace char_calloc_82 { void char_calloc_82_GB2G:action ( char * data_Value03) { free (data_Value03) ; } } Benign Code
4409 namespace char_calloc_81 {void char_calloc_81_GG2B::action ( char * data_Value06) const { ; } } Benign Code
4410|namespace char_calloc_81 {void char_calloc_81_GB2G::action ( char * data_Value08 ) const { free (data_Value08) ; } } Benign Code

4411 |static int GB2G1Static = 0; static int GB2G2Static = 0 ; static int GG2BStatic = 0 ;static void GB2G1Sink (char*data) { if ( GB2G15Benign Code
4412 static void GB2G2Sink ( char *data) { if ( GB2G2Static ) { free (data) . } }static void GB2G2 ( ) { char " data: data = NULL ; dat Benign Code
4413 /static void GG2BSink (char “data) { if (GG2BStatic) { } }static void GG2B () { char*data:data = NULL:data = (char*)ALLBenian Code

Figure 4.10: Part of Benign Codes.

e Vulnerable Codes
The dataset includes a multi-class classification of vulnerable codes. These codes
are categorized into 54 types based on the Common Weakness Enumeration (CWE)
standard. CWE provides a standardized taxonomy for identifying and categorizing
software weaknesses and vulnerabilities.
In the table below provided that lists the 54 CWE types associated with the vul-

nerable codes.

90



CHAPTER 4. IMPLEMENTATION AND RESULTS

CWE-ID | Description

CWE-561 | Dead Code

CWE-398 | Seven Pernicious Kingdoms (7PK) vulnerability—Code Quality

CWE-563 | Assignment to Variable without Use

CWE-686 | Function Call with Incorrect Argument Type

CWE-570 | Expression is Always False

CWE-476 | NULL Pointer Dereference

CWE-571 | Expression is Always True

CWE-758 | Reliance on Undefined, Unspecified, or Implementation-Defined Behavior

CWE-457 | Use of Uninitialized Variable

CWE-664 | Improper Control of a Resource Through its Lifetime

CWE-783 | Operator Precedence Logic Error

CWE-665 | Improper Initialization

CWE-190 | Integer Overflow or Wraparound

CWE-467 | Use of sizeof() on a Pointer Type

CWE-788 | Access of Memory Location After End of Buffer

CWE-682 | Incorrect Calculation

CWE-477 | Use of Obsolete Function

CWE-685 | Function Call with Incorrect Number of Arguments

CWE-775 | Missing Release of File Descriptor or Handle after Effective Lifetime

CWE-401 | Missing Release of Memory after Effective Lifetime

CWE-683 | Function Call with Incorrect Order of Arguments

CWE-369 | Divide By Zero

CWE-704 | Incorrect Type Conversion or Cast

CWE-562 | Return of Stack Variable Address

CWE-475 | Undefined Behavior for Input to API

CWE-119 | Improper Restriction of Operations within the Bounds of a Memory
Buffer

CWE-252 | Unchecked Return Value

CWE-628 | Function Call with Incorrectly Specified Arguments

91



CHAPTER 4. IMPLEMENTATION AND RESULTS

CWE-672 | Operation on a Resource after Expiration or Release

CWE-687 | Function Call with Incorrectly Specified Argument Value

CWE-786 | Access of Memory Location Before Start of Buffer

CWE-415 | Double Free

CWE-768 | Incorrect Short Circuit Evaluation

CWE-762 | Mismatched Memory Management Routines

CWE-120 | Buffer Copy without Checking Size of Input (Classic Buffer Overflow)

CWE-134 | Use of Externally Controlled Format String

CWE-831 | Signal Handler Function Associated with Multiple Signals

CWE-327 | Use of a Broken or Risky Cryptographic Algorithm

CWE-78 | Improper Neutralization of Special Elements used in an OS Command

CWE-20 | Improper Input Validation

CWE-807 | Reliance on Untrusted Inputs in a Security Decision

CWE-244 | Improper Clearing of Heap Memory Before Release (‘Heap Inspection’)

CWE-350 | Reliance on Reverse DNS Resolution for a Security-Critical Action

CWE-367 | Time-of-check Time-of-use (TOCTOU) Race Condition

CWE-829 | Inclusion of Functionality from Untrusted Control Sphere

CWE-377 | Insecure Temporary File

CWE-226 | Sensitive Information in Resource Not Removed Before Reuse

CWE-126 | Buffer Over-read

CWE-362 | Concurrent Execution using Shared Resource with Improper Synchro-
nization

CWE-676 | Use of Potentially Dangerous Function

CWE-732 | Incorrect Permission Assignment for Critical Resource

CWE-785 | Use of Path Manipulation Function without Maximum-sized Buffer

CWE-250 | Execution with Unnecessary Privileges

CWE-22 | Improper Limitation of a Pathname to a Restricted Directory

Table 4.1: The 54 types of Common Weakness Enumeration (CWEs).[1][10]

The figure provided in the dataset represents a portion of the vulnerable codes,

showcasing examples from different CWE types.

92




CHAPTER 4. IMPLEMENTATION AND RESULTS

A B
1 [code [isMalicious
2 void printfUART_buf (char*buf, int len) { inti;for (i = 0;i<len;i++) { printf ( " %02hhx " , buf [i] ) : } printf ( "\n" ) ;} CWE-561
3 check_opt_size (cp_opt_t "opt, unsigned char "maxpos ) { if (opt&&opt<maxpos) {if ( ( ("opt&0Ox0f) <Ox0f) || (opt+ 1<maxp CWE-561
4 cp_ft (cp_queue_t*queue, cp_tid_tid) { while (queue && queue ->id!= id) queue = gueue -> next ; return queue ; } CWE-561
5 start (cp_pdu_t*pdu) { if (pdu&& pdu->hdr&& (pdu-> hdr->token + pdu -> hdr -> token_length < ( unsigned char * ) pdu -> hdr + pdu. CWE-561
6 cp_clone_pdu (cp_pdu_t"pdu) { cp_pdu_t "cloned_pdu ; size_t data_len ; unsigned char “data ; cp_opt_iterator_t opt_iter : cp_opt_t “option ; CWE-561
7 cp_clone_uri (constcp_uri_t*uri) { cp_uri_t *result;if ( luri ) return NULL ; CWE-561
8 int get_ser_fd ( ) { returnserial_source fd (ser_src) ; } CWE-561

9 int ipv6_addr_is_zero (constip6é_addr t*addr) { inti;for (i=0;i<16;i++) {if (addr->addr [i] ) {retunO;} } return1; } CWE-561
10 APortjint ACALL Java_available ( AEnv *“jenv, jclassjcls, jlongjargl) { jint jresult = O ; NativeSerial “arg1 = ( NativeSerial ) 0 ; int CWE-561
11 |APort jooclean ACALL Java_1cancelWait ( AEnv *jenv, jclass jcls , jlongjarg1) { jbooclean jresult = 0 ; NativeSerial “arg1 = ( NativeSerial CWE-561
12 |APortvoid ACALL Java _1close ( AEnv *jenv, jclassjcls, jlong jarg1) { NativeSerial "arg1 = ( NativeSerial *) 0 ; CWE-561
13 |void SJABool ( AEnv “jenv, jboolean *jarr, bool *carr, jbooleanArray input) { int i;jsize sz = jenv -> GetArrayLength (input) ;for (i=(CWE-561
14 |void P_Configurelt ( const Pin “pPin, void ( *handler) (constPin*) ) { interruptSource *pSource ; TRACE_DEBUG ( " P_Configurelt ( ) CWE-561
15 |void P_lInitialize int errupts ( unsigned int priority ) { TRACE_DEBUG ( " P_lInitialize ( ) \n\r" ) ; ; numSources = 0; TRACE_DEBUG ( " CWE-561

16 void A_disable int errupt (uint32_tm_i) { BP (A_CMSIS (m_i) -> CTLO,A_CTLO_RDYIE_OFS) =0; } CWE-561
17 |void A_encryptData (uint32_tm_i, constuint8_t*data, uint8_t* encryptedData) { uint_fast8_ti;uint 16_ttempData = 0; uint 16_t t CWE-561
18 bool A_isBusy (uint32_tm_i) { returnBP (A_CMSIS (m_i) -> STAT , A_STAT_BUSY_OFS) ; } CWE-561
19 |void C_set16BitData (uint 16_tdataln, uint_fast8_tcrcType ) { ASSERT ( (CRC16_MODE == crcType) || (C_MODE == crcType ) CWE-561
20 void C_disableModule (uint32_tm_i) { BP (EUSCI_B_CMSIS (m_i) -> CTLWO, EUSCI_B_CTLWO_SWRST_OFS) =1;;} CWE-561
21  case EUSCI_B3_BASE: int errupt_disable int errupt ( int _EUSCIB3) ; int errupt_unregister int errupt ( int _EUSCIB3 ) ; break ; CWE-561
22 uint 8_t int errupt_getPriority (uint32_t int erruptNumber ) { ASSERT ( ( interruptNumber>= 4) && ( interruptNumber < ( NUM_int CWE-561
23 void int errupt_enableSleepOnlsrExit ( void) { SCB->SCR |= SCB_SCR_SLEEPONEXIT_Msk ; } CWE-561
24 void PCM (void) { PCM->CTL1 = (PCM->CTL1&~ (PCM_CTLO_KEY_MASK | PCM_CTL1_FORCE_LPM_ENTRY ) ) | PCM_KEY ; CWE-561
25 void PCM_enable int errupt (uint32_tflags) { PCM->IE| = flags; } CWE-561
26 uint 32_t PCM_getEnabled int erruptStatus ( void ) { return PCM_get int erruptStatus ( ) & PCM->IE; } CWE-561
27 void PCM_clear int erruptFlag (uint32_tflags) { PCM-> CLRIFG | = flags ; } CWE-561

28 void S_MC (uint32_tm_i, uint 32_t clockSourceFrequency , u int 32_t desiredSpiClock ) { if (is_A_Module (m_i) ) { EUSCI_A_S_mas CWE-561
29 lvoid S CP (uint32 tm i. uint fast16 tclockPhase . uint fast16 tclockPolaritv) { if (is A Module (m i) ) { EUSCI A S CP (m i CWE-561

Figure 4.11: Part of vulnerable codes.

