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0Abstract
Chaos is a typical phenomenon of nonlinear systems and is currently widely studied, because
of its features and many potential applications.

The main aim of this thesis concerns principally two major subjects. the first is to
deploy a method for uncovering a hidden bifurcation in a multispiral Chua system with a
sine function that is based on the famous paper by Menacer et al. This method is based on the
core idea of Leonov and Kuznetsov for searching hidden attractors while keeping 𝜀 constant, a
new bifurcation parameter is introduced. We end this part with the introduction of a novel
method based on the duration of integration for unveiling hidden patterns of an even number
of spirals.

In the second part, We used the Routh-Hurwitz Criteria for studying the stability of
the Chua system at equilibrium point 𝐸0 concerning 𝜀. Furthermore, we made a theoretical
and numerical study of bifurcation and chaos control on Multispiral Chua’s system.

Keywords: Chaos, Hidden Attractor, Bifurcation, Equilibrium point, Stability, Chua Chaotic
system, Integration duration, Control, Routh-Hurwitz criterion, Synchronization.
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0Introduction
“So far as the laws of mathematics refer to reality, they are not certain, and

so far as they are certain, they do not refer to reality”

𝐴.𝐸𝐼𝑁𝑆𝑇𝐸𝐼𝑁

Chaotic dynamical systems have been shown to emerge from natural phe-
nomena such as the weather or from designed engineering problems such as the
movement of a rigid body in three-dimensional (3D) space. These systems have sev-
eral beneficial characteristics, including random-like trajectories, great sensitivity
to initial conditions, and ergodicity, according to chaos theory [KO21].

In 1963, Edward Lorenz described a simple mathematical model consisting
of three non-linear differential equations giving rates of change in temperature and
wind speed. Some surprising results were shown, such as the complex behavior
of supposedly simple equations; also, this behavior is very sensitive to changes
in the initial conditions: if there are errors in the measurement or observation
of the initial state of the system (which is inevitable in real systems), then the
prediction of the future of the system, in this case, is impossible. Lorenz referred
to these systems with a noticeable dependence on the initial conditions as having
the ’butterfly effect’: this unique name came from the proposition that a butterfly
flapping its wings in Hong Kong can affect the course of a tornado in Texas [Elh06]

The fundamental work of Lorenz in 1963 gave a scientific overview of the
concept of a new type of behavior called Chaos. Chaos is a phenomenon that
appears to be which is deterministic and very sensitive to initial conditions. It
defines a special state of a system whose unpredictable behavior is never repeated.
These systems may be divided into two types based on the type of calculus used:
continuous-time and discrete-time. We are interested in continuous-time chaotic
systems in this thesis. Chaos theory is useful in many fields such as data encryption
[Zho+11], financial systems [Las00], biology [Vai15], and biomedical engineering
[Boz97].

The primary aim of this thesis is to extend; in the framework of the qual-
itative theory of dynamic systems, the name "bifurcation" was coined by Henri
Poincaré in 1885 [Poi85]. For a given value of a parameter, a bifurcation is seen
when the number of solutions to a family of differential equations increases from
one to two, like the pitchfork of a branch of a tree [Sat73], or when the topological

1



Chapter 0 Introduction

structure of the solution is changed from steady state to periodic function (Hopf
bifurcation [MM76], or from periodic to quasi-periodic function (secondary Hopf
bifurcation).

Lorenz [Lor63], extended the scope of the bifurcation theory by identify-
ing the first chaotic strange attractor in 1963. Chua invented the first differential
equation modeling a real electronic device system with a chaotic asymptotic attrac-
tor (hence the strange attractor) while he was invited Professor at Matsumoto’s
laboratory, Waseda University, Tokyo [CHU92].

Nowadays, Chua’s attractor is widely used, due to both its realizations:
electronic circuit and its mathematical model. The electronic circuit and the system
of differential equations may be combined to reach multiple objectives by Duan
et al. [DWH04]. One can consider Chua’s circuit as the simplest electronic circuit
presenting chaos and possessing a highly interesting dynamical behavior. This was
checked in many laboratory experiments for Zhong and Ayrom [ZA85], computer
simulations for Matsumoto [Mat84a] and rigorously done mathematics [CKM86],
[LU93], [BL00].

Chua’s circuit is, surely the most extensively studied chaotic electrical sys-
tem. It has the extraordinary feature of being able to generate a large variety of
dynamic behaviors with just a few self-electronic components. In particular, it
consists of two linear capacitors (a resistor and an inductor) and one non-linear
resistor known as Chua’s diode. By appropriately choosing these components, the
circuit becomes chaotic, and the trajectories tend to a limit set called a strange
attractor. The best-known attractor generated by Chua’s circuit is called double
scroll [SV91], [Are+96]. It has been generalized in several ways, replacing continu-
ous piecewise-linear functions with some smooth functions, such as polynomials
[KRC93], [SHI94], [Hua+96], and [HSD03], etc. In the work of Tang et al. [Tan+01],
it is demonstrated that the 𝑛-scroll attractors can be generated using a simple sine
or a cosine function.

In 2011, Leonov et al. [LKV11a], [LK11b] introduced a new classification
of attractors of non-linear dynamical systems; in which attractors are dispatched
in self-excited or hidden attractors. The first ones can be localized numerically
via a standard computational procedure. After a transient process, a trajectory
starts from a point of the unstable manifold in a neighborhood of equilibrium
to reach a state of oscillation. Hence, one can easily identify it. In contrast, for
hidden attractors, a basin attraction does not intersect with small neighborhoods of
equilibria. To localize them, it is necessary to develop special procedures. Therefore,
there are no transient processes leading to such attractors. The name hidden comes
from this property.

An effective method for the numerical localization of hidden attractors in

2
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multidimensional dynamical systems has been proposed by the previously cited
authors [Leo09], [LVK10]. Their method is based on numerical continuation: a
sequence of similar systems is constructed such that for the first (starting) system
the initial data for numerical computation of possible oscillating solution (starting
oscillation) can be obtained analytically and its transformation from one system to
another is followed numerically. One can find the first example of a hidden chaotic
strange attractor in Chua’s attractor [LKV12a].

The modified multispiral Chua system with a sine function is presented in
[Tan+01]. In [MLC16], Menacer et al. using the Kuznetsov and Leonov method in
another way, found a sequence of hidden bifurcations.

In another part of the thesis, we are interested in another branch developed
in the field of dynamic systems that is attracting the interest of scientific researchers:
Control and synchronization. The Control refers to the adaptive control of a
given chaotic system with the aim of forcing its states to be asymptotically stable,
usually converging towards zero [Khe+19], [FEA06], [Boc+00]. Many chaotic
control methods have been presented. The principal methods to the control of a
chaotic system are : OGY method [Ban+15], adaptive feedback method [Mat11]
[SC08], backstepping design method [HS13], etc. In paper of hwag et al [YZ15]
proposed a new feedback control on a modified chau system in ordre to have a
better performance thans previous controllers. [SC08] considered the feedback
control of the modified chua’s circuit. Yassen [Yas03] presented the adaptive control
and synchronization of Chua’s circuit with unknown system parameters by used
the Routh Hurwitz Criteria and Lyapunov direct method for study the asymptotic
stability states.

The synchronization phenomenon has become an active subject of research
linked to the development of telecommunications, It underwent remarkable im-
provements at the beginning of the 20th century. In 1990, Carroll and Pecora,
pioneers of synchronization, came up with the idea of using a chaotic signal be-
tween two dynamic systems. chaotic signal between two identical dynamic systems.
The first system that produces the chaotic signal is called the transmitter system
(master), and the second is the receiver system (slave), this is identical synchro-
nization. Chaos synchronization, an important topic in applications of nonlinear
sciences, has been developed and widely studied in recent years, as they can be
applied to wide areas of engineering and information sciences, notably in secure
communication and cryptology [KA].

Our thesis is divided into two parts. We start with preliminary chapters: 1
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Chapter 0 Introduction

and 2, and the second part presents our main results. The content of each chapter
is outlined as follows:

Chapter 1
We present some mathematical preliminaries, We start with foundation defini-

tions like an orbit, phase portrait, and notion of stability ...., which also contain
definitions of attractors and bifurcation. So, this chapter gives you an introduction
to the Chaotic dynamical system.

Chapter 2
This chapter is mainly devoted to the basics of self-excited, hidden attractors and

presents effective analytical-numerical algorithms for hidden oscillation localization
in the example of a circuit for the Chua attractor.

Chapter 3
The chapter deals with hidden bifurcations of the multi-spiral Chua Chaotic

attractor generated by the sine function by applying an effective method proposed
by Menacer et. al for uncovering hidden bifurcation; based on a core idea of the
authors Leonov and Kuznetsov, where presented in the second chapter. Furthermore,
We demonstrate the impact of the integration duration approach on the search
for hidden patterns with an odd number of spirals, with present numerical results.
The content of this chapter has been the subject of an international publication
“Integration Duration-BasedMethod for Unveiling Hidden Patterns of Even
Number of Spirals of Chua Chaotic Attractor. Indian Journal of Industrial
and Applied Mathematics, 10(1), 13-33”.

Chapter 4
The main objective of this chapter is to study the stability of the original equi-

librium point and adaptive control of the multi-spiral Chua attractor by using the
Routh-Hurwitz criteria. The content of this chapter has been the subject of an inter-
national publication “The Routh Hurwitz Criteria for Studying The Stability
and Bifurcation in Multispiral Chua Chaotic Attractor. In MENDEL (Vol.
29, No. 1, pp. 71-83”.
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Part I

Preliminary Theory





1 Introduction to Chaotic
Dynamical Systems

“The world is chaos, and its disorder exceeds anything we would like to remedy”

𝑃 .𝐶𝑂𝑅𝑁𝐸𝐼𝐿𝐿𝐸

1.1 Introduction
Nonlinear systems are very interesting to engineers, physicists, and mathematicians
because most real physical systems are inherently nonlinear in nature. In mathematics,
a nonlinear system is problem, where the variables to be solved cannot be written as a
linear combination of independent components. If the equation contains a nonlinear
function (power or cross-product), the system is nonlinear as well. The system is non-
linear if there is some typical nonlinearity , for instance, as saturation, hysteresis, etc.
These characteristics are basic properties of the nonlinear systems. Nonlinear equations
are difficult to be solved by analytical methods and give rise to interesting phenomena
such as bifurcation and chaos. Even simple nonlinear (or piecewise linear) dynamical
systems can exhibit completely unpredictable behavior, the so-called deterministic
chaos.
In this chapter, we define some of the basic conceptions, in order that we can leverage
them in the next.