A B
1454 |"FRE_DET_CR = 0x00020000 ; while (! ( frequency_22cr1 & 0x00008000) ) { frequency_c2r1 = *FRE_DET_CR_Value02 ; } measure_r CWE-369
1455 | static volatile const unsigned int zero = 0 ;tmp.ul [H1] = tmpul [L1] = 1/zero; CWE-369

1456 *FRE_DET_CR = 0x000e0000 ; while (! (frequency_cer1 & 0x00008000) ) { frequency_cerl = *FRE_DET_CeR_Value04 ; } measure_r CWE-369
1457 |*FRE_DET_CR = 0x000e0000 ; while (! (frequency_22cer1 & 0x00008000) ) { frequency_c2er1 = *FRE_DET_CeR_Value05 ; } measul CWE-369
1458 static volatile const unsigned int zero = 0; tmp.ul [HR1] = tmp.ul [LR1] = 1/zero; CWE-368
1459|"FRE_DET_CR = 0x000e0000 ; while (! ( frequency_crr1 & 0x00008000) ) { frequency_crr1 = *FRE_DET_CRR_Value06& ; } measure_re CWE-369
1460|"FRE_DET_CR = 0x000e0000 ; while (! ( frequency_22crr1 & 0x00008000) ) { frequency_c2rr1 = *FRE_DET_CRR_Value04 ; } measur CWE-369

1461 |static volatile const unsigned int zero = 0 ;tmp.ul [HT1] = tmpul [LT1] = 1/zero. CWE-369
1462 return SEGGER_RTT_vprintf ( Bufferindex1, sFormat1, &ParamList1 ) ; CWE-664
1463| int printf ( const char *format1, ) { va_listargs1; va_start ( args1, format ) ;returnprint ( 0, format1, args ) ; } CWE-664
1464 |for ( auto &p : config.npn_lista5 ) { p.insert ( p.begin ( ) , static_cast < unsigned char> (p.size ( ) ) ) ; } CWE-664
1465| int sprintf ( char *out, const char *format, ) { va_listargs22; va_start ( args22, format ) ;return print ( &out, format, args22 ) ; } CWE-664
1466|if ( h10 - std::begin ( hostname ) < p10 - std::begin ( pattern ) ) {return false ; } CWE-664
1467 int snprintf ( char "buf, unsigned int count, constchar *format, ) { va_listargs22; (void ) count;va_start ( args, format ) ; return p CWE-664
1468|if ( h5 - std::begin ( hostname ) < p5 - std::begin ( pattern ) ) {return false ; } CWE-664
1469 int printf ( const char "fermat, ...) { va_list args33 ; va_start ( args33, fermat ) ; return TN_print ( 0, format, args33, 0 ) ; } CWE-664
1470|if ( h6 - std::begin ( hostname ) < p6 - std::begin ( pattern ) ) {return false ; } CWE-664
1471| int sprintf ( char “out, const char *format, ) { va_list args ; va_start ( args23, format ) ; return TN_print ( &out, format, args44, 0 ) CWE-664
1472|if ( h3 - std::begin ( hostname ) < p3 - std::begin ( pattern ) ) {return false ; } CWE-664
1473| int snprintf ( char *buf, unsigned int count, constchar *format, ? ) { va_listargs33; (void ) count;va_start ( args33, format ) ; retu CWE-664
1474 return SEGGER_RTT_vprintf ( Bufferindex1, sFormat, &ParamList) ; CWE-664
1475 |for (auto &p : config.npn_list3 ) {p.insert ( p.begin ( ) , static_cast < unsigned char> (psize ( ) ) ) : } CWE-664
1476 return SEGGER_RTT_vprintf ( Bufferindex2 , sFormat, &ParamList) ; CWE-664
1477 |if ( ha3 - std::begin ( hestname ) < pa3 - std::begin ( pattern ) ) {return false ; } CWE-664
1478 |return SEGGER_RTT_vprintf ( Bufferindex3, sFormat, &ParamList) ; CWE-664
1479 |for (auto &p : config.npn_lista3 ) { p.insert ( p.begin ( ) , static_cast < unsigned char> (p.size( ) ) ) : } CWE-664
1480 |return SEGGER_RTT_vprintf ( Bufferindex4 , sFormat, &ParamlList) ; CWE-664
1481 |for ( auto &p : config.npn_lista1 ) { p.insert ( p.begin ( ) . static_cast < unsigned char> (p.size( ) ) ) : } CWE-664
1482/return SEGGER RTT vorintf ( Bufferindex5 . sFormat . &ParamlList) : CWE-664

Figure 4.12: Part of vulnerable codes.

4.4.2 Data processing

As we mentioned in Chapter 3, the data processing steps involved in preparing
the code for vulnerability detection. This process consisted of two main components:

cleaning and vectorization.

93



CHAPTER 4. IMPLEMENTATION AND RESULTS

During the cleaning phase, we applied various techniques to remove irrelevant information
and ensure that the code is in a suitable format for analysis. One specific step involved
removing comments from the code, as they do not contribute to vulnerability detection.
We also utilized regular expressions to identify and eliminate unnecessary parts of the
code, as depicted in the figure below. These cleaning steps helped streamline the code

and improve the accuracy of the subsequent analysis.

# Fonction pour éliminer les commentaires
def  remove comments(self, code):
# Expressions réguliéres pour identifier les commentaires
comment regex = re.compile(r’//.*?$%|/\*.*2\*/", re.DOTALL | re.MULTILINE)

# Supprimer les commentaires du code
code = comment regex.sub('', code)

# Suppression des caractéres non pertinents
code = re.sub(r'[{};, O\N\NIN"\'\']+", "', code)

return code

Figure 4.13: Function using regular expressions for data cleaning.

In the vectorization phase, we transformed the cleaned code into a numerical represen-
tation that could be used as input for the vulnerability detection model. We created a
layer called text vectorization, which involved creating a structured layer to handle the
vectorization process. This is after we coding data with convert the vocabulary of ¢/c++.
This layer facilitated the conversion of the code into a format that could be efficiently
processed by the deep learning model.

These preprocessing steps were essential in ensuring the accuracy and effectiveness of the

subsequent vulnerability detection process.

4.4.3 Model training

4.4.3.1 Dataset Split

The dataset split is an important step in machine learning model development. It

involves dividing the dataset into two subsets: training and testing. The training subset

94



CHAPTER 4. IMPLEMENTATION AND RESULTS

is used to train the model, while the testing subset is used to evaluate its performance
on unseen data.

In our approach, we randomly split the dataset using a specific ratio: 70% for training
and 30% for testing. By randomly splitting, we can assess how well the trained model
generalizes to new instances. This validation process helps us measure the model’s per-
formance and determine its ability to handle unseen data effectively. In the following

figure 14 the code for split dataset

# Split the data set into training and test data

from sklearn import model_selection

X_train, X_test, target_train, target_test = model_selection.train_test_split(Data X, Data_ Y, test_size=0.36, random_state=30)
print(Data_X.shape,Data_V.shape)

# After splait

print(X_train.shape,target_train.shape)

(4810,) (4810,)
(3367,) (3367,)

Figure 4.14: Code for split dataset.

4.4.3.2 Model Selection/ Creation

1. Model Selection

In our study focused on analyzing C/C++ source code of IOT OS, we employed
a CNN-supervised model, specifically designed for processing structured grid-like
data like images. Despite the inherent differences between C/C++ code and im-
ages, we hypothesized that the CNN’s ability to learn hierarchical patterns and
features could be effectively utilized to enhance the analysis of code snippets.

We acknowledged the potential of the CNN-supervised model to capture hierarchi-
cal patterns and features within the source code, ultimately aiming to improve the
performance of our research tasks.

The decision to select the CNN-supervised model was based on its well-documented
success in computer vision and pattern recognition domains. Our objective was to
attain higher accuracy and enhanced performance by capitalizing on the model’s

capabilities.

95



CHAPTER 4. IMPLEMENTATION AND RESULTS

2. Model Creation
Our Convolutional Neural Network (CNN) training model specifically tailored for
analyzing code snippets. The model architecture consisted of the following compo-

nents:

2.1 The main input layer with 150 neurons representing the maximum length of a

code snippet.

2.2 One embedding layer with 150 neurons representing each word with a unique

integer.
2.3 Five convolutional layers, after ethe one we use function activation and Dropout.
2.4 Fully connected layers for further processing. We used the following structure:

e Flattening layer to convert the output from the convolutional layers into

a 1-dimensional vector.

e Three hidden layers
2.5 The output layers.

2.6 The Adam optimizer

For multiclass classification, the output layer applied the ”Softmax” activation
function, suitable for multiclass classification tasks. The output layer had a shape
corresponding to 55 types, including 54 types of CWE (Common Weakness Enu-
meration) and Benign.