1.2 Dynamical System
There are many different types of mathematical dynamical systems, including
ordinary differential equations, partial differential equations, ergodic systems, and
discrete dynamical systems.
In the literature, a dynamic system is a structure that evolves over time in both :

1. Causal, where its future depends solely on past or present phenomena.

2. Deterministic, i.e. exact knowledge of the system’s state at 𝑡0 enables us to
calculate its evolution at any other moment.

7



Chapter 1 Introduction to Chaotic Dynamical Systems

From a mathematical approach, dynamic systems can be divided into two cate-
gories:

• Continuous dynamic systems.

• Discrete dynamic systems.

1.2.1 Continuous and Discrete Dynamic Systems
• the continuous-time evolution of a dynamic system in the integer case is
represented by a system of differential equations of the form:

¤𝑥 = 𝑓 (𝑥, 𝑡, 𝛾), 𝑥 ∈ ℝ𝑚 , 𝛾 ∈ ℝ𝑟 , (1.1)

where 𝑥 ∈ 𝐸 ( 𝐸 a non-empty set of ℝ𝑚 called a phace space) is the vector of
state, 𝛾 ∈ ℝ𝑟 is a vector of the parameters and 𝑓 : ℝ𝑚 ×ℝ+ ×ℝ → ℝ𝑚 is the
vector field, which represents the dynamics of the system (1.1)

• The general form of a discrete-time dynamical system is described by an
application (iterative function):

𝑥𝑛+1 = 𝑓 (𝑥𝑛, 𝛾) where 𝑥𝑛 ∈ ℝ𝑚 and 𝛾 ∈ ℝ𝑟 , 𝑛 = 1, 2, ... (1.2)

where 𝑓 : ℝ𝑚 × ℤ+ → ℝ𝑚 indicates system dynamics in discrete time.

▶ Remark 1.1. In this thesis, we will concentrate only on continues dynamical
systems. ◀

1.2.2 Autonomous and Non-Autonomous Systems
When the vector field 𝑓 does not explicitly depend on time, the system(1.1) is said to
be autonomous. Otherwise, it is said to be non-autonomous. Using an appropriate
change of variable, we can easily transform a non-autonomous system of dimension
𝑚 into an equivalent autonomous system of dimension𝑚 + 1 by posing:{

𝑋𝑚+1 = 𝑡,
¤𝑋𝑚+1 = 𝑓𝑚+1(𝑋,𝛾) = 1.

• A non-autonomous system can always be transformed into an autonomous
system (where 𝑡 does not appear explicitly)

8



Dynamical System Section 1.2

Phase Space

▶ Definition 1.2. Phase space is an often multi-dimensional space that can be used
to interpret geometrically the motion of a dynamic system described by differential
equations with respect to time. ◀

State Space

▶ Definition 1.3. The state space is the set of coordinates necessary for a complete
description of a system. ◀

Flow

▶ Definition 1.4. Let𝑀 be any set and 𝐺 an additive group (ℝ or ℤ). Consider
{𝜑𝑡 }𝑡∈𝐺 a group of one-parameter applications𝑀 in𝑀 indexed by the group 𝐺 .

• The term flow refers to the (𝑀, {𝜑𝑡 }𝑡∈𝐺 ). The preceding set 𝑀 constitutes
the space of the phases of the flow. Any point 𝑥 in this space represents a
state of the dynamical system.

◀

Orbits and Trajectory

▶ Definition 1.5. We call the trajectory of a point 𝑥 of𝑀 the application defined
on 𝐺 and with values in𝑀 by :

𝜑 : 𝐺 → 𝑀,

𝑡 → 𝜑𝑡 (𝑀). (1.3)

The image of the trajectory [Mar03]originating from 𝑥 is called the orbit of a
point 𝑥 , i.e. the subset 𝛾 (𝑥) of the phase space defined by :

𝛾 (𝑥) = 𝜑𝑡 (𝑥), 𝑡 ∈ 𝐺.

◀

▶ Definition 1.6. A trajectory is a solution of the differential system. We consider
the system dynamic system (1.1) the orbit is defined by:

𝑂 (𝑥0) = {𝑥 (𝑡);−∞ < 𝑡 < +∞}.

◀

9
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Phase Portrait

▶ Definition 1.7. Each initial condition corresponds to a different trajectory. The
set of trajectories constitutes the phase portrait of the system. ◀

Periodic Points and Limit Cycles

▶ Definition 1.8. a point 𝑥 is said to be 𝑇 -periodic: ∀𝑡 ∈ ℝ : 𝑥 (𝑡 +𝑇 ) = 𝑥 (𝑡) and
𝑥 (𝑡 +𝑇 ) = 𝑥 (𝑡); for 0 < 𝑇 < 𝑇 ; is then called the period of the solution ◀

▶ Remark 1.9. A periodic orbit 𝑂 (𝑥) is always a sequence of periodic points. All
these points are called periodic points of period 𝑇 . ◀

▶ Definition 1.10. Limit Cycles Consider the system:{
¤𝑥 = 𝑃 (𝑥,𝑦),
¤𝑦 = 𝑄 (𝑥,𝑦),

such that 𝑃 and 𝑄 are polynomials in 𝑥 and 𝑦 with real coefficients of degree 𝑑 .
A limit cycle𝐶 is an isolated closed trajectory in space, i.e. no other closed orbit

can be found in its neighbourhood. ◀

▶ Remark 1.11. The width of a limit cycle is the maximum value of the variable
𝑥 over the limit cycle. ◀

Invariant Set

▶ Definition 1.12. Let 𝐴 be a subset of the phase space; 𝐴 is said to be invariant
(resp. positively invariant) by a flow 𝜑𝑡 , if for any 𝑡 in ℝ (resp. in [0;+∞[), 𝜑𝑡 (𝐴) is
included in A.

• The trajectory of an autonomous system in state space is a set of invariants.

◀

1.2.3 Conservative Systems and Dissipative Systems
Physicists define a conservative system as one that conserves total energy. On the
other hand, a dissipative system is one that dissipates energy.
So the conservative system has a first integral (or constant) of motion, and the
second has at least one rate-dependent term. But let us not forget that the systems
under consideration are deterministic systems, so to specify this definition more

10
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precise, we can say that a deterministic system is conservative if and only if the
dynamics of the system associated with each initial condition 𝑥0 has one and only
one final state 𝑥 (𝑡), for this there must exist a bijective application of the phase
space

𝜑 : 𝑋 ×ℝ → 𝑋,

(𝑥, 𝑡) → 𝜑𝑡 (𝑥) = 𝜑 (𝑥, 𝑡),

which is called a flow and has the following properties:

𝜑𝑡 (𝑥0) = 𝑥0,
𝜑𝑡+𝑠 (𝑥0) = 𝜑𝑡 (𝜑𝑠 (𝑥0)), 𝑡, 𝑠 ∈ ℝ+.

▶ Remark 1.13. If the system is dissipative, the flow is not bijective and there
are generally one (or more) attractors in the phase space of the system. ◀

1.3 Chaotic Dynamical System

Nonlinear, or simply piecewise linear, dynamic systems can exhibit completely un-
predictable behaviors, which may even seem random (although these are perfectly
deterministic systems). This unpredictability is called chaos. In general, there is
no formal definition of chaos. However, there are several possible approaches to
defining chaos. These approaches are not all equivalent, but they converge toward
certain common properties characterizing chaos [KA]. For example, the definition
of chaos according to Li-Yorke [Via09] is as follows:

A continuous application 𝑓 : [0, 1] → [0, 1] is chaotic, if there is an enumerable
set 𝑆 ⊂ [0, 1] , such that the trajectories of two different points 𝑥1, 𝑥2 ∈ 𝑆 are
proximal, and not asymptotic; i.e :

lim
𝑛→∞

inf ( |𝑓 (𝑛) (𝑥1) − 𝑓 (𝑛) (𝑥2) = 0|) and lim
𝑛→∞

sup( |𝑓 (𝑛) (𝑥1) − 𝑓 (𝑛) (𝑥2) > 0|).

▶ Remark 1.14. Li and Yorke introduced the first mathematical definition of
chaos. They established a very simple criterion: "The presence of three periods
implies chaos". This criterion plays a very important role in the analysis of chaotic
dynamical systems. ◀

One of the most popular definitions of chaos is the one given by Devaney
[Dev86]: a dynamical system is chaotic if and only if :

11
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a) It is topologically transitive, i.e. if we consider two arbitrary neighborhoods of
two distinct states of a dynamical system, then there exists a trajectory from
one to the other.

b) It has a dense set of periodic orbits.

c) It has the property of sensitivity to initial conditions.

1.3.1 Characterisation of Chaotic Dynamical System
There are a number of properties that sum up the characteristics observed in chaotic
systems. They are regarded as mathematical criteria that define chaos. The most
well-known are :

Sensitivity to Initial Conditions

Chaotic systems are extremely sensitive to initial conditions. Very small perturba-
tions to the initial state of a system can ultimately lead to strictly different behaviour
in its final state. Figure. 1.1 illustrates the temporal evolution of a trajectory of the
system of Lü [KA] with three very close different initial conditions.

Figure 1.1: The temporal evolution of a trajectory of the system of Lü with different initial
conditions

Non-linearity

A chaotic system is a non-linear dynamic system. A linear system cannot be chaotic.
Non-linearity is one of the fundamental characteristics of chaotic systems.

12
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Determinism

A chaotic system is deterministic (rather than probabilistic), i.e. it is subject to laws
that completely describe its motion. subject to laws that completely describe its
movement. The notion of determinism therefore means the ability to predict the
future state of a phenomenon from a past event. However, in the case of random
phenomena, it is impossible to predict the trajectories of any given particle.

Fractal Dimension

Berge et. al [Min+90] impose an additional condition of a dimensional type [Ham].

▶ Definition 1.15. A strange attractor is characterized by sensitivity to initial
conditions and having a fractal dimension. ◀

Strange Attractors

▶ Definition 1.16. A strange attractor has an attractor which displays sensitive
dependence on initial conditions. We note that an attractor is a bounded region of
phase space to which all sufficiently close trajectories from the so-called basin of
attraction are attracted asymptotically for long enough times ◀

▶ Definition 1.17. The particular geometric figure that represents the attractor of
a chaotic system in phase space as a function of time, is called the chaotic attractor.
Thus, this attractor is produced by two simultaneous operations, namely stretching,
which is responsible for the sensitivity to initial conditions and instability, and
folding, which is responsible for the strangeness. ◀

Example of Continuous chaotic Dynamical Systems

To demonstrate the characteristics of a chaotic system, let’s take the Rössler model
as an example [Dim12]: 

¤𝑥 = −𝑥 − 𝑧,

¤𝑦 = 𝑥 + 𝛼𝑦,

¤𝑧 = 𝑏 + 𝑧 (𝑥 − 𝛾).
For parameter values (𝛼 = 0.398, 𝛽 = 2 and 𝛾 = 4), the Rössler system operates

in a chaotic regime. Figure. 1.2 represents the evolution as a function of time of the
chaotic trajectories of the Rössler system and illustrates a complex, non-periodic.
This is the random aspect of chaotic systems. The evolution of a chaotic trajectory
over time appears to be random, but observation of the trajectory in phase space,
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Figure 1.2: Time evolution of the solution y.

as 𝑡 tends towards infinity, reveals a particular form that has a fractal structure:
this is the strange attractor, see figure. 1.3 There are several other models of chaotic

Figure 1.3: Rössler chaotic system attractor.

systems that have similar characteristics to the Rössler system. As examples, we
mention the Lorenz model, the Chua circuit, Lü’s system, etc.