The model was trained over 400 epochs, using a batch size of 64 batches. During
training, the Adam optimizer was employed to optimize model parameters and im-
prove training efficiency. In our experiments, we achieved a final Cross-Validation
accuracy of 98% for multiclass classification, indicating the effectiveness of our CNN
model in analyzing and classifying code snippets.

In the following Table 4.3 the summary of model and in Figure 4.15 training model

accuracy of our model.

96



CHAPTER 4. IMPLEMENTATION AND RESULTS

Layer (type) Output Shape Param #

input_2 (InputLayer) (None, 150) 0
embedding_1 (Embedding) (None, 150, 10) 2000
elu6 (ELU) (None, 150, 10) 0
convld 4 (ConvlD) (None, 150, 64) 1984
elu_7 (ELU) (None, 150, 64) 0
dropout_7 (Dropout) (None, 150, 64) 0
convld.5 (ConvlD) (None, 150, 128) 24704
elu8 (ELU) (Noe, 150, 128) 0
dropout_8 (Dropout) (None, 150, 128) 0
convld 6 (ConvlD) (None, 150, 256) 98560
elu9 (ELU) (None, 150, 256) 0
dropout_9 (Dropout) (None, 150, 256) 0
convld_7 (ConvlD) (None, 150, 512) 393728
elu10 (ELU) (None, 150, 512) 0
dropout_10 (Dropout) (None, 150, 512) 0
convld_8 (ConvlD) (None, 150, 768) 1180416
elu11 (ELU) (None, 150, 768) 0
flatten (None, 115200) 0
dense_2 (Dense) (None, 1024) 117965824
elu_12 (ELU) (None, 1024) 0
batch_normalization_2 (BatchNormalization) (None, 1024) 4096
dropout_11 (Dropout) (None, 1024) 0
dense_3 (Dense) (None, 2048) 2099200
elu13 (ELU) (Nome, 2048) 0
batch_normalization_3 (BatchNormalization) (None, 2048) 8192
dropout_12 (Dropout) (None, 2048) 0
dense_4 (Dense) (None, 3072) 6294528
elu14 (ELU) (None, 3072) 0

97



CHAPTER 4. IMPLEMENTATION AND RESULTS

batch_normalization 4 (BatchNormalization) (None, 3072) 12288
dropout_13 (Dropout) (None, 3072) 0
dense_5 (Dense) (None, 55) 169015
Total params: 128,254,535

Trainable params: 128,242,247

Non-trainable params: 12,288

Table 4.2: Summary of model layers and parameters.

The CNN model accuracy

1.0

0.8 -

0.6

Accuracy

0.4 1

0.2 1

—— Accuracy

0.0 1

0 100 200 300 400
Epoch

Final Cross-validation Accuracy of CHMN training model ©.9815859794616699

Figure 4.15: Training model accuracy.

98



CHAPTER 4. IMPLEMENTATION AND RESULTS

4.5 Model Testing

4.5.1 Evaluation Metrics

We used the F1 score as a measure of accuracy and effectiveness in evaluating our
model. The F1 score combines both precision and recall into a single value and provides
a balanced assessment of the model’s performance. It ranges from 0 to 1, with higher

values indicating better performance.[38]

e Precision is the ratio of true positives to the total number of positively predicted
units, including both true positives and false positives. True positives are the ele-
ments correctly labeled as positive by the model, while false positives are elements

incorrectly labeled as positive.[38]

True positives

Precision = — —
True positives 4 False positives

e Recall is the ratio of true positives to the total number of actual positive units.
False negatives are elements incorrectly labeled as negative by the model, but are

actually positive.[38]

True positives

Recall =
True positives 4 False negatives

In our multi-category classification task involving different types of code fragments (CWE
and Benign types) , we utilized two metrics: the macro F1 score (mF1) and the weighted
average F1 score (wF1). The macro F1 score calculates the F1 score for each class in-
dependently and then takes the average. The weighted average F1 score considers the
class imbalance by accounting for the number of samples in each class. The equations to

calculate mF1, wF1, average precision, and average recall are as follows:

99



CHAPTER 4. IMPLEMENTATION AND RESULTS

K

AveragePrecision = — Y _(Precisiony,)
k=1
1 K
AverageRecall = — > " (Recally)
KD

] = }1{ i (2  Precisiony, * Recallk.>

=\ Precision;, + Recally,

wFl=———Y X;

1 K (2 * Precisiony, * Recallk>
ZkK:1 Xk k=1

Precision;, + Recall,,

where :
K is the number of different types of code snippets (CWE types and Benign)

X is the number of samples.

e Accuracy is one of the most commonly used metrics in machine learning and
statistics, assesses the overall correctness of a classification or prediction model .
It is determined by dividing the number of correctly predicted classifications (true
positives (TP) and true negatives (TN)) by the total number of predictions made
(true positives, true negatives, false positives (FP), and false negatives (FN))[28].
Accuracy is computed directly from the confusion matrix [38], providing a measure

of the model’s performance in terms of correct predictions.

TP+ TN
TP+TN+ FP+ FN

Accuracy =

where:

The confusion matrix is a fundamental tool in evaluating the performance of
machine learning classification models. It is a table that summarizes the predic-
tions made by the model against the actual values, allowing for a comprehensive

analysis of the model’s performance.|[§]

100



CHAPTER 4. IMPLEMENTATION AND RESULTS

Actual Class

Positive

Negative

Positive | True Positives (TP)

False Positives (FP)

Predicted Class
Negative | False Negatives (FN)

True Negatives (TN)

Table 4.3: Confusion Matrix

4.5.2 Testing with data test

In order to assess the performance of our model on unseen data, we conducted testing

with a dedicated portion of our dataset. The test set, which was previously separated

from the training data, was used to evaluate the model’s predictions and measure its

effectiveness in real-world scenarios.

The test of part dataset code and results are presented in Figure 4.16. The table 4.5 dis-

plays the performance metrics obtained from testing on the test set, including accuracy,

precision, recall, and F1 score.

from tensorflow import keras
X_,Y_ = data_preprocessing_our(X_test, target_test,

Y_manage_categorical variables = True,
Y_encoding_onehot = encoding_onehot)

model_file = '/content/CNN_Model MultiClass_iVulnDetect.h5'

our_model = keras.models.load_model(model_file)

#7- test model

loss, accuracy = our_model.evaluate(X_, Y_, verbose= 1)

print('\nFinal Cross-Validation Accuracy of CNN training model', accuracy,

evaluation(our_model,X_,Y_ )

Figure 4.16: Evaluation Code for the Test Data.

101

‘\An')



CHAPTER 4. IMPLEMENTATION AND RESULTS

Class Precision | Recall F1-Score | Support
Benign Code 0.98 0.97 0.98 511
CWE-119 0.82 0.92 0.87 39
CWE-120 1.00 1.00 1.00 17
CWE-126 0.89 0.67 0.76 12
CWE-134 0.75 0.60 0.67 15
CWE-190 0.86 0.86 0.86 14
CWE-20 0.87 0.62 0.72 21
CWE-22 1.00 1.00 1.00 11
CWE-226 1.00 0.62 0.76 13
CWE-244 1.00 0.91 0.95 11
CWE-250 1.00 1.00 1.00 12
CWE-252 0.87 0.87 0.87 15
CWE-327 1.00 0.76 0.87 17
CWE-350 1.00 1.00 1.00 7
CWE-362 0.94 1.00 0.97 16
CWE-367 0.90 0.90 0.90 20
CWE-369 0.83 1.00 0.91 10
CWE-377 0.90 0.90 0.90 10
CWE-398 0.87 0.93 0.90 56
CWE-401 0.72 0.93 0.81 14
CWE-415 1.00 0.81 0.90 16
CWE-457 1.00 0.74 0.85 23
CWE-467 1.00 1.00 1.00 14
CWE-475 0.86 0.90 0.88 20
CWE-476 0.96 0.96 0.96 24
CWE-477 1.00 0.90 0.95 20
CWE-561 0.94 0.80 0.86 60
CWE-562 0.92 1.00 0.96 11
CWE-563 0.83 0.90 0.86 21
CWE-570 0.53 0.94 0.68 17

102




CHAPTER 4. IMPLEMENTATION AND RESULTS

CWE-571 1.00 0.73 0.85 15
CWE-628 1.00 1.00 1.00 14
CWE-664 1.00 1.00 1.00 21
CWE-665 0.91 0.83 0.87 12
CWE-672 1.00 0.96 0.98 25
CWE-676 1.00 0.94 0.97 16
CWE-682 0.94 1.00 0.97 16
CWE-683 0.93 1.00 0.97 14
CWE-685 1.00 0.96 0.98 23
CWE-686 0.94 1.00 0.97 16
CWE-687 0.83 1.00 0.91 10
CWE-704 1.00 1.00 1.00 19
CWE-732 0.57 0.92 0.71 13
CWE-758 0.92 1.00 0.96 11
CWE-762 1.00 1.00 1.00 21
CWE-768 1.00 0.80 0.89 15
CWE-775 1.00 1.00 1.00 8
CWE-T78 0.90 1.00 0.95 19
CWE-783 0.92 1.00 0.96 11
CWE-785 1.00 1.00 1.00 10
CWE-786 1.00 1.00 1.00 17
CWE-788 0.85 0.85 0.85 13
CWE-807 0.74 1.00 0.85 23
CWE-829 0.50 0.25 0.33 4
CWE-831 0.90 0.90 0.90 10
Accuracy 0.91 1443
Macro Avg 0.91 0.90 0.90 1443
Weighted Avg | 0.94 0.93 0.93 1443

Table 4.4: Classification Metrics.

Evaluating a portion of the dataset provides us with valuable insights into how well our

103



CHAPTER 4. IMPLEMENTATION AND RESULTS

model performs and how effective it is in real-world applications. It helps us assess the
model’s reliability and robustness, ensuring that it can make accurate predictions and

meet our desired goals.

4.6 Results of Model Evaluation for TinyOS

We evaluated the performance of our model using unseen data obtained from TinyOS
V. 2.1.2, which was sourced from [9]. This dataset allowed us to assess how well our model
generalized to real-world data that it had not been previously exposed to. By testing our
model on this external dataset, we aimed to validate its ability to accurately analyze and
classify code snippets from the TinyOS version mentioned.
In the following figures, we present the results of evaluating our model using the TinyOS
dataset. These figures showcase the performance metrics obtained from testing our model
on the TinyOS code snippets, including accuracy, precision, recall, F1 score. Additionally,
we provide a representation of the confusion matrix. This matrix visually depicts the
distribution of predicted labels compared to the actual labels, allowing us to analyze the

model’s performance in classifying the different code snippets in the TinyOS dataset.

Class Precision | Recall F1-Score | Support
Benign Code 1.00 0.88 0.93 48
CWE-119 0.70 0.93 0.80 15
CWE-120 1.00 0.97 0.98 29
CWE-126 1.00 1.00 1.00 14
CWE-134 1.00 0.71 0.83 14
CWE-190 0.83 1.00 0.91 5
CWE-20 0.74 0.93 0.82 15
CWE-327 1.00 0.75 0.86 4
CWE-350 1.00 1.00 1.00 4
CWE-362 1.00 0.80 0.89 5
CWE-367 1.00 1.00 1.00 4
CWE-377 0.00 0.00 0.00 0

104



CHAPTER 4. IMPLEMENTATION AND RESULTS

CWE-398 0.76 0.84 0.79 37
CWE-401 0.00 0.00 0.00 1
CWE-457 0.90 0.90 0.90 10
CWE-467 1.00 1.00 1.00 4
CWE-476 1.00 0.89 0.94 9
CWE-561 0.79 0.94 0.86 16
CWE-563 1.00 0.70 0.82 10
CWE-570 1.00 1.00 1.00 7
CWE-571 1.00 1.00 1.00 9
CWE-664 0.00 0.00 0.00 9
CWE-676 0.00 0.00 0.00 1
CWE-682 0.60 1.00 0.75 3
CWE-686 0.92 0.75 0.83 16
CWE-687 1.00 1.00 1.00 7
CWE-704 1.00 1.00 1.00 15
CWE-758 0.00 0.00 0.00 0
CWE-768 1.00 1.00 1.00 2
CWE-T78 1.00 1.00 1.00 5
CWE-783 0.50 1.00 0.67 1
CWE-807 0.38 1.00 0.55 3
CWE-829 0.00 0.00 0.00 0
Accuracy 0.87 322
Macro Avg 0.73 0.76 0.73 322
Weighted Avg | 0.88 0.87 0.87 322

Table 4.5: Results of TinyOS classification Metrics.

105



CHAPTER 4. IMPLEMENTATION AND RESULTS

O O O O O O O O O O O O O O O O o obob oo oo oo o o o o o -
O O O O ©O ©O O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0o o o o o o o o o -
— O O O O O O O O O O O OO OO0 oo oo oo oo o o o - o o -
O O O O O O O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O oo o o o N o o o -
O O O O O O O O O O O O OO OO oo oo o oooomMm o o o o -
O M O O O O - H O O H O O O O O O OO0 OO0 oo o Mo o o A o-
O O O O O O O O O O O O OO OO0 oo oo oo o Mmoo o o o o o -
O O O O O O O 0O 0O 0O 0O 0O O 0O O O OO O o o o g 0 o o o o o o -
O O O O ©O ©O O ©O O 0O 0O O O O O O O 0O 0O O O &« 0O o o o o o o o -
O O O O O O O O O O O O O O O O 0O 0o o oo oo oo o o o -
O O O O O O 0O 0O 0O 0O H O 0O O 0O O O O O N O O o o o o o o o o -
O O O O O O O O O O O O O O O o o o « O O O O O O O O o o o -
O O O O O O O 0O 0O 0O O N O O O O O N O O 0o o o o o o o o o o -
O O O O O O O O O O O O O O OO~ 0O ©ODo OO0 oo oo o o o o -
O O O O O O O 0O 0O 0O 0O 0O 0O OO~ O OO0 O 0O 0O 0o 0o o o o o o o -
O O O O O O O O O O O O O O OO ©Obo oo oo oo oo o o o o -
O O O O O O O 0O 0O 0O 0O OO N O O OO O o o o o o o o o o o o-
O O O O O ©O ©O ©O O 0O O O 0Oh O 0O 0O O 0O 0O O o oo o o o o o o o -
O O A O O O O O O O O VUV O O O O 0O oo o oo oo oo o o o o o -
O O O O O O O 0O 0O 0O VL O 0O VWO O O O 0O O oo o o o o o o o o o -
O O O O O O+ O O OO O O O O O O OO0 oo oo oo o o o o o o -
o O O O ©o o o o M O O 4 O O O O O O 0O O 0O 0O o o o o o o o o -
O O O & O O o M o M A O O O O O O O O 0O OO OO oo o o o o -
o O O O +H O B O O O O O O O O O O O 0O 0O 0O O o o o o o o o -
o O O o o _.b O O O O O O O OO OO0 OO0 oo oo oo o o o o o -
m m O O B O O O O O O O O O 0Oh OO O O O 0O O o o o o o o o -
o o o H O O O ©O O # O O O O O O O O 0O 0O O 0o o o o o o o o o -
o o E O O O O O O O O O O O O O O 0O O O O oo oo o o o o o o -
o~ O O O O O O 0O 0O 0O 0O 0O+ O 0O 0O 0O 0O 0O OO0 o+ 0o o o o o o -
O O O O O O O O O O O O O O O OO oo oo oo oo o o o o -
s B0 % %0, 996,70 B 2 e 5 00 o S e %96 90 e, S0 T 90 U S 00 00 20 . %
O, 90T % BN SN M0 I 0 P9 %0 5 S D S T N e T e N %
G, 5 s O R A s s R B A > s O R A s s B B A > s e
e Q@%

|2qeT aniL

Predicted Label

Figure 4.17: Confusion matrix of TinyOS evaluation.

4.6.1 Comparison of Results

In this part, we show a comparison between our model, iVulnDetect, and the iDetect

model discussed in the article [9]. The comparison aims to assess the performance and

effectiveness of our model in detecting vulnerabilities in IOT OS code snippets of ¢/c++.

This tables presents the evaluation results of two models, ”iDetect” and ”iVulnDetect,”

using a Convolutional Neural Network (CNN) model on testing data and TinyOS dataset.

The two tables includes metrics such as accuracy, weighted F1-score, and macro F1-score.

1. For testing data model

106



CHAPTER 4. IMPLEMENTATION AND RESULTS

iDetect iVulnDetect
Accuracy 94% 93%
CNN Model | Weighted F1-score 93% 93%
Macro F1-score 93% 90%

Table 4.6: Comparison testing data of CNN model

For the ”iDetect” model, it achieved an accuracy of approximately 94%, a weighted
Fl-score of around 93%, and a macro Fl-score of about 93%. On the other hand,
our model "iVulnDetect” had an accuracy of approximately 93%, a weighted F1-

score of around 93%, and a slightly lower macro F1-score of about 90%.

2. For evaluation model with TinyOS

iDetect iVulnDetect
Accuracy 85% 87%
CNN Model | Weighted F1-score 86% 87%
Macro Fl-score 73% 73%

Table 4.7: Comparison TinyOS evaluation

For the "iDetect” model, it achieved an accuracy of approximately 85%, a weighted
F1-score of around 86%), and a macro F1-score of about 73%. On the other hand, our
model ”iVulnDetect” had an accuracy of approximately 87%, a weighted F1-score
of around 87%, and a similar macro Fl-score of about 73%. The ”iVulnDetect”

model slightly outperforming the ”"iDetect” model.

4.7 Presentation system

4.7.1 Database

The following figure illustrates the database structure in phpMyAdmin, specifically
the ”ivulndetect” database. The ”developers” table in this database is utilized to store

the registration information of developers.

107



CHAPTER 4. IMPLEMENTATION AND RESULTS

phpMyAdmin
! PHE-1

Recent Favorites

| Browse 4 Structure Q sQL

% New SELECT * FRON *devlopers”
‘+— . estion_vente_de_livies
+- 1 informaton_schema

W CSenver 127001 » [ Database ivuindstect » § Table: devlopers

4 Search iﬁ Insert =+ Export & Import = Privileges j’ Operations % Triggers

+ Showing rows ) - 2 (3 total, Query took 0.0265 seconds.)

(3 Profling [Editinfine] [ Edit ] Explain SQ ] Creaite PHP coce ] [ Refresh]

=~ vulndetect
el O Showal ‘ Number of ows: |25 v| Filter rows: | Search this table Sarthykey | None v
+- 1 deviopers
+- ¥ payment +Optiors
- mysql T ¥ id_devloper first_name last_name email password
L-,perfo{mance schema 0 /Edt 3t Copy @ Delete 1 Abir Omrani abi2000@gmailcom  abir2023
‘ U ks
T—,phpmyadmm 0 7 Edit 3¢ Copy @ Delete 2 alir am devioper2023@gmail. com 2023
T-,S\t_web_ventej ot 0 ¢ Edt 34 Copy @ Delete 14 Walid Omrani~ walid_dz@qmailcom  dv20011
‘+- | test
#-/ vente_de_livres t O Checkal  With selected JEdt 3Copy  @Delete & Fxport
0 Showall | Numberof ws: |25 v Fierrows:  Searchtistable Sortbykey:  None v

{ Query results operations ‘

@an iECopylothpboam = biport g Display chart iy Creale view

Figure 4.18: Database phpMyAdmin with XAMP.