1.4 Qualitative Study of Dynamic Systems

The qualitative study allows us to see how the solutions behave without having
to solve the equation. In particular, it allows the local study of solutions around
points of equilibrium. This study will begin with a search for the fixed points of
the system (1.1).
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1.4.1 Equilibrium Points

▶ Definition 1.18. An equilibrium point (or critical point, singular point, or
stationary point) in the system (1.1 is a point 𝑥𝑒𝑞 in phase space where
𝑓 (𝑥𝑒𝑞) = 0. ◀

▶ Remark 1.19. The geometric equilibrium point is an intersection between the
curve of our function 𝑓 (𝑥) with the 𝑥-axis. ◀

In phase space, an equilibrium point is represented by a point. Its value is deter-
mined by the initial condition chosen. Furthermore, for different initial conditions,
we can find several equilibrium points. Furthermore, these stable or unstable, i.e.
convergence or divergence between neighboring trajectories [Cha+07].
For a complete study of a dynamic system, we generally expect the environment to
behave in a stationary manner. This is presented by the disappearance of transient
phenomena by canceling out the transition function or the vector field. In this case,
the system will have one of two states:

• Equilibrium state (fixed points, periodic points).

• Chaotic state.

To facilitate this study, we use the properties of linear algebra on the equations
that describe our dynamic systems. describe our dynamic systems, where as the
majority of dynamic systems associated with natural phenomena are not linear, so
we have to linearise them.

1.4.2 Linearization of Dynamic Systems

Consider the nonlinear dynamic system defines by:

¤𝑥 = 𝑓 (𝑥 (𝑡)), (1.4)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑛), and 𝑥𝑒𝑞 a fixed point of this system.
Suppose a small upset 𝜀 (𝑡) is applied in the neighborhood of the fixed point. The

function 𝑓 can be developed in a series of Taylor in the neighborhood of point 𝑥𝑒𝑞
as follows:

¤𝜀 (𝑡) + 𝑥𝑒𝑞 = 𝑓 (𝜀 (𝑡) + 𝑥𝑒𝑞) ≃ 𝑓 (𝑥𝑒𝑞) + 𝐽𝑓 (𝑥𝑒𝑞).𝜀 (𝑡), (1.5)
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with 𝐽𝑓 (𝑥𝑒𝑞) is the Jacobian matrix of the function 𝑓 defined by:

𝐽𝑓 (𝑥𝑒𝑞) =
©­­«

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

· · · 𝜕𝑓1
𝜕𝑥𝑛

· · · · · · · · · · · ·
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

· · · 𝜕𝑓𝑛
𝜕𝑥𝑛

ª®®¬𝑥=𝑥𝑒𝑞 . (1.6)

As 𝑓 (𝑥𝑒𝑞) = 0, then equation (1.5) becomes again:

¤𝜀 (𝑡) = 𝐽𝑓 (𝑥𝑒𝑞).𝜀 (𝑡). (1.7)

The writing (1.7) means that the system (1.4) is linearized.

1.4.3 Hartmann-Gro𝜷man Theorem
▶ Definition 1.20. Two flows 𝜑𝑡 and 𝜓𝑡 are said to be topologically equivalent
in a neighborhood of the equilibrium point if there exists a homeomorphism ℎ

which sends the equilibrium point of the first flow to the point of equilibrium of
the second flow and conjugates the flows, i.e. ℎ ◦ 𝜑𝑡 = 𝜓𝑡 ◦ ℎ. ◀

Let 𝑥𝑒𝑞 be an equilibrium point of the system (1.4) and let 𝐽𝑓 (𝑥) be the Jacobian
matrix at point 𝑥𝑒𝑞 . The following theorem follows:
▶ Theorem 1.21. [Lu91] If 𝐽𝑓 (𝑥𝑒𝑞) admits pure non-zero or imaginary eigenvalues,
then there exists a homeomorphism that transforms the orbits of the nonlinear
flow into those of the flow linear in some neighborhood 𝑈 of 𝑥𝑒𝑞 . This theorem
will allow us to link the dynamics of the nonlinear system (1.4) to the dynamics of
the linearity system (1.7). ◀

1.4.4 Concept of Stability
The notion of stability of a dynamic system characterizes the behavior of its trajec-
tories in the vicinity of its equilibrium points. Analyzing the stability of a dynamic
system allows us to study the evolution of its state trajectory when the initial state
is very close to an equilibrium point. Stability theory in the Lyapunov sense is valid
for any differential equation. This notion means that the solution of an equation
initialized in the vicinity of an equilibrium point always remains sufficiently close
to it.

Stability in the Lyapunov Sense

▶ Definition 1.22. The equilibrium point 𝑥0 of the system (1.1) is:
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1. Stable if [SL+91]:

∀𝜀 > 0, ∃ 𝛿 > 0 : ∥𝑥 (𝑡0) − 𝑥0∥ < 𝛿 ⇒ ∥𝑥 (𝑡, 𝑥 (𝑡0)) − 𝑥0∥ < 𝜀,∀ 𝑡 ≥ 𝑡0. (1.8)

2. Asymptotically stable if [SL+91]:

∃ 𝛿 > 0 : ∥𝑥 (𝑡0) − 𝑥0∥ < 𝛿 ⇒ lim
𝑡→∞

∥𝑥 (𝑡, 𝑥 (𝑡0)) − 𝑥0∥ = 0. (1.9)

3. Exponentially stable: if there exist two strictly positive constants 𝑎, b as:
[SL+91]:

∀𝜀 > 0, ∃ 𝛿 > 0 : ∥𝑥 (𝑡0) − 𝑥0∥ < 𝛿 ⇒ ∥𝑥 (𝑡, 𝑥 (𝑡0)) − 𝑥0∥ < 𝑎 exp(−𝑏𝑡), ∀ 𝑡 > 𝑡0.
(1.10)

4. Unstable if:

∃ 𝜀 > 0, ∀ 𝛿 > 0 : ∥𝑥 (𝑡0) − 𝑥 ∥ < 𝛿 and ∥𝑥 (𝑡, 𝑥 (𝑡0)) − 𝑥0∥ > 𝜀,∀ 𝑡 ≥ 𝑡0,
(1.11)

wich mean that equation (1.8) is not satisfied.

Figure 1.4: Different types of Lyapunov stability.

▶ Remark 1.23. Noticeable that using the previous definitions to achieve stability
of the system (1.1), in the neighborhood of its equilibrium point, requires the
explicit resolution of the system (1.1), which is often very difficult in most cases.
For this reason, the following two methods of Lyapunov allow us to get around
this obstacle. ◀
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1. Lyapunov’s First Method (Direct Method)

As we have seen, Lyapunov’s first method is simple to apply, but it allows us
to analyze the stability of equilibria only very partially. Besides, it gives no
indication of the size of the basins of attraction. The second method is more
difficult to implement, but, on the other hand, it is far-reaching and more
general. It is founded on the definition of a specific function, denoted 𝑉 (𝑥)
and known as the Lyapunov function, which decreases along the trajectories
of the system within the attraction basin. This theorem will summarize this
method [SL+91].

▶ Theorem 1.24. The system’s equilibrium point 𝑥𝑒𝑞 (1.1) is stable if a
function 𝑉 (𝑥) : 𝐷 → ℝ continuously differentiable having the following
properties :
a) 𝐷 is an open of ℝ𝑛 and 𝑥𝑒𝑞 ∈ 𝐷,

b) 𝑉 (𝑥) > 𝑉 (𝑥𝑒𝑞) ∀ 𝑥 ≠ 𝑥𝑒𝑞 in 𝐷,

c)
•
𝑉 (𝑥) ≤ 0 ∀ 𝑥 ≠ 𝑥𝑒𝑞 in 𝐷.

◀

There is no method to find a Lyapunov function. But in mechanics and for
electrical systems, one can often use the total energy as a Lyapunov function.

2. Lyapunov’s Second Method (Indirect Method)

Lyapunov’s first method is based on examining the linearization around
the equilibrium point 𝑥𝑒𝑞 of the system (1.1). More precisely, we examine
the eigenvalues 𝜆𝑖 of the Jacobian matrix evaluated at the equilibrium point.
According to this method, the properties of stability of 𝑥𝑒𝑞 are expressed as
follows [SL+91]:

1- If all the eigenvalues of the Jacobian matrix have a strictly negative real
part, then 𝑥𝑒𝑞 is exponentially stable.

2- If the Jacobian matrix has at least one eigenvalue with a strictly positive
real part, 𝑥𝑒𝑞 is unstable.

▶ Remark 1.25. This method does not allow us to say if the equilibrium is
stable or unstable when the matrix Jacobian has at least one zero eigenvalue
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and no eigenvalue with an exactly positive real part. In this case, the trajec-
tories of the system converge to a subspace (a manifold) whose dimension is
the number of zero eigenvalues of the Jacobian matrix, and the stability of
the equilibrium can be studied in this subspace by the first method. ◀

Routh-Hurwitz Criterion

To demonstrate that a point of equilibrium is asymptotically stable, it is therefore
necessary a priory to calculate the 𝑛 eigenvalues 𝜆𝑖 of 𝐴 and check that ∀𝑖 Re(𝑖) <
0. An algebraic method has been developed by Routh-Hurwitz, based on the
calculation of particular determinants known as Routh-Hurwitz determinants
[Mer96]-[AEE06].
Let’s assume the system (1.1) , its linearisation is written as : ¤𝑥 = 𝐴𝑥 . The

eigenvalues of A are solutions of the characteristic equation :

𝑝 (𝜆) = 𝑑𝑒𝑡 (𝐴 − 𝜆𝐼 ) = 0 ⇔ 𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2𝜆

𝑛−2 + ... + 𝑎𝑛−1𝜆 + 𝑎𝑛 = 0.