4.7.2 Interfaces of the system

4.7.2.1 Login Interface

The login interface provides a secure and convenient way for registered users to access

the system. Users are required to enter their email and password to gain entry. If the

provided email and password match the records, the user is granted access to the system.

108



CHAPTER 4. IMPLEMENTATION AND RESULTS

Log In

abir2000@gmail.com

Forgot your User Name or password?

iVulnDetect

Figure 4.19: Interface login.

Log In

abir2000@gmail.com

abir202

Forgot your User Mame or password?
8 Invalid Username or Password

Figure 4.20: Interface login error.

109



CHAPTER 4. IMPLEMENTATION AND RESULTS

4.7.2.2 Registration Interface

The registration interface serves as the gateway for new users to create an account
and become a part of the system. It presents a user-friendly form that allows developers
to input their personal information and complete the registration process. The inter-

face typically includes fields for entering the first name, last name, email address, and

password.

Register
Abir QOrmrani

abir2000@gmail.com

TITYITT Y]
iVulnDetect
‘ Error sssseee
v, L.
6 Password does not match | agree to the condition

Figure 4.21: Error in registration interface.

110



CHAPTER 4. IMPLEMENTATION AND RESULTS

Ll
Register
Abir Omrani
abir2000@gmail.com

abir2023

iVulnDetect

abir2023

| agree to the caondition

Figure 4.22: Register interface.

Additionally, the registration interface may include a checkbox or a statement that re-
quires users to accept the system’s terms and conditions. By checking the box or ac-
knowledging the statement, users indicate their agreement to comply with the rules and

guidelines set by the system.

111



CHAPTER 4. IMPLEMENTATION AND RESULTS

Ld
Register
Abir Omrani
abir2000@gmail.com

e Please Accept Conditions

L] agree to the condition

Figure 4.23: Error accept condition in registration interface.

4.7.2.3 Subscription Interface

The subscription interface plays a crucial role in the registration process, as it
enables registrants to finalize their account creation and gain access to our system. Once
all the necessary information has been submitted and the terms of the system have been
accepted, users are prompted to proceed with the subscription step.

In this interface, users are presented with options to choose their preferred subscription
plan. As an incentive, we offer a free seven-day subscription plan that allows users to
experience the full functionality of our system without any charges during this initial

period.

112



CHAPTER 4. IMPLEMENTATION AND RESULTS

iVulnDetecl .S'f.-'.-f’}.ﬁu;"j;ﬂ.-m*!c:h:-‘

Subscribe Subscribe
Free trial
6 months one year
for 7 Days
27354,85DA 94709, 76D A

Figure 4.24: Suscription Interface.

4.7.2.4 System Interfaces

The system interfaces serve as the primary means for users to interact with our
system and utilize its functionalities. In the following figures, we present a look of some

key system interfaces:

113



CHAPTER 4. IMPLEMENTATION AND RESULTS

iVulnDetect

G

Figure 4.25: Starting iVulnDetect.

1. Dashboard Interface: The dashboard interface provides an overview of the sys-
tem’s main features and provides users with quick access to essential tools and

functions.

(. iVulnDetect OT Vi Silitie .
s 4 10T Vulnerabilities detect
{\;'-)' n Internet of Things S ¢

iVulnDetect

Help and support

About

Figure 4.26: Dashboard Interface.

114



CHAPTER 4. IMPLEMENTATION AND RESULTS

2. Test vulnerabilities Interface: This interface allows users to detect vulnera-
bilities in the code. Users can upload their code or input code directly into the

interface for detection.

’;{;\ 'VUInDetECt 10T Vulnerabilities detect
/ n Internet of Things

= Open

Home
Test Vulnerabilities
My account

Settings

Help and Support

About

Figure 4.27: Test vulnerabilities Interface.

115



CHAPTER 4. IMPLEMENTATION AND RESULTS

n Internet of Th

@ iVulnDetect I0T Vulnerabilities detect

code C.c
Home

" Open source code file X

T » This PC » Desktop > Test_vulnerabilites_IOT_OS O Search Test_vulnerabilites_|O...

Organize ~ New folder

ch4 ~ Name Date modified Type

MulnDetect_proj € code C 6/27/2023 2:40 PM C source file
modules @ main ] 23 2:10 PM C source file

Test_vulnerabilite

@ OneDrive - Person
I Desktop
= Documents.

&= Pictures

= This PC
J 3D Objects
I Desktop

v £

File name: |code_C

Cancel

Figure 4.28: Upload source code.

iVulnDetect

n Internet of Things

10T Vulnerabilities detect

code_C.c
Home

Test Vulnerabilities

#include "sys/autostart.h”

e #define DEBUG 0

ST #if DEBUG
#include <stdio.h>
#define PRINTF(...) printf(_ VA ARGS )
#else

#define PRINTF(...)
#endif

.
void
autostart_start(struct process * const processes|])

{

inti;

Help and Support

About

Figure 4.29: Click bottom Detect.

116



CHAPTER 4. IMPLEMENTATION AND RESULTS

3. Results Display Interface: this interface allows displaying the detected vulner-
abilities with details about each type, in addition to the approximate location of
the vulnerability, and the graphics place the proportions of each vulnerability in

the code.

Vulnerablity Type Description elail scripti Locatic

oceur du er validation o This vulnerability can ¢
input dat is can lez 5 function that involves
securi i

CWE-20 Improper Input Validation

CWE-327 represents vulnerabilities that
AWE.2 Broken or Risky Cryptographic -~ occur when a broken or risky Cryptographic algorithr
CWE-327 xet] Tk An

Wuinerability Count by Type
‘The number of vulnerability according to their type

CWE-467
CWE-20
33%
17%

CWE-563
CWE-327

CWE-327 CWE-563 CWE-467
Vulnerability Type

Figure 4.30: Detection Results Interface.

The following figure shows the report generated by our system.

117



CHAPTER 4. IMPLEMENTATION AND RESULTS

E vulnerability_report.pdf - Adobe Acrobat Reader (64-bit) — O X
Fichier Edition Affichage Signer Fenétre Aide

Accueil Outils vulnerability_report.... x ® Se connecter
i\( @ I:hﬁ E @\ @ 1 /4 736% - C’% = G_
@
Vulnerability Report

B

Security vulnerabilities pose significant risks to systems and must be
» effectively mitigated to ensure the safety and integrity of the system. 4 %
(B}

Proactively addressing vulnerabilities is essential for maintaining a secure
environment and protecting against potential threats by implementing robust
security measures, adhering to best practices, and regularly assessing and
patching software, organizations can significantly reduce the likelihood of
exploitation and potential damage caused byvulnerabilities. Prioritizin
security and fostering a culture of proactive vulnerability managementis
crucial to safeguarding systems from potential breaches and ensuring the
confidentiality, integrity, and availability of sensitive information and
resources.

N

D * B

The vulnerabilities Discovered in your code is:

CWE-20 Improper Input Validation .
CWE-327 Use of a Broken or Risky Cryptographic Algorithm ~
CWE-563 Assignment to Variable without Use (Unused Variable)

CWE-467 Use of sizeof() on a Pointer Type I»

Figure 4.31: Report generated by our system.

4. Account Interface: This interface allows managing the account and viewing the

subscription status and other features.

118



CHAPTER 4. IMPLEMENTATION AND RESULTS

10T Vulnerabilities detect

-
Home ' Abir Omrani

Test Vulnerabilities

My account

Settings Edit Account Information
Subscription Status
Payment History
Privacy Settings
Security Settings

Delete Account

logout
Help and Support

About

Figure 4.32: Account interface.

5. Help and support Interface: is designed to assist users by providing a range
of helpful resources, documentation, and communication channels. This interface

aims to address common questions and provide support to users.

119



CHAPTER 4. IMPLEMENTATION AND RESULTS

iVulnDetect

n Internet of Things

10T Vulnerabilities detect

Help and Support

Home

Test Vulnerabilities

Frequently Asked Questions Documentation file

Settings

Contact us WWW.documentationFilse.com
- Le o

Chat with a Customer Specialist
Have questions ? Get live,real-time help with chat st

Chat now

Call us
Get in touch,free of charge : abiromrani.uni mail.com

Customer representatives are available from 7.30am to 10f

3‘ Help and Support

About

Figure 4.33: Help and support of our system.

4.8 Conclusion

In this chapter, we have covered the various implementation stages of our system.
We began by discussing the environment and development tools that were utilized, along
with the database setup. The trained model was then tested on the database to evaluate
its performance. Additionally, we introduced graphical interfaces to enhance the usability
of our system.
To conclude, we presented the results obtained from the implementation process. These

insights provide valuable information on the effectiveness and functionality of our system.

120



(General conclusion

The task of avoiding or eliminating security vulnerabilities in IoT operating systems (OS)
is undeniably challenging due to the constant innovation and adaptation of hackers and
attackers. As technology evolves, new attack vectors and vulnerabilities emerge, necessi-
tating proactive measures to protect [oT systems.

Our project has made a valuable contribution to the field of IoT security by leverag-
ing deep learning techniques to effectively vulnerabilities in IoT operating systems. By
harnessing the power of deep learning algorithms, we have achieved remarkable results
in enhancing the security of IoT devices and mitigating potential risks, surpassing the
capabilities of traditional safety approaches.

One of the key outcomes of our project is the development of a specialized software tool

which contributes to:

e Facilitate the discovery and identification of vulnerabilities in IoT OS.

e Provide an important resource for the security of the Internet of Things, empowering
developers and system administrators to identify and address vulnerabilities in a

more efficient and proactive method.

e Give an effectiveness of the proposed approach, that conducting extensive experi-

ments using a variety of IoT operating systems.

As the Internet of Things continues to grow and evolve, further research and development
in the field of IoT security is crucial. In order to advance the state of IoT security, future

work could focus on the following areas:

121



General conclusion

e Expanding the dataset: Incorporating additional vulnerabilities into the dataset

would provide a more comprehensive understanding of the security landscape.

e Improved deep learning data processing and models: Enhancements in data pro-
cessing techniques and the development of more advanced deep learning models can

improve the accuracy and effectiveness of vulnerability detection.

e Considering other aspects of IoT security: While this project focuses on operating
systems, future research could explore other aspects of IoT security, such as IOT

devices and communication protocols, to provide a holistic approach.

e Focusing on precise vulnerability location: Further efforts can be directed towards
accurately locating vulnerabilities within [oT systems, enabling targeted and effec-

tive remediation.

By continuously refining our approaches and techniques, we can proactively address
emerging threats and better protect the integrity and security of IoT systems.

In conclusion, this project represents a significant step towards the development of IoT
software vulnerability location using a deep learning-based approach. By contributing to
the overall security and reliability of IoT, we pave the way for safer and more trustworthy

[oT deployments.

122



Bibliography

1]

CWE List Version 4.11, October 2021. Accessed: March 2023 .Available at https:

//cwe.mitre.org/data/index.html.

IoT a New Cyber-attack Target. Sennovate, September 2022. Accessed: May 13,

2023 .Available at https://sennovate.com/iot-a-new-cyber-attack-target/.

About keras. Website, May 2023. Accessed on May 23, 2023 .Available at https:

//keras.io/about/.

DDoS Attack. KeyCDN, March 2023. Accessed on May 13, 2023 .Available at

https://www.keycdn.com/support/ddos-attack.

Younes Abbassi and Habib Benlahmer. Un apercu sur la sécurité de 'internet des
objets (an overview of internet of things (iot) security). In Colloque sur les Objets

et systemes Connectés-COC’2021, 2021.

Mohammed Riyadh Abdmeziem, Djamel Tandjaoui, and Imed Romdhani. Archi-
tecting the internet of things: state of the art. Robots and Sensor Clouds, pages
5575, 2016.

Mohamed Abomhara and Geir M Kgien. Cyber security and the internet of things:
vulnerabilities, threats, intruders and attacks. Journal of Cyber Security and Mo-

bility, pages 65—88, 2015.

Sumeet Kumar Agrawal. Metrics to evaluate your classification model to

take the right decisions.  Analytics Vidhya, May 2023.  Accessed: June

123


https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://sennovate.com/iot-a-new-cyber-attack-target/
https://keras.io/about/
https://keras.io/about/
https://www.keycdn.com/support/ddos-attack

BIBLIOGRAPHY

8, 2023 .Available at https://www.analyticsvidhya.com/blog/2021/07/

metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/.

[9] Abdullah Al-Boghdady, Mohammad El-Ramly, and Khaled Wassif. idetect for vul-
nerability detection in internet of things operating systems using machine learning.

Scientific Reports, 12(1):17086, 2022.

[10] Abdullah Al-Boghdady, Khaled Wassif, and Mohammad El-Ramly. The presence,
trends, and causes of security vulnerabilities in operating systems of iot’s low-end

devices. Sensors, 21(7):2329, 2021.

[11] Ala Al-Fugaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. Internet of things: A survey on enabling technologies, protocols,

and applications. IEEE communications surveys & tutorials, 17(4):2347-2376, 2015.

[12] Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Khalid Al-Ali, Xiaojiang Du,
Ihsan Ali, and Mohsen Guizani. A survey of machine and deep learning methods
for internet of things (iot) security. IEEE Communications Surveys & Tutorials,

22(3):1646-1685, 2020.

[13] Hassan Hadi Al-Maksousy, Michele C Weigle, and Cong Wang. Nids: neural net-
work based intrusion detection system. In 2018 IEEE International Symposium on

Technologies for Homeland Security (HST), pages 1-6. IEEE, 2018.

[14] Mohammed Ateeq Alanezi. Vulnerabilities, threats and challenges on cyber security
and the artificial intelligence based internet of things: A comprehensive study.

IJCSNS, 22(2):153, 2022.

[15] Yara Alghofaili and Murad A Rassam. A trust management model for iot devices
and services based on the multi-criteria decision-making approach and deep long

short-term memory technique. Sensors, 22(2):634, 2022.

[16] Richard Amankwah, Patrick Kwaku Kudjo, and Samuel Yeboah Antwi. Evaluation
of software vulnerability detection methods and tools: a review. International

Journal of Computer Applications, 169(8):22-27, 2017.

124


https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/
https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/

BIBLIOGRAPHY

[17]

[18]

[20]

[21]

[22]

[24]

[26]

Agsa Amir. What are iot attacks? Educative, February 2023. Ac-
cessed:  May 2, 2023 .Available at https://www.educative.io/answers/

what—-are-iot—-attacks.

Anastasia Anisimova. Types of machine learning out there. Online, March
2023. Accessed: March 28, 2023 .Available at https://idapgroup.com/blog/

types-of-machine-learning-out-there/.

Siham Aouad, Abderrahim Maizate, and Abdelouahed Zakari. Cyber security
and the internet of things: vulnerabilities and security requirements. Revue

Méditerranéenne des Télécommunications, 9(2), 2019.

Apache Friends. Xampp. Website. Accessed on May 23, 2023 .Available at https:

//www .apachefriends.org/.

Mayank Banoula.  Supervised machine learning: All you need to know.
Simplilearn, February 2023. Accessed:  March 28, 2023 .Available at
https://www.simplilearn.com/tutorials/machine-learning-tutorial/

supervised-machine-learning.

A. Chapman. Hacking into internet connected light bulbs. Context Infor-
mation Security, 2014. Available at https://www.contextis.com/en/blog/

hacking-into-internet-connected-light-bulbs.

Yash Choudhary, B Umamaheswari, and Vijeta Kumawat. A study of threats,
vulnerabilities and countermeasures: An iot perspective. Shanlax Int. J. Arts Sci.

Humanait, 8:39-45, 2021.

Alem Colakovié¢ and Mesud Hadziali¢. Internet of things (iot): A review of enabling
technologies, challenges, and open research issues. Computer networks, 144:17-39,

2018.

Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. A large-
scale analysis of the security of embedded firmwares. In 23rd { USENIX} Security
Symposium ({USENIX} Security 14), pages 95-110, 2014.

Mikhail Danyeko, Jonathan Dolan, Kevin Albino, and Huguens Lops. lot vulnera-
bilities. 2020.

125


https://www.educative.io/answers/what-are-iot-attacks
https://www.educative.io/answers/what-are-iot-attacks
https://idapgroup.com/blog/types-of-machine-learning-out-there/
https://idapgroup.com/blog/types-of-machine-learning-out-there/
https://www.apachefriends.org/
https://www.apachefriends.org/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/supervised-machine-learning
https://www.simplilearn.com/tutorials/machine-learning-tutorial/supervised-machine-learning
https://www.contextis.com/en/blog/hacking-into-internet-connected-light-bulbs
https://www.contextis.com/en/blog/hacking-into-internet-connected-light-bulbs

BIBLIOGRAPHY

[27]

[28]

[30]

Dina Darwish. Improved layered architecture for internet of things. Int. J. Comput.

Acad. Res.(IJCAR), 4(4):214-223, 2015.

DataRobot.  The value of model accuracy.  DataRobot Blog, July 2020.
Accessed: June 8, 2023 .Available at https://www.datarobot.com/
blog/the-value-of-model-accuracy/#: ~:text=Model’,20accuracy%20is’
20defined’%20as, certainly’%20not%20the’%200nly%20way.

Vinicius Rafael Lobo de Mendonca, Cassio Leonardo Rodrigues, Fabrizzio Alphon-
sus A de MN Soares, and Auri Marcelo Rizzo Vincenzi. Static analysis techniques

and tools: A systematic mapping study. ICSEA, 2013.

Julianna Delua.  Supervised vs. unsupervised learning: What’s the differ-
ence? IBM Analytics, Data Science/Machine Learning, March 2021. Ac-
cessed:  March 29, 2023 .Available at https://www.ibm.com/cloud/blog/

supervised-vs-unsupervised-learning.
Charalampos Doukas. Introduction to the Internet of Things. December 2012.

M Umar Farooq, Muhammad Waseem, Sadia Mazhar, Anjum Khairi, and Talha
Kamal. A review on internet of things (iot). International journal of computer

applications, 113(1):1-7, 2015.

Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. Security
implications of permission models in smart-home application frameworks. [EEE

Security & Privacy, 15(2):24-30, 2017.

Pietro Ferrara, Amit Kr Mandal, Agostino Cortesi, and Fausto Spoto. Static anal-
ysis for discovering iot vulnerabilities. International Journal on Software Tools for

Technology Transfer, 23:71-88, 2021.

Fileeagle. Modelio. Website. Accessed on May 23, 2023 .Available at https:
//wuw.fileeagle.com/software/fr/507/Modelio.

Elizabeth Fong, Romain Gaucher, Vadim Okun, Paul E Black, and Eric Dalci.
Building a test suite for web application scanners. In Proceedings of the 41st Annual
Hawaii International Conference on System Sciences (HICSS 2008), pages 478-478.
IEEE, 2008.