The Routh-Hurwitz determinants are defined as follows:

𝐻1 = |𝑎1 |

𝐻2 =

���� 𝑎1 1
𝑎3 𝑎2

����
𝐻3 =

������ 𝑎1 1 0
𝑎3 𝑎2 𝑎1
𝑎5 𝑎4 𝑎3

������
𝐻 𝑗 =

�����������
𝑎1 1 0 · · · 0
𝑎3 𝑎2 𝑎1 · · · 0
𝑎5 𝑎4 𝑎3 · · · 0
...

...
...

...
...

𝑎2 𝑗−1 𝑎2 𝑗−2 𝑎2 𝑗−3 · · · 𝑎 𝑗

�����������
▶ Proposition 1.26. The equilibrium point𝑥𝑒𝑞 is asymptotically stable⇔ ∀𝜆𝑖, 𝑅𝑒 (𝜆𝑖) <
0 ⇔ ∀(𝐻𝑖) > 0. ◀

▶ Theorem 1.27. (Routh-Hurwitz Criteria) Let 𝑝 (𝜆) be a polynomial : For 𝑃
to be asymptotically stable, the main determinants of the Hurwitz matrix must be
strictly stable. ◀
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Let’s consider the system for 𝑛 = 3 : ¤𝑥 = 𝐴𝑥. The characteristic equation is:

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3.

The Routh-Hurwitz determinants are:

𝐻1 = |𝑎1 | = 𝑎1,

𝐻2 =

���� 𝑎1 1
𝑎3 𝑎2

���� = 𝑎1𝑎2 − 𝑎3,

𝐻3 =

������ 𝑎1 1 0
𝑎3 𝑎2 𝑎1
𝑎5 𝑎4 𝑎3

������ = 𝑎3,

Thus the conditions of stability of the equilibrium point are: 𝐻1 > 0, 𝐻2 > 0,
𝐻3 > 0. So the point is asymptotically stable.

1.5 Attractors and Attraction Basin

1.5.1 Attractors

▶ Definition 1.28. The region of phase space to which all trajectories of a dissipa-
tive dynamical system converge is called an "attractor". Attractors are therefore ge-
ometric shapes that characterize the long-term evolution of dynamical systems. ◀

▶ Definition 1.29. set 𝐴 is an attractor if :

1. 𝐴 is a compact, flow-invariant set 𝜑𝑡 (i.e. 𝜑𝑡 (𝐴) = 𝐴 for all 𝑡 )

2. For any neighborhood𝑈 of 𝐴, there exists a neighborhood 𝑉 of 𝐴 such that
any solution 𝑋 (𝑡, 𝑋0) = 𝜑𝑡 (𝑋0) will remain in𝑈 if 𝑋0 ∈ 𝑉

3. ∩𝜑𝑡 (𝑉 ) = 𝐴, 𝑡 ≥ 0

4. There exists a dense orbit in 𝐴.

◀
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1.5.2 Attraction Basin

▶ Definition 1.30. When 𝐴 is an attractor, the set :

𝐵(𝐴) =
{
𝑥 ∈ ℝ𝑛/ lim

𝑡→∞
𝜑 (𝑥) = 𝐴

}
is called the Basin of Attraction of 𝐴. It is, therefore, the set of points for which
the trajectories converge asymptotically to 𝐴. ◀

1.5.3 Attractor Properties

1. An attractor is indecomposable, i.e. the union of two attractors is not an
attractor.

2. There exists a set 𝐵 ⊃ 𝐴, such that for any neighborhood of 𝐴, the trajectory
that originates in 𝐵 origin in 𝐵 is found after a finite time in this neighborhood
of 𝐴. In other words, any trajectory that originates in 𝐵 tends towards the
attractor; this "zone of influence" is the Basin of Attraction.

3. A bounded subset 𝐴 of the space is of zero volume invariant by flow 𝜑𝑡 . In
other words, any point in the state space that belongs to an attractor remains
inside that attractor for all 𝑡 .

1.5.4 Types of Attractors

There are two types of Attractors: Regular Attractors and Strange or Chaotic
Attractors :

1. Regular Attractors

Regular attractors characterize the evolution of non-chaotic systems and can
take three forms, as shown in Figure( 1.5):

• The Fixed Point: is the simplest attractor. It is represented by a point
in phase space. It is therefore a constant, stationary solution.

• The Periodic Limit Cycle: it’s a closed trajectory that attracts all
neighboring orbits. It is therefore a periodic solution of the system.

The limit cycle of a dynamic system is any isolated periodic solution in
the set of all periodic solutions of this system.
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• The pseudo-Periodic Limit Cycle(Invariant Tori): it corresponds to
a sum of periodic solutions, whose period ratio is an irrational number.
A quasi-periodic regime can be represented in state space by a torus.

Figure 1.5: The Fixed point, Invariant Tori and Limit cycle attractor.

2. Strange Attractors
A chaotic attractor has far more complex geometric shapes that characterize
the evolution of chaotic systems: after a certain period of time, all points in
phase space (and belonging to the attractor’s basin of attraction) gives rise to
trajectories that tend to form the strange attractor, and is characterized by:

• Sensitivity to initial conditions (two initially neighboring attractor tra-
jectories always end up moving away from each other, reflecting chaotic
behavior).

• A zero volume in phase space.
• A fractal (non-integer) dimension𝑑 , 2 < 𝑑 < 𝑛, where𝑛 is the dimension
of the phase space.

• An exponentially fast separation of two initially close trajectories.

1.6 Bifurcation
The fundamental aspect of the study of dynamic systems is the notion of bifurcation.
It means a division in two, a splitting a part, a change. This term was introduced
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Figure 1.6: Chaotic Lorenz system attractor.

by Henri Poincaré at the beginning of the 20th century in his work on differential
systems. For certain critical values of the system’s control parameters, the solution
of the differential equation changes qualitatively: this is known as a bifurcation. A
first approach to studying dynamic systems is to look for equilibrium points, i.e.
stationary solutions that do not exhibit time evolution. The next step is to vary
the system’s control parameters. We then look at what happens to the equilibrium
points, in particular those that were stable before changing the system parameters,
and the bifurcations that appear. For the parameter values at which such qualitative
changes occur, known as bifurcation values, the construction of the phase portrait
requires adapted tools.

▶ Definition 1.31. The non-linear dynamic system defined as follows:

𝑑𝑥

𝑑𝑡
= 𝑔(𝑥, 𝑡, 𝛿), (1.12)

with the control parameter 𝛿 , and let 𝑥0 be the solution.
A bifurcation is a qualitative change in the solution 𝑥0 of the system (1.12) when 𝛿

is modified, and more exactly the absence or change in stability and the appearance
of new solutions. ◀

▶ Definition 1.32. If the portrait of a system’s phase portrait does not change
when its parameters are changed, the system is said to be structurally stable. As a
result, a bifurcation is associated with a loss of structural stability (the value of the
parameter for which the system (1.12) is not structurally stable). ◀
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1.6.1 Bifurcation Diagrams

▶ Definition 1.33. A bifurcation occurs when such a qualitative change in the
structure of a system occurs at the same time as a quantitative change in one
of its parameters (called a bifurcation value). The graphs that represent these
bifurcations are called bifurcation diagrams. The bifurcation diagram is therefore a
very important tool for evaluating the possible behaviours of a system as a function
of bifurcation values. ◀

▶ Example 1.34. Bifurcation diagram of the Rössler system described by (see the
Figure.1.7) [Ame07] : 

¤𝑥 = −(𝑦 + 𝑧),
¤𝑦 = 𝑥 + 𝑎𝑦,

¤𝑧 = 𝑏 + 𝑧 (𝑥 − 𝑐).

Figure 1.7: Bifurcation diagram of the Rössler system for a=0.2 and b=0.2.

◀

1.6.2 Bifurcations in One-Dimensional Systems

Bifurcations of a one-dimensional system are associated with the stabilities of
its equilibrium points. Such bifurcations are known as local bifurcations as they
occur in the neighborhood of the equilibrium points. Such types of bifurcations
are occurred in the population growth model, outbreak insect population model,
chemical kinetics model, bulking of a beam, etc. There are several types of local
bifurcation, including four important bifurcations,which depend on a single param-
eter 𝛿 , namely the saddle-node, pitchfork, transcritical, and hopf bifurcations are
discussed for one-dimensional systems [Lay+15],[GH13].
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Saddle-Node Bifurcation

A linear function does not change the number of roots. The simplest polynomial
which changes the number of roots depending on the parameter 𝛿 is the quadratic
polynomial [HK12]. In the one-dimensional dynamical system (1.12) depending on
one parameter 𝛿, and the function 𝑔 can be rewritten as :

𝑔(𝑥, 𝛿) = 𝛿 − 𝑥2; 𝛿, 𝑥 ∈ ℝ (1.13)

We call the function (1.13) the normal form of the saddle-node bifurcation. The
equilibrium points of (1.13) are the solutions of the equation

𝑔(𝑥, 𝛿) = 0 ⇒ 𝛿 − 𝑥2 = 0 ⇒ 𝑥2 = 𝛿. (1.14)

We have three possibilities depending on the sign of the parameter 𝛿 :
If 𝛿 < 0, the equation 𝑔(𝑥, 𝛿) = 0, as no point of equilibrium. And if 𝛿 > 0, there
are two solutions, so two equilibrium points : 𝑥1,2 = ±

√
𝛿.

Their stability is determined by :𝑑𝑔(𝑥,𝛿)
𝑑𝑥

= −2𝑥 so 𝑑𝑔(𝑥,𝛿)
𝑑𝑥

|𝑥1
= 2

√
𝛿 > 0 and

𝑑𝑔(𝑥,𝛿)
𝑑𝑥

|𝑥2
= −2

√
𝛿 < 0.

Depending on the signs of 𝑔(𝑥), we see that 𝑥1 = 2
√
𝛿 is stable, while 𝑥2 = −

√
𝛿

is unstable. The bifurcation diagram is shown in Fig. 1.8

▶ Remark 1.35. Same study done when 𝑔(𝑥, 𝛿) = 𝛿 + 𝑥2, 𝑔(𝑥, 𝛿) = −𝛿 − 𝑥2,
𝑔(𝑥, 𝛿) = −𝛿 + 𝑥2. But in all cases, there is a transition at 𝛿 = 0 between the
existence of no fixed point and the existence of two fixed points, one of which is
stable and the other unstable. ◀

Figure 1.8: Saddle-node bifurcation diagram.
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Transcritical Bifurcation

Many parameter-dependent physical systems have an equilibrium point that must
exist for all values of a system parameter and can never disappear. However, if the
parameter changes, the stability character may change. The transcritical bifurcation
is one type of bifurcation in which the stability characteristics of the fixed points
change as the parameter values change.
Consider the following one-dimensional dynamical system:

¤𝑥 (𝑡) = 𝑔(𝑥, 𝛿) = 𝛿𝑥 − 𝑥2; 𝑥, 𝛿 ∈ ℝ (1.15)

The equilibrium points of this system are obtained as:

𝑔(𝑥, 𝛿) = 0 ⇒ 𝑥 (𝛿 − 𝑥) = 0 ⇒
{
𝑥1 = 0,
𝑥2 = 𝛿.

The equation 𝑔(𝑥, 𝛿) = 0 admits two equilibrium points 𝑥1, 𝑥2. We calculate:

𝑑𝑔(𝑥, 𝛿)
𝑑𝑥

= 𝛿 − 2𝑥 so 𝑑𝑔(𝑥, 𝛿)
𝑑𝑥

|𝑥1= 𝛿 , 𝑑𝑔(𝑥, 𝛿)
𝑑𝑥

|𝑥2= −𝛿.

• 𝛿 < 0 : two fixe points for 𝑥1 = 0 stable and 𝑥2 = 𝛿 unstable.

• 𝛿 = 0 : one semi stable fixed point for 𝑥 = 0 = 𝛿.

• 𝛿 > 0 : two fixe points for 𝑥1 = 0 unstable and 𝑥2 = 𝛿 .stable

This is referred to as a transcritical bifurcation. An exchange of stabilities has
occurred between the system’s two fixed points in this bifurcation.The bifurcation
diagram is presented in Fig. 1.9

Figure 1.9: Bifurcation diagram transcritical.
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Pitchfork Bifurcation

We now discuss pitchfork bifurcation in a one-dimensional system which appears
when the system is symmetric in the left and right directions. The stability of an
equilibrium point changes in favor of the birth of a pair of equilibrium points. There
are two kinds of this bifurcation :

1. Supercritical: consider a normal form:

𝑔(𝑥, 𝛿) = 𝛿𝑥 − 𝑥3. (1.16)

The equilibrium points of the system are obtained as:

𝑔(𝑥, 𝜏) = 0 ⇒ 𝑥 (𝛿 − 𝑥2) = 0,

⇒


𝑥 = 0,
or

𝛿 − 𝑥2 = 0,
⇒


𝑥 = 0,
or

𝑥2 = 𝛿.

*If 𝛿 < 0, we have a single point of equilibrium at 𝑥 = 0.
*If 𝛿 > 0, we have three equilibrium points: 𝑥1 = 0, 𝑥2,3 = ±

√
𝛿.

We study the stability of these equilibrium points:

𝑑𝑔(𝑥, 𝛿)
𝑑𝑥

= 𝛿 − 3𝑥2 so
{

𝑑𝑔(𝑥,𝛿)
𝑑𝑥

|𝑥1= 𝛿,
𝑑𝑔(𝑥,𝛿)
𝑑𝑥

|𝑥2,3= −2𝛿.

As a result :
*if 𝛿 = 0: the system has only one equilibrium point in nature, where 𝑥 = 0 is
semi-stable.
*If 𝛿 < 0: we have the only equilibrium point at the origin, where 𝑥 = 0 is
stable.
*If 𝛿 > 0 we have three equilibrium points:{

𝑥 = 0 is unstable,
𝑥 = ±

√
𝛿 is stable.

2. Subcritical: having a normal form :

𝑔(𝑥, 𝛿) = 𝛿𝑥 + 𝑥3.
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The same calculation yields, the equilibrium points of the system are obtained
as :

𝑔(𝑥, 𝛿) = 0 ⇒ 𝛿𝑥 + 𝑥3 = 0 ⇒ 𝑥 (𝛿 + 𝑥2) = 0.

⇒


𝑥 = 0,
ou

𝛿 + 𝑥2 = 0,
⇒


𝑥 = 0,
ou

𝑥2 = −𝛿.

This system has three equilibrium pointsif 𝑥1 = 0 and 𝑥2,3 = ±
√
−𝛿.

We study the stability of these equilibrium points :𝑑𝑔(𝑥,𝛿)
𝑑𝑥

= 𝛿 + 3𝑥2 so{
𝑑𝑔(𝑥,𝛿)
𝑑𝑥

|𝑥1= 𝛿,
𝑑𝑔(𝑥,𝛿)
𝑑𝑥

|𝑥2,3= −2𝛿.
.As a result :

*If 𝛿 > 0 we have the only equilibrium point where 𝑥1 = 0 which is unstable.

*If 𝛿 < 0 we have the equilibrium point:
{
𝑥1 = 0 is stable,
𝑥2,3 = ±

√
𝛿 is unstable.

The bifurcation diagram is presented in Fig. 1.10

Figure 1.10: Pitchfork bifurcations diagram : (a) supercritical, (b) subcritical.

1.6.3 Hopf Bifurcation

While all the bifurcations we have described are stationary, the Hopf bifurcation
gives rise to oscillatory solutions, and the phase space now has two components,
and its form is expressed in the complex plane. Normal form:

Set the standard representation of a Hopf bifurcation :

𝑑𝑍

𝑑𝑡
= 𝛿𝑍 − |𝑍 |2𝑍 . (1.17)
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Posing 𝛿 = 𝛿𝑅 + 𝑖𝛿𝐼 and 𝑍 = 𝑥 exp(𝑖𝜃 ), we get:{
𝑑𝑥
𝑑𝑡

= 𝛿𝑅𝑥 − 𝑥,
𝑑𝑥
𝑑𝑡

= 𝛿𝐼 .

We therefore obtain a pitchfork bifurcation for the amplitude while the phase
rotates at speed 𝛿𝐼 . The solution is therefore periodic, and the trajectories describe
a spiral drawn towards an asymptotic curve called the limit cycle. Naturally, the
bifurcation of Hopf can also be subcritical if the coefficient of the term |𝑍 |2𝑍 has
a positive sign, then a negative term is needed in |𝑍 |4𝑍 to obtain a non-linear
saturation. We will now focus on the step that follows the temporal regularity.
According to Landau the bifurcation of a point from a stationary behavior (equilib-
rium point) towards a periodic behavior (limit cycle) and then biperiodic (a torus)
constitutes the first stages of the green transition turbulence. The latter presents a
very interesting phenomenon that we call chaos, which has long been synonymous
with disorder and confusion and is opposed to order and method. Many researchers
in science have been interested in so-called chaotic movements. They confirmed
that contrary to what deterministic thought has hammered home for ages, there
could be an equilibrium in the disequilibrium, organization in the disorganization.

Figure 1.11: Hopf bifurcation diagram .
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2 Hidden and Self-
excited Attractors

“We must see the present state of the universe as the effect of its previous state
and as the cause of the state that will follow.”

𝑃 − 𝑆.𝐿𝑎𝑝𝑙𝑎𝑐𝑒

2.1 Introduction
Recently, modeling numerous chaotic phenomena in the form of nonlinear dynamical
systems, with some special features, examples being particular dynamic behaviors
and specific properties related to the system equilibria has drawn the attention of
many researchers. Generally speaking, regardless of the type of system (continuous
time or discrete-time dynamical systems) chaos can appear in the form of "self-excited
attractors" or "hidden attractors", which is a new classification that is defined by
Leonov and Kuznetsov in [LKV12b]. The self-excited attractors are attractors for which
the initial conditions are located close to the saddle points of the chaotic flow [Leo+14].
On the other hand, hidden chaotic attractors are attractors in unusual systems, for
example, systems with no equilibria or with only one stable equilibrium [Wei11]; for
which the initial conditions can only be found via extensive numerical search [LK13a]
[Sha+15]. Consequently, these types of chaotic attractors are difficult to discover
[PSJ18].
These studies have proven the significant role of hidden attractors in theoretical
problems and engineering applications. For example, hidden attractors can generate
unexpected and potentially disastrous responses to perturbations in a structure like a
bridge or an airplane wing.

2.2 Self-Excited Attractors
In a dynamical system, an oscillation can be easily numerically localized if beginning
conditions from its open neighborhood lead to long-time behavior that approaches
the oscillation. This type of oscillation (or group of oscillations) is known as an
attractor, and its attracting set is known as the basin of attraction. As a result, self-
excited attractors may be numerically localized using the traditional computational
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approach, in which a trajectory, starting from an unstable manifold in a region of
unstable equilibrium, is attracted to the state of oscillation and follows there after a
brief process. As a result, self-excited attractors are easily seen.

▶ Definition 2.1. An attractor is said to be self-excited if its basin of attraction
exceeds an arbitrarily small open neighborhood of unstable equilibrium. ◀

During the first half of the twentieth century, during the early stages of the devel-
opment of nonlinear oscillation theory (Krylov, 1936; Andronov et al., 1966; Stoker,
1950), much attention was focused on the analysis and synthesis of oscillating sys-
tems, for which the problem of the existence of oscillations can be studied relatively
easily. These researches were motivated by applying periodic oscillation research
in electronics, chemistry, biology, and other fields. The structure of many applied
systems (see, for example, van der Pol (van der Pol, 1926), Tricomi (Tricomi, 1933)
and BelousovZhabotinsky (Belousov, 1959) systems) was such that the presence of
oscillations was almost clear since the oscillations were produced from unstable
equilibria (self-stimulated oscillations).
Consider some famous visualizations of self-excited attractors are shown in
Figure. 2.1

Example for Van der Pol Oscillator

Consider the oscillations that occur within an electrical circuit, specifically those
generated by the van der Pol(1926) oscillator [Pol26].

¥𝑥 + 𝜃 (𝑥2 − 1) + 𝑥 = 0,

The result was determined when 𝜃 = 2.

Example for Belousov–Zhabotinsky Reaction

Belousov observed the first oscillations in chemical processes in a liquid phase in
1951 [Bel58]. Consider one of the dynamic models developed by BelousovZhabotin-
sky.

𝜂 ¤𝑥 = 𝑥 (1 − 𝑥) + 𝜆(𝜃 − 𝑥)
𝜃 + 𝑥

¤𝑧,

¤𝑧 = 𝑥 − 𝑧,

Then execute a computer simulation using typical parameters: 𝜆 = 2
3 , 𝜂 = 4× 10−2,

𝜃 = 8×10−4. The existence of chaotic oscillations was discovered numerically in the
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Figure 2.1: Standard computation of classical self-excited chaotic attractors.

middle of the twentieth century (Ueda et al., 1973; Lorenz, 1963), which were also
excited from unstable equilibria and could be calculated using ordinary computing
procedures. Many additional famous self-excited attractors were discovered later
(Rössler 1976; Chua et al. 1986; Sprott 1994; Chen and Ueta 1999; Lu and Chen 2002).
There are already an enormous number of articles devoted to the computation
and study of various self-excited chaotic oscillations (see, for example, recent
publications Zelinka et al. [Zel+13], Zhang et al. [Zha+14] and many others). the
computation of classical self-excited chaotic attractors: Lorenz system, system
(Rossler, 1976), and “double-scroll” attractor in Chua’s circuit is shown in Figure.2.2.