126


https://www.datarobot.com/blog/the-value-of-model-accuracy/#:~:text=Model%20accuracy%20is%20defined%20as,certainly%20not%20the%20only%20way
https://www.datarobot.com/blog/the-value-of-model-accuracy/#:~:text=Model%20accuracy%20is%20defined%20as,certainly%20not%20the%20only%20way
https://www.datarobot.com/blog/the-value-of-model-accuracy/#:~:text=Model%20accuracy%20is%20defined%20as,certainly%20not%20the%20only%20way
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.fileeagle.com/software/fr/507/Modelio
https://www.fileeagle.com/software/fr/507/Modelio

BIBLIOGRAPHY

[37]

[38]

[45]

[46]

Google. Colaboratory. Website. Accessed on May 23, 2023 .Available at https:

//research.google.com/colaboratory/faq.html.

Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for multi-class

classification: an overview. arXiw preprint arXiw:2008.05756, 2020.

DJALLEL HAMOUDA. Un systeme de détection d’intrusion pour la cybersécurité.
2020.

Yasmine Harbi. Security in internet of things. PhD thesis, 2021.

Hunter  Heidenreich. What are the types of machine learn-
ing? Towards Data  Science, = March  2023. Accessed:
March 28, 2023  .Available at  https://towardsdatascience.com/

what-are-the-types-of-machine-learning-e2b9e5d1756f.

Fatima Hussain, Rasheed Hussain, Syed Ali Hassan, and Ekram Hossain. Machine
learning in iot security: Current solutions and future challenges. IEEE Communi-

cations Surveys € Tutorials, 22(3):1686-1721, 2020.

iosentrix.  Internet of things and owasp top 10. iosentrix, March 2023.
Accessed:  March 12, 2023 .Available at https://iosentrix.com/blog/

internet-of-things-and-owasp-top-10/.

ITU-T. ITU-T Y.4050/Y.2069- (07/2012). Terms and definitions for the Inter-
net of things. ITU-T Recommendation Y.4050/Y.2069, International Telecom-
munication Union, July 2012. Available at https://www.itu.int/rec/T-REC-Y.
2069-201207-I/en.

Kate Jackson. How to transform your home into a smart home. Voltora Industries,
March 2021. Accessed: May 23, 2023 .Available at https://voltoraindustries.

com.au/how-to-transform-your-home-into-a-smart-home/.

Mohammad Ali Jabraeil Jamali, Bahareh Bahrami, Arash Heidari, Parisa Al-
lahverdizadeh, and Farhad Norouzi. Towards the Internet of Things: Architectures,

Security, and Applications. google books, June 2019.

127


https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f
https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f
https://iosentrix.com/blog/internet-of-things-and-owasp-top-10/
https://iosentrix.com/blog/internet-of-things-and-owasp-top-10/
https://www.itu.int/rec/T-REC-Y.2069-201207-I/en
https://www.itu.int/rec/T-REC-Y.2069-201207-I/en
https://voltoraindustries.com.au/how-to-transform-your-home-into-a-smart-home/
https://voltoraindustries.com.au/how-to-transform-your-home-into-a-smart-home/

BIBLIOGRAPHY

[47]

Keyurbhai Arvindbhai Jani and Nirbhay Chaubey. Iot and cyber security: Intro-
duction, attacks, and preventive steps. In Quantum Cryptography and the Future
of Cyber Security, pages 203-235. IGI Global, 2020.

Java'Tpoint. Reinforcement machine learning. Online, March 2023.
Accessed:  March 29, 2023 .Available at https://www.javatpoint.com/

reinforcement-learning.

[49] javatpoint. Supervised machine learning. javatpoint, March 2023.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Accessed:  March 28, 2023 .Available at https://www.javatpoint.com/

supervised-machine-learning.

JavaTpoint. Unsupervised machine learning. Website, March 2023.
Accessed:  March 28, 2023 .Available at https://www.javatpoint.com/

unsupervised-machine-learning.

JetBrains. Quick start guide. Website. Accessed on May 23, 2023 .Available at

https://www.jetbrains.com/help/pycharm/quick-start-guide.html.

Jmaxxz. Backdooring the frontdoor. DEF CON, July 2016. Last accessed: April
10, 2023 .Available at https://doi.org/10.5446/36251.

Daniel Johnson. What is tensorflow? how it works? introduction & architec-
ture. Website, March 2023. Accessed on May 23, 2023 .Available at https:

//www.guru99.com/what-is-tensorflow.html#12.

Julien Jormot. Quelles économies vont offrir les smart grids a la france? les-
smartgrids, August 2017. Accessed: 22nd August 2017 .Available at https://

les-smartgrids.fr/economies-smart-grids-france/.

Kamlesh Lakhwani, Hemant Kumar Gianey, Joseph Kofi Wireko, and Kamal Kant
Hiran. Internet of Things (loT): Principles, paradigms and applications of IoT.
Bpb Publications, 2020.

Kamlesh Lakhwani, Hemant Kumar Gianey, Joseph Kofi Wireko, and Kamal Kant
Hiran. Internet of Things (IoT): Principles, Paradigms and Applications of IoT.
google books, 2021.

128


https://www.javatpoint.com/reinforcement-learning
https://www.javatpoint.com/reinforcement-learning
https://www.javatpoint.com/supervised-machine-learning
https://www.javatpoint.com/supervised-machine-learning
https://www.javatpoint.com/unsupervised-machine-learning
https://www.javatpoint.com/unsupervised-machine-learning
https://www.jetbrains.com/help/pycharm/quick-start-guide.html
https://doi.org/10.5446/36251
https://www.guru99.com/what-is-tensorflow.html#12
https://www.guru99.com/what-is-tensorflow.html#12
https://les-smartgrids.fr/economies-smart-grids-france/
https://les-smartgrids.fr/economies-smart-grids-france/

BIBLIOGRAPHY

[57]

[61]

[62]

[63]

[64]

Xinyu Lei, Guan-Hua Tu, Alex X Liu, Chi-Yu Li, and Tian Xie. The insecurity
of home digital voice assistants-vulnerabilities, attacks and countermeasures. In

2018 IEEE conference on communications and network security (CNS), pages 1-9.
IEEE, 2018.

Marco Lombardi, Francesco Pascale, and Domenico Santaniello. Internet of things:
A general overview between architectures, protocols and applications. Information,

12(2):87, 2021.

Mihir Rajendra Mahajan. Color classification using machine learning. PhD thesis,

California State University, Sacramento, 2020.

Rwan Mahmoud, Tasneem Yousuf, Fadi Aloul, and Imran Zualkernan. Internet
of things (iot) security: Current status, challenges and prospective measures. In

2015 10th international conference for internet technology and secured transactions

(ICITST), pages 336-341. IEEE, 2015.

Georgios Mavridis. Security mechanisms for internet of things (IoT). Master’s

thesis, Piraeus, 2017.

Steve Mazur. An introduction to smart transportation: Benefits and examples.
Digi Blog, December 2020. Accessed: May 23, 2023 .Available at https://www.

digi.com/blog/post/introduction-to-smart-transportation-benefits.

Jozef Mocnej, Adrian Pekar, Winston KG Seah, and Iveta Zolotova. Network
traffic characteristics of the iot application use cases. Technical report, School of

Engineering and Computer Science, Victoria University of Wellington, Wellington,

New Zealand, 2018.

Saraju P Mohanty, Uma Choppali, and Elias Kougianos. Everything you wanted to
know about smart cities: The internet of things is the backbone. IEFEE Consumer

FElectronics Magazine, 5(3):60-70, 2016.

Mohit,Guptap M G. M L|Typesof Learning—Part2, February2023.  Accessed
March28,2023.URL : https : //www.geeks forgeeks.org/mltypes — learning —
part2/.

129


https://www.digi.com/blog/post/introduction-to-smart-transportation-benefits
https://www.digi.com/blog/post/introduction-to-smart-transportation-benefits

BIBLIOGRAPHY

[66]

[69]

[70]

Mohammad Mezanur Rahman Monjur. Internet-of-Things (IoT) Security Threats:
Attacks on Communication Interface. PhD thesis, University of New Hampshire,

2020.

Philipp Morgner, Stephan Mattejat, and Zinaida Benenson. All your bulbs are be-
long to us: Investigating the current state of security in connected lighting systems.

arXiw preprint arXiw:1608.03752, 2016.

Hajra Naeem and Manar H Alalfi. Identifying vulnerable iot applications using
deep learning. In 2020 IEEE 27th International Conference on Software Analysis,
FEvolution and Reengineering (SANER), pages 582-586. IEEE, 2020.

Mukrimah Nawir, Amiza Amir, Naimah Yaakob, and Ong Bi Lynn. Internet of
things (iot): Taxonomy of security attacks. In 2016 3rd international conference

on electronic design (ICED), pages 321-326. IEEE, 2016.

Weina Niu, Xiaosong Zhang, Xiaojiang Du, Lingyuan Zhao, Rong Cao, and Mohsen
Guizani. A deep learning based static taint analysis approach for iot software

vulnerability location. Measurement, 152:107139, 10 2019.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.

arXiv preprint arXiw:1511.08458, 2015.

OWASP. OWASP. Online, March 2023. Accessed: October 3, 2023 .Available at

https://owasp.org/www-project-internet-of-things/.

OWASP Foundation. Who is the owasp®) foundation? OWASP, March 2023.
Accessed: October 3, 2023 .Available at https://owasp.org/.