Figure 2.2: Numerical localization of the chaotic attractor in the Lorenz, Rössler and Chua
system
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2.3 Hidden Attractors
Further research revealed that the self-excited periodic and chaotic oscillations did
not provide comprehensive information on the different kinds of oscillations. Thus,
the hidden attractors cannot be computed by using this standard procedure. Hidden
attractors are attractors in systems with no equilibria or only stable equilibrium (a
specific case of multistable systems and the coexistence of attractors) in the middle
of the twentieth century. Examples of periodic and chaotic oscillations of a different
sort were discovered, then called [Leonov et al. [LK11a]] Hidden oscillations and
hidden attractors, in which the basin of attraction does not connect with small
areas of equilibria.
The topic of analyzing hidden oscillations initially appeared in the second half of
Hilbert’s 16th problem (1900) on the number and possible placements of limit cycles
in two-dimensional polynomial systems, as well as in the authors’ publications
[LKV11b] [LK13b]). Even for a basic class of quadratic systems, the problem is far
from solved.
Later, in engineering difficulties, the difficulty of analyzing concealed oscillations
developed. The examination of Aizerman’s and Kalman’s conjectures on absolute
stability in the previous century resulted in the discovery of hidden oscillations in
automated control systems with a unique stable stationary point and a nonlinearity
that corresponds to the sector of linear stability (see, for example, the works [KLV10]
[LK13b]) .
Further investigations on hidden oscillationswere greatly encouraged by the present
authors’ discovery ([KLV10][LK13b][Leo+14] and [LK11c])

▶ Definition 2.2. hidden attractors have a basin of attraction that does not contain
neighborhoods of equilibria [LKV11b]. ◀

Hidden attractors are important in engineering applications because it can ex-
plain perturbations in a a structure like a bridge or an aircraft wing, convective
fluid motion in a rotating cavity [LKM15] and a model of a drilling system actuated
by an induction motor [Leo+14].

In 2009-2010 (for the first time), a chaotic hidden attractor was discovered in
Chua’s circuits [Mat84b] and[Chu93], which is the most basic electrical circuit that
exhibits chaos. Consider one of the basic Chua circuits shown in Figure.2.3 [Kis+18]
[Kuz+23].
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Figure 2.3: Chua Circuit

The circuit consists of passive resistors ( R and R0), capacitors (C1 and C2),
conductor L, and one nonlinear element with characteristics 𝑓 (.), called Chua
diode. Figure. 2.3 is transformed and represented by the following form below:

·
𝑥 = 𝛼 (𝑦 − 𝑥 − 𝑓 (𝑥)),
·
𝑦 = 𝑥 − 𝑦 + 𝑧,
·
𝑧 = −𝛽𝑦 − 𝛾𝑧,

(2.1)

where the function

𝑓 (𝑥) = 𝜂1𝑥 + 1
2 (𝜂0 − 𝜂1) ( |𝑥 + 1| − |𝑥 − 1|). (2.2)

For the simulation of this system, we use the following parameters: 𝛼 = 9.35,
𝛽 = 14.79, 𝛾 = 0.016, 𝜂0 = −1.1384, 𝜂1 = 0.7225.(see figure (2.4))

Figure 2.4: (a) Self-excited, (b) Hidden Chua attractor with similar shapes

Nowadays, Chua’s attractor is widely used, due to both its realizations: electronic
circuit or its mathematical model
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2.4 An Analytical-Numerical Method for Searching
Hidden Attractor Localization

Leonov [Leo09] and Leonov et al. [LVK10], [LK13a] suggested the method for
searching attractors of multidimensional nonlinear dynamical systems with scalar
nonlinearity.

Their method is based on numerical continuation: a sequence of linked systems
is constructed such that for the first (starting) system the initial data for numerical
computation of possible oscillating solution (starting oscillation) can be obtained
analytically and the transformation of this starting solution oscillation when is pass-
ing from one system to another is followed numerically. This suggested approach
is generalized in [LKV11a], [LK11b], [LKV12a] to the system of the form

¤𝑈 = 𝑀𝑈 + 𝑞𝐻 (𝑟𝑇𝑈 ), 𝑈 ∈ ℝ𝑛 (2.3)

where𝑀 is a constant 𝑛×𝑛-matrix,𝐻 (𝜎) is a continuous piecewise differentiable
function satisfying the condition 𝐻 (0) = 0, 𝑞, 𝑟 are constant 𝑛−dimensional vectors
and 𝑇 denote transpose operation.

We present here their method in the simplified case 𝑛 = 3. Therefore we consider
the equation

¤𝑈 = 𝑀𝑈 + 𝑞𝐻 (𝑟𝑇𝑈 ), 𝑈 ∈ ℝ3 (2.4)

where 𝐻 (𝜎) is a continuous nonlinear function.

They then define a coefficient of harmonic linearization 𝜒 (suppose that such 𝜒

exists) in such a way that the matrix

𝑀0 = 𝑀 + 𝜒𝑞𝑟𝑇 (2.5)

of the linear system
¤𝑈 = 𝑀𝑈 (2.6)

has a pair of purely imaginary eigenvalues ±𝑖𝜔0, (𝜔0 > 0 ) and the other eigen-
value has negative real part. In practice, to determine 𝜒 and𝜔0 they use the transfer
function𝑊 (𝑚) of system(2.3)

𝑊 (𝑚) = 𝑟 (𝑀 −𝑚𝐼 )−1𝑞 (2.7)

where 𝑚 is a complex variable and 𝐼 is a unit matrix. The number 𝜔0 > 0 is
determined from the equation Im𝑊 (𝑖𝜔0) = 0 and 𝜒 is calculated by the formula
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𝜒 = −Re𝑊 (𝑖𝜔0)−1.

Therefore, system (2.3) can rewriten as

¤𝑈 = 𝑀0𝑈 + 𝑞𝑔(𝑟𝑇𝑈 ), 𝑈 ∈ ℝ3 (2.8)

where 𝑔(𝜎) = 𝐻 (𝜎) − 𝜒𝜎 .

Following that, they introduce a finite sequence of continous functions 𝑔0(𝜏),
𝑔1(𝜏), ..., 𝑔𝑚 (𝜏) in such a way that the graphs of neighboring functions 𝑔 𝑗 (𝜏) and
𝑔 𝑗+1(𝜏), ( 𝑗 = 0, ...,𝑚 − 1) in a sense, slightly differ from each other, the function
𝑔0(𝜏) is small and 𝑔𝑚 (𝜏) = 𝑔(𝜏). The smallness of function 𝑔0(𝜏), allows to apply
the method of harmonic linearization (describing function method) to the system

¤𝑈 = 𝑀0𝑈 + 𝑞𝑔0(𝑟𝑇𝑈 ), 𝑈 ∈ ℝ3 (2.9)

if the stable periodic solution𝑈 0(𝑡) close to harmonic one is determined. Then
for the localization of an attractor of the original system (2.8), one can follow nu-
merically the transformation of this periodic solution (a starting oscillating is an
attractor, not including equilibria, denoted further by 𝐴0) simply increasing 𝑗 .

By nonsingular linear transformation 𝑆 (𝑈 = 𝑆𝑍 ) the system (2.9) can be reduced
to the form 

¤𝑧1(𝑡) = −𝜔0𝑧2(𝑡) + 𝑏1𝑔
0(𝑧1(𝑡) + 𝑐𝑇3𝑧3(𝑡))

¤𝑧2(𝑡) = 𝜔0𝑧1(𝑡) + 𝑏2𝑔
0(𝑧1(𝑡) + 𝑐𝑇3𝑧3(𝑡))

¤𝑧3(𝑡) = 𝑎3𝑧3(𝑡) + 𝑏3𝑔
0(𝑧1(𝑡) + 𝑐𝑇3𝑧3(𝑡))

(2.10)

where 𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡) are scalar values, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑐3 are real numbers and
𝑎3 < 0.

The describing function 𝐺 is defined as

𝐺 (𝜏) =

2𝜋
𝜔0∫

0

𝑔(cos(𝜔0𝑡)𝜏) cos(𝜔0𝜏)𝑑𝑡 . (2.11)

▶ Theorem 2.3. [LVK10] If it can be found a positive 𝜏0 such that

𝐺 (𝜏0) = 0, 𝑏1
𝑑𝐺 (𝜏)
𝑑𝜏

|𝜏=𝜏0< 0.
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has a stable periodic solution with initial data𝑈 0(0) = 𝑆 (𝑧1(0), 𝑧2(0), 𝑧3(0))𝑇 at
the initial step of algorithm one has 𝑧1(0) = 𝜏0 +𝑂 (𝜀), 𝑧2(0) = 0, 𝑧3(0) = 𝑂𝑛−2(𝜀),
where 𝑂𝑛−2(𝜀) is an (𝑛 − 2)-dimensional vector such that all its components are
𝑂 (𝜀). ◀

2.5 Example for Hidden Chaotic Attractors in
Chua’s System Circuit

Attractors in classical Chua’s theory are those that are excited by unstable equilibria
[Chu93], [Chu95] [BP08]. But recently, A hidden chaotic attractor was discovered
for the first time in Chua’s circuit in 2010 by Kuznetsov et al [KLV10] [LKV11b]
characterized by a three-dimensional dynamical system. The authors utilized the
above approach to find hidden oscillations. In the following section, we will show
how to use the above-mentioned approach to locate hidden chaotic attractors in
Chua’s system. For this purpose, write Chua’s system (2.1-2.2) in the form (2.4)

𝑑𝑈

𝑑𝑡
= 𝑀𝑈 + 𝑞𝐻 (𝑟𝑇𝑈 ), 𝑈 ∈ ℝ3. (2.12)

Here,

𝑀 =
©­«
−𝛼 (𝜂1 + 1) 𝛼 0

1 −1 1
0 −𝛽 −𝛾

ª®¬, 𝑞 =
©­«
−𝛼
0
0

ª®¬, 𝑟 =
©­«

1
0
0

ª®¬
and 𝐻 (𝜎) = 𝑓 (𝜎).
Introduce the coefficent 𝜒 and small parameter 𝜀, and represent system (2.12) as

𝑑𝑈

𝑑𝑡
= 𝑀0𝑈 + 𝑞𝜀𝜑 (𝑟𝑇𝑈 ), (2.13)

where

𝑀0 = 𝑀 + 𝜒𝑞𝑟𝑇 =
©­«
−𝛼 (𝜂1 + 1 + 𝜒) 𝛼 0

1 −1 1
0 −𝛽 −𝛾

ª®¬, 𝜆
𝑀0
1,2 = ±𝑖𝜔0, 𝜆

𝑀0
3 = −𝑑,

𝑔(𝜎) = 𝐻 (𝜎) − 𝜒𝜎.

By nonsingular linear transformation𝑈 = 𝑆𝑍 system (2.13) is compressed into
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the form
𝑑𝑍

𝑑𝑡
= 𝐴𝑍 + 𝐵𝜀𝑔(𝐶𝑇𝑍 ), (2.14)

where

𝐴 =
©­«

0 −𝜔0 0
𝜔0 0 0
0 0 −𝑑

ª®¬, 𝐵 =
©­«
𝑏1
𝑏2
1

ª®¬, 𝑍 =
©­«
𝑧1
𝑧2
𝑧3

ª®¬and 𝐶 =
©­«

1
0
−ℎ

ª®¬.
The transfer function𝑊𝐴 (𝑚) of system (2.14) can be represented as

𝑊𝐴 (𝑚) = −𝑏1𝑚 + 𝑏2𝜔0

𝑚2 + 𝜔2
0

+ ℎ

𝑚 + 𝑑 .

Further, using the equality of transfer functions of systems (2.13) and (2.14), we
obtain

𝑊𝐴 (𝑚) = 𝑞𝑇 (𝑀0 −𝑚𝐼 )−1𝑟 .

This implies the relations indicated below:

𝜒 =
−𝛼 (𝜂1+𝜂1𝛾+𝛾)+𝜔2

0−𝛾−𝛽
𝛼 (1+𝛾) ,

𝑑 =
𝛼+𝜔2

0−𝛽+1+𝛾+𝛾2

1+𝛾 ,

ℎ =
𝛼 (𝛾+𝛽−(1+𝛾)𝑑+𝑑2)

𝜔2
0+𝑑2 ,

𝑏1 =
𝛼 (𝛾+𝛽−𝜔2−(1+𝛾)𝑑)

𝜔2
0+𝑑2 ,

𝑏2 =
𝛼 ((𝛾+𝛽)𝑑+(1+𝛾−𝑑)𝜔2

0)
𝜔0(𝜔2

0+𝑑2) .

(2.15)

Since system (2.13) can be reduced to the form (2.14) by the nonsingular linear
transformation𝑈 = 𝑆𝑍 , for the matrix 𝑆 the following relations

𝐴 = 𝑆−1𝑀𝑆 , 𝐵 = 𝑆−1𝑞, 𝐶𝑇 = 𝑟𝑇𝑆, (2.16)

are valid. The entries of this matrix are obtained by solving these matrix equa-
tions:

𝑆 =
©­«
𝑆11 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
𝑆31 𝑆32 𝑍𝑆33

ª®¬.
where

𝑆11 = 1, 𝑆12 = 0, 𝑆13 = −ℎ,

39



Chapter 2 Hidden and Self-excited Attractors

𝑆21 = 𝜂1 + 1 + 𝜒, 𝑆22 =
−𝜔0
𝛼

, 𝑆23 = −ℎ(𝛼 (𝜂1 + 1 + 𝜒) − 𝑑

𝛼
,

𝑆31 =
𝛼 (𝜂1 + 𝜒) − 𝜔2

0
𝛼

, 𝑆32 =
𝛼 (𝛽 + 𝛾) (𝜂1 + 𝜒) + 𝛼𝛽 + −𝜔2

0
𝛼𝜔0

,

𝑆33 = ℎ
𝛼 (𝜂1 + 𝜒) (𝑑 − 1) + 𝑑 (1 + 𝛼 − 𝑑)

𝛼
.

We determine initial data for the first step of a multistage localization procedure
for small enough 𝜀, as

𝑈 (0) = 𝑆𝑍 (0) = ©­«
𝜏0𝑆11
𝜏0𝑆21
𝜏0𝑆31

ª®¬. (2.17)

The starting condition for the system (2.1-2.2) is provided by this:

𝑈 (0) = (𝑥 (0) = 𝜏0, 𝑦 (0) = 𝜏0(1 + 𝜂1 + 𝜒), 𝑧 (0) = 𝜏0
𝛼 (1 + 𝜂1) − 𝜔2

0
𝛼

). (2.18)

Consider system (2.13) with the parameters

𝛼 = 8.4562, 𝛽 = 12.0732, 𝛾 = 0.0052, 𝜂0 = −0.1768, 𝜂1 = −1.1468. (2.19)

There are three equilibria in the system for the parameter values under
consideration: a locally stable zero equilibrium and two saddle equilibria. Let’s now
employ the hidden attractor localization process described above to Chua’s system
(2.12) with parameters (2.19). Calculate a beginning frequency and a harmonic
linearization coefficient for this.

𝜔0 = 2.0392, 𝜒 = 0.2098. (2.20)

Then, we compute solutions of system (2.13) with the nonlinearity 𝜀 (𝐻 (𝑥) −
𝜒𝑥)sequentially increasing 𝜀 from the value 𝜀1 = 0.1 to 𝜀10 = 1 with step 0.1. By
(2.15) and (2.18), the initial data can be obtained

𝑥 (0) = 9.4287, 𝑦 (0) = 0.5945, 𝑧 (0) = −13.4705,

for the initial phase of a multi-stage process. For 𝜀 = 0.1, the computation
approaches the beginning oscillation𝑈 1(𝑡) following a transitory process. Addi-
tionally, the set of hidden is calculated for the original Chua’s system (2.12) using
numerical methods and the sequential transformation 𝑈 𝑗 (𝑡) with increasing pa-
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rameter 𝜀 𝑗 , the set Ahidden is computed for the original Chua’s system.
This set is seen in Figure (2.5): two symmetric hidden chaotic attractors (blue),
trajectories (red), M𝑛𝑠

± of two saddle points S± are either attracted to locally stable
zero equilibrium F0 or tend to infinity; trajectories (black) from stable manifolds
Mst

± end to F0 or S±. As a result, stable separation manifolds of saddles exist in the
system’s phase space.
The previous results, combined with the observation that a locally stable zero

equilibrium F0 exists in the system, attracting the stable manifolds Mst
± of two sym-

metric saddles S±, lead to the conclusion that in Ahidden a hidden strange attractor
is computed.

Figure 2.5: Equilibrium, saddles, and the localization of hidden attractors.

▶Remark 2.4. In the papers [Nat+18][NG20][DWY20][WWH21], we can discover
hidden attractors for different chaotic systems. ◀
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Part II

Main Contribution





3 A Technique Based on Integration Duration to Uncover
Hidden Spiral Patterns in the Chua Chaotic Attractor

“The essence of mathematics is not to make simple things complicated
but to make complicated things simple.”

𝑆.𝐺𝑢𝑑𝑑𝑒𝑟

3.1 Introduction
This part is divided into two chapters, the first presents a novel method for unveiling
hidden patterns of an even number of spirals in the multispiral Chua Chaotic attractor.
This method based on the duration of integration of this system, allows displaying
every pattern containing from 1 to 𝑐 + 1 spirals of this attractor. After having given
the equation of the multispiral Chua Chaotic attractor, the Menacer-Lozi-Chua (MLC)
method for uncovering hidden bifurcations is explained again and a numerical example
of the route of bifurcation is given. In the chosen example, it is shown that the attractors
found along this hidden bifurcation route display an odd number of spirals. With
the novel method, during the integration process, before reaching the asymptotical
attractor which possesses and odd the number of spirals, the number of spirals increases
one by one until it reaches the maximum number corresponding to the value fixed
by 𝜀, unveiling both patterns of even and odd number of spirals. Joint work with T.
Menacer and R. Lozi [BML19]

3.2 Multiple-spiral Attractors in Chua’s Sine
Function System

Complex chaotic attractors with 𝑛-double scrolls using cellular neural networks
with a piecewise-linear output function were highlighted in [HSD03]. Another
simpler mechanism for generating n-scroll attractors was introduced by Tang in
[Tan+01], using sine or cosine functions. Since then, in the last decades, multi-scroll
chaotic attractors generation has been extensively studied due to their promising
applications in various real-world chaos-based technologies including secure and
digital communications, random bit generation, etc.
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The system of differential equations, describing the behavior of Chua’s circuits, that
we consider in this article is three-dimensional with a combination of piecewise-
linear and sinusoidal nonlinearity [CHU92], [Tan+01], [Mad93](see Fig. 3.1)

¤𝑥 (𝑡) = 𝛼 (𝑦 (𝑡) − 𝑓 (𝑥 (𝑡))),
¤𝑦 (𝑡) = 𝑥 (𝑡) − 𝑦 (𝑡) + 𝑧 (𝑡),
¤𝑧 (𝑡) = −𝛽𝑦 (𝑡),

(3.1)

where ¤𝑥 (𝑡) = 𝑑𝑥 (𝑡)
𝑑𝑡

, ¤𝑦 (𝑡) = 𝑑𝑦 (𝑡)
𝑑𝑡

, ¤𝑧 (𝑡) = 𝑑𝑧 (𝑡)
𝑑𝑡

.

𝑓 (𝑥 (𝑡)) =


𝑏𝜋
2𝑎 (𝑥 (𝑡) − 2𝑎𝑐) if 𝑥 (𝑡) ≥ 2𝑎𝑐,

−𝑏 sin( 𝜋𝑥 (𝑡)2𝑎 + 𝑑) if −2𝑎𝑐 < 𝑥 (𝑡) < 2𝑎𝑐,
𝑏𝜋
2𝑎 (𝑥 (𝑡) + 2𝑎𝑐) if 𝑥 (𝑡) ≤ −2𝑎𝑐,

(3.2)

Figure 3.1: Proposed sine function 𝑓 (𝑥) with parameters values 𝑎 = 2, 𝑏 = 0.2, 𝑐 = 12,
𝑑 = 𝜋.

The goal of this part is to analyze the general shape of the attractors and their
global geometric features, which can be described in terms of the number of spirals.
In this chapter, the real parameter values have been fixed to 𝛼 = 11, 𝛽 = 15, 𝑎 = 2,
𝑏 = 0.2 for which topologically chaotic attractors have been found. They are
equivalent to the attractors found in electronic devices in [Tan+01].