Niall O’'Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gus-
tavo Velasco Hernandez, Lenka Krpalkova, Daniel Riordan, and Joseph Walsh.
Deep learning vs. traditional computer vision. In Advances in Computer Vision:
Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1 1, pages
128-144. Springer, 2020.

Subarno Pal, Soumadip Ghosh, and Amitava Nag. Sentiment analysis in the light
of Istm recurrent neural networks. International Journal of Synthetic Emotions

(IJSE), 9(1):33-39, 2018.

130


https://owasp.org/www-project-internet-of-things/
https://owasp.org/

BIBLIOGRAPHY

[76]

[30]

[81]

[82]

[83]

[84]

[85]

Punyasloka Pattnaik, Ankush Sharma, Mahavir Choudhary, Vijander Singh,
Pankaj Agarwal, and Vikas Kukshal. Role of machine learning in the field of fiber
reinforced polymer composites: A preliminary discussion. Materials Today: Pro-

ceedings, 44:4703-4708, 2021.

pcmag. Pycharm. Website. Accessed on May 23, 2023 .Available at https://www.

pcmag.com/encyclopedia/term/pycharm.

Prabanjan Raja. What is google colab? Website, Feb 2022. Accessed on May 23,

2023 .Available at https://www.scaler.com/topics/what-is-google-colab/.

Python Software Foundation. What is python? executive summary. Website.
Accessed on May 23, 2023 .Available at https://www.python.org/doc/essays/
blurb/.

Abdullah Qasem, Paria Shirani, Mourad Debbabi, Lingyu Wang, Bernard Lebel,
and Basile L Agba. Automatic vulnerability detection in embedded devices and
firmware: Survey and layered taxonomies. ACM Computing Surveys (CSUR),
54(2):1-42, 2021.

Qt. @t Designer Manual. Qt. Accessed on May 23, 2023 .Available at https:

//doc.qt.io/qt-6/qtdesigner-manual .html.

Sabita Rajbanshi.  Everything you need to know about machine learning.
Analytics Vidhya, March 2021.  Published on March 30, 2021. Accessed:
March 28, 2023 .Available at https://www.analyticsvidhya.com/blog/2021/

03/everything-you-need-to-know-about-machine-learning/.

Rabie Ramadan. Internet of things (iot) security vulnerabilities: A review. PLOMS
Al 2(1), 2022.

M Reddy, Engineering Student, Assoc Professor, and Revu Krishnamohan. Appli-
cations of iot: A study, 04 2017.

B. Rodrigues. Arris cable modem has a backdoor in the backdoor.
Blog, November 2015. Available at https://w00tsec.blogspot.com/2015/11/

arris—-cable-modem-has-backdoor-in.html.

131


https://www.pcmag.com/encyclopedia/term/pycharm
https://www.pcmag.com/encyclopedia/term/pycharm
https://www.scaler.com/topics/what-is-google-colab/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://doc.qt.io/qt-6/qtdesigner-manual.html
https://doc.qt.io/qt-6/qtdesigner-manual.html
https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/
https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/
https://w00tsec.blogspot.com/2015/11/arris-cable-modem-has-backdoor-in.html
https://w00tsec.blogspot.com/2015/11/arris-cable-modem-has-backdoor-in.html

BIBLIOGRAPHY

[30]

[87]

[39]

[90]

[91]

[92]

[93]

Karen Rose, Scott Eldridge, and Lyman Chapin. The internet of things: An
overview. The internet society (ISOC), 80:1-50, 2015.

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. Automated vulnerability detection
in source code using deep representation learning. In 2018 17th IEEFE international
conference on machine learning and applications (ICMLA ), pages 757-762. IEEE,
2018.

Rayan Al Sarih. Internet of things: Fundamentals and applications. Joun Tech-

nologies, 2020.

Igbal H Sarker. Deep learning: a comprehensive overview on techniques, taxonomy,

applications and research directions. SN Computer Science, 2(6):420, 2021.

Laura Schroder, Nikolay Krasimirov Dimitrov, David Robert Verelst, and
John Aasted Sgrensen. Wind turbine site-specific load estimation using artificial
neural networks calibrated by means of high-fidelity load simulations. In Journal

of Physics: Conference Series, volume 1037, page 062027. IOP Publishing, 2018.

Cheena Sharma and Naveen Kumar Gondhi. Communication protocol stack for con-
strained iot systems. In 2018 3rd International Conference On Internet of Things:

Smart Innovation and Usages (IoT-SIU), pages 1-6. IEEE, 2018.

Guicheng Shen and Bingwu Liu. The visions, technologies, applications and security
issues of internet of things. In 2011 International conference on E-Business and

E-Government (ICEE), pages 1-4. IEEE, 2011.

Harald Sundmaeker, Patrick Guillemin, Peter Friess, Sylvie Woelfié, et al. Vision
and challenges for realising the internet of things. Cluster of European research

projects on the internet of things, European Commision, 3(3):34-36, 2010.

Syeda Manjia Tahsien, Hadis Karimipour, and Petros Spachos. Machine learning
based solutions for security of internet of things (iot): A survey. Journal of Network

and Computer Applications, 161:102630, 2020.

132



BIBLIOGRAPHY

[95]

[100]

101]

Usman Tariq, Irfan Ahmed, Ali Kashif Bashir, and Kamran Shaukat. A critical
cybersecurity analysis and future research directions for the internet of things: A

comprehensive review. Sensors, 23(8):4117, 2023.

Monisha Macharla Vasu. INTRODUCTION TO INTERNET OF THINGS: A
DEFINITE GUIDE TO LEARN 10T - ENABLING TECHNOLOGIES, CON-
NECTIVITY, PROTOCOLS AND CLOUD. (Publisher name, if available), 2021.
Kindle Edition.

Umer Wani. An introduction to iot , its architecture and various protocols. chapter

outline. 08 2019.

Website. Pyside6, May 2023. Accessed on May 23, 2023 .Available at https:
//www.pythonguis.com/topics/pyside6/.

Tasneem Yousuf, Rwan Mahmoud, Fadi Aloul, and Imran Zualkernan. Internet of
things (iot) security: current status, challenges and countermeasures. International

Journal for Information Security Research (IJISR), 5(4):608-616, 2015.

Handong Zhang and Lin Zhu. Internet of things: Key technology, architecture
and challenging problems. In 2011 IEEFE International Conference on Computer
Science and Automation Engineering, volume 4, pages 507-512. IEEE, 2011.

Yousaf Bin Zikria, Sung Won Kim, Oliver Hahm, Muhammad Khalil Afzal, and
Mohammed Y Aalsalem. Internet of things (iot) operating systems management:

Opportunities, challenges, and solution. Sensors, 19(8):1793, 2019.

133


https://www.pythonguis.com/topics/pyside6/
https://www.pythonguis.com/topics/pyside6/

	Table of Contents
	List of Figures
	List of Tables
	General Introduction
	Internet of Things Vulnerabilities
	Introduction
	Definition of IOT
	Architecture of IOT
	Perception Layer
	Network Layer
	Application Layer

	IOT Applications
	IOT Technologies
	 IoT Characteristics
	Vulnerabilities
	 What is a Vulnerability?
	 Vulnerabilities in the IoT

	 IOT Attacks
	Definition of IoT attacks 
	IoT attack surface areas
	Different types of IoT attacks 

	 IoT security goals 
	Conclusion

	Detection and location of vulnerabilities in IOT 
	 Introduction 
	 The Open Web Application Security Project (OWASP)
	Top 10 vulnerabilities in IOT
	 Weak, guessable, or hard coded passwords
	 Insecure Network Services
	 Insecure Ecosystem Interfaces
	 Lack of Secure Update Mechanism 
	 Use of insecure or outdated components 
	 Insufficient privacy protection
	 Insecure data transfer and storage 
	 Lack of device management 
	 Insecure Default Settings 
	 Lack of physical hardening 

	Vulnerability Detection methods in IOT 
	 Dynamic analysis 
	 Automated static analysis 
	 Fuzzing 
	 Web Application Scanners 
	 Brick 
	 Machine Learning 
	   Definition of machine Learning 
	   Different types of Machine Learning 

	 Deep Learning 
	   Definition of Deep Learning 
	   How it works ? 
	   Some deep learning methods


	Related Work
	A deep learning based static taint analysis approach for IoT software vulnerability location
	Identifying Vulnerable IoT Applications using Deep Learning
	iDetect for vulnerability detection in internet of things operating systems using machine learning

	Conclusion

	Conception 
	Introduction
	System presentation
	System objective
	 Global Architecture of the system

	Detailed system design
	Data collection
	   Data processing
	Training model
	iVulnDetect evaluation

	 Design by UML (Unified Modeling Language)
	Use Case Diagram
	Class Diagram
	Sequence Diagram
	   Sequence Diagram for Login
	   Sequence Diagram for Register
	   Sequence Diagram for Detection Vulnerabilities


	Conclusion

	Implementation and results
	Introduction
	Development Environment
	Programming Languages
	   Python

	Software Tools
	   Google Colab
	   PyCharm

	Design Tools
	   Qt Design

	Database Tools
	   XAMPP

	Conception Tools
	   Modelio


	Library Tools
	TensorFlow
	Keras
	PySide6

	Structure of Data
	Dataset Description
	Data processing
	Model training
	   Dataset Split
	   Model Selection/ Creation


	Model Testing
	Evaluation Metrics
	Testing with data test

	Results of Model Evaluation for TinyOS
	Comparison of Results

	Presentation system
	Database
	Interfaces of the system
	   Login Interface
	   Registration Interface
	   Subscription Interface
	   System Interfaces


	Conclusion

	General conclusion
	Bibliography