The parameter c is an integer which governs the number 𝑛 of spirals according
to the following formula

𝑛 = 𝑐 + 1 (3.3)
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and 𝑑 is chosen such that

𝑑 =

{
𝜋 if 𝑐 is even.
0 if 𝑐 is odd. (3.4)

A straightforward computation gives the equilibrium points of (3.1) which are
(−𝑥𝑒𝑞, 0, 𝑥𝑒𝑞) with 𝑥𝑒𝑞 = 2𝑎𝑘 , 𝑘 = 0,±1,±2, ...,±𝑐 [Tan+01]. In the case 𝑐 = 12, one
obtains 13 spirals attractor ( see Fig. 3.2). For a complete study of this model with
other values of 𝑐 see [MLC16].

Figure 3.2: The 13-spiral attractor generated by Equation (3.1) and (3.2) for 𝑐 = 12. (𝑎)
3−dimensional figure, (𝑏) Projection into the plane (𝑥 − 𝑦).

In order to compare the new integration duration-based method versus the
method previously introduced by Menacer et al. [MLC16] we need a benchmark
sequence of hidden bifurcations. In this goal, we limit our study to the case where
parameter 𝑐 is set to the value 12 which gives a 13 spirals attractor (Fig. 3.2). This
number of scrolls is enough to obtain a significant comparison.

3.3 The MLC Method for Uncovering Hidden
Bifurcations

The method introduced by Menacer et al. [MLC16] to find hidden bifurcations is
based on the core idea of Leonov and Kuznetsov for searching hidden attractors
(i.e. homotopy and numerical continuation ( see the section (2.4)). While keeping
𝑐 constant, a new bifurcation parameter 𝜀 is introduced. This method is briefly
recalled and applied to (3.1)-(3.2) in this section. The value of parameters are fixed
to 𝛼 = 11, 𝛽 = 15, 𝑎 = 2, 𝑏 = 0.2, 𝑐 = 12, 𝑑 = 𝜋 .
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3.3.1 The Method

The system(3.1)-(3.2) is rewritten in the Lure’s form [Lur57]

¤𝑈 = 𝑀𝑈 + 𝑞𝐻 (𝑟𝑇𝑈 ), 𝑈 = (𝑥,𝑦, 𝑧) ∈ ℝ3. (3.5)

where

𝑀 =
©­«

0 𝛼 0
1 −1 1
0 −𝛽 0

ª®¬, 𝑞 =
©­«
−𝛼
0
0

ª®¬, 𝑟 =
©­«

1
0
0

ª®¬, and 𝐻 (𝜎) = 𝑓 (𝜎).

In order to transform system (3.5) into the form similar to the system (2.8, see in
the section (2.4)), a new coefficient 𝜒 , and a small parameter 𝜀, are introduced as
follows

¤𝑈 = 𝑀0𝑈 + 𝑞𝜀𝑔0(𝑟𝑇𝑈 ), 𝑈 = (𝑥,𝑦, 𝑧) ∈ ℝ3. (3.6)

where

𝑀0 = 𝑀 + 𝜒𝑞𝑟𝑇 =
©­«
−𝛼𝜒 𝛼 0

1 −1 1
0 −𝛽 0

ª®¬,
and

𝑔(𝜎) = 𝐻 (𝜎) − 𝜒𝜎 = −𝛼 (𝑓 (𝜎) − 𝜒𝜎).
Therefore, (3.6) is written as

¤𝑥 (𝑡) = −𝛼 (𝜒𝑥 (𝑡) − 𝑦 (𝑡)) + 𝜀𝑔(𝑥 (𝑡)),
¤𝑦 (𝑡) = 𝑥 (𝑡) − 𝑦 (𝑡) + 𝑧 (𝑡),
¤𝑧 (𝑡) = −𝛽𝑦 (𝑡) .

(3.7)

Then considering the transfer function𝑊 (𝑚) (2.7, see in the section (2.4)) and
solving the equations Im𝑊 (𝑖𝜔0) = 0 and 𝜒 = −Re𝑊 (𝑖𝜔0)−1 , one obtains
𝜔0 = 2.1018 and 𝜒 = 0.03796.

Using the nonsingular linear transformation𝑈 = 𝑆𝑍 defined in the Section (2.4),
the system (3.7) is reduced to the form similar to equation (2.9)

¤𝑍 = 𝐴𝑍 + 𝐵𝜀𝑔0(𝐶𝑇𝑍 ), 𝑍 = (𝑧1, 𝑧2, 𝑧3) ∈ ℝ3 (3.8)
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where

𝐴 =
©­«

0 −𝜔0 0
−𝜔0 0 0

0 0 −𝑑1

ª®¬, 𝐵 =
©­«
𝑏1
𝑏2
1

ª®¬, 𝐶 =
©­«

1
0
−ℎ

ª®¬
The transfer function𝑊𝐴 (𝑚) of system (3.8) reads

𝑊𝐴 (𝑚) = −𝑏1𝑚 + 𝑏2𝜔0

𝑚2 + 𝜔2
0

+ ℎ

𝑚 + 𝑑1
.

Then, using the equality of transfer of both functions𝑊𝐴 (𝑚) and𝑊𝑀0 (𝑚) =

𝑟𝑇 (𝑀0 −𝑚𝐼 )−1𝑞 to systems (??) and (3.8) one obtains the following relations

𝜒 =
𝑎 + 𝜔2

0 − 𝛽

𝛼
?

𝑑1 = 𝛼 + 𝜔2
0 − 𝛽 + 1?

ℎ =
𝛼 (𝛽 − 𝑑1 + 𝑑2

1)
𝜔2

0 + 𝑑2
1

?

𝑏1 =
𝛼 (𝛽 − 𝜔2

0 − 𝑑1)
𝜔2

0 + 𝑑2
1

?

𝑏2 =
𝛼 (1 − 𝑑1) (𝜔0 − 𝛽𝑑1)

𝜔2
0 (𝜔2

0 + 𝑑2
1)

.

▶ Remark 3.1. The matrix S is defined by the following relations easily computed

𝐴 = 𝑆−1𝑀0𝑆, 𝐵 = 𝑆−1𝑞, 𝐶𝑇 = 𝑟𝑇𝑆,

𝑆 =
©­­«

1 0 −ℎ
𝜒

−𝜔0
−𝛼

ℎ𝑑−ℎ𝛼𝜒
𝛼

−𝛽
𝛼

𝜒𝛽

𝜔0

𝛽ℎ(𝑑−𝛼𝜒)
𝑑𝛼

ª®®¬. (3.9)

◀

3.3.2 Numerical Example of Hidden Bifurcation Route

In this section we present a numerical example of hidden bifurcations route. For
the values of parameters fixed in this section, we obtain

𝜒 = 0.03796, 𝑑1 = 1.4176, ℎ = 26.686, 𝑏1 = 15.686, 𝑏2 = 3.1003,
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therefore, the matrix (3.9), is 𝑆 =
©­«

1 0 −26.686
0.03795 −0.19107 −2.4264
−1.3636 −0.27084 −25.674

ª®¬.
Using theorem 1 of the Section (2.4), for 𝜀 small enough, one obtains the initial

condition

𝑈 0(0) = 𝑆𝑍 (0) = 𝑆
©­«
𝜏0
0
0

ª®¬ = ©­«
𝜏0𝑠11
𝜏0𝑠21
𝜏0𝑠31

ª®¬,𝑈 = (𝑥,𝑦, 𝑧) ∈ ℝ3 (3.10)

Using the notation of Sec. 3.2, one obtains for the determination of the initial
condition of starting solution for themultistage localization procedure, Chua system

𝑥 (0) = 𝜏0, 𝑦 (0) = 𝜏0𝜒, 𝑧 (0) = −𝜏0
𝛽

𝛼
, (3.11)

Then, the localization procedure described in the Sec.2.4 is applied to the system
(3.5)-(3.7). The starting frequency 𝜔0 and the coefficient of harmonic linearization
𝜒 have been already computed in Sec. 3.3.1. Equation(3.11), allows to obtain the
initial conditions for the first step.

Then, the solutions of system (3.7) with the nonlinearity 𝜀𝑔(𝑥) = 𝜀 (𝐻 (𝑥) − 𝜒𝑥) are
computed, by increasing sequentially 𝜀 from the value 𝜀 = 0.1 to 𝜀 = 1, with step
size 0.1, except between 𝜀 = 0.9 and 𝜀 = 1 , where one uses 0.001 as increasing step.

All the points of the stable periodic solution𝑈 1(𝑡) corresponding-to 𝜀 = 0.1 belong
to the domain of attraction of the stable periodic solution 𝑈 2(𝑡) corresponding to
𝜀 = 0.2. This stable periodic solution 𝑈 2(𝑡) is then simply obtained numerically by
solving system (3.5) with 𝜀 = 0.2 and𝑈 1(𝑡max) as initial point, where 𝑡max represents
the last value of time of integration after discarding the transitory regime. The
same numerical procedure is reitered by increasing the 𝜀-value, to obtain the next
periodic solutions𝑈 3(𝑡), 𝑈 4(𝑡), ..., 𝑈 𝑗 (𝑡), ... corresponding to the next values of 𝜀.
When 𝜀 = 0.8 , the first chaotic solution one scroll is found.

The initial conditions for recovering the solutions for increasing values of 𝜀 as
shown in the Table 3.1.
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Table 3.1: Initials conditions according to the values of 𝜀

𝜀 𝑋 𝑗 (0) 𝑥0 𝑦0 𝑧0

0.1 𝑈 1(0) = 𝑈 0(𝑡max) 38.3269 -0.0257 -37.9339
0.2 𝑈 2(0) = 𝑈 1(𝑡max) -3.7487 0.1619 -5.0818
0.3 𝑈 3(0) = 𝑈 2(𝑡max) 3.3406 -0.2062 -4.9772
0.4 𝑈 4(0) = 𝑈 3(𝑡max) -3.6009 -0.2981 4.7285
0.5 𝑈 5(0) = 𝑈 4(𝑡max) 3.4797 -0.1484 -5.0577
0.6 𝑈 6(0) = 𝑈 5(𝑡max) 3.6919 0.0202 -5.1617
0.7 𝑈 7(0) = 𝑈 6(𝑡max) 4.1512 -0.0232 -5.5316
0.8 𝑈 8(0) = 𝑈 7(𝑡max) 1.3915 -0.5758 -2.6930
0.86 𝑈 9(0) = 𝑈 8(𝑡max) -0.4213 -0.3265 0.2085
0.9785 𝑈 10(0) = 𝑈 9(𝑡max) 1.8233 0.2554 -2.6074
0.989 𝑈 11(0) = 𝑈 10(𝑡max) 1.4667 0.7801 -0.6740
0.993 𝑈 12(0) = 𝑈 11(𝑡max) 3.2919 0.5697 -3.9526
0.9953 𝑈 13(0) = 𝑈 12(𝑡max) 15.5612 -0.3315 -16.0715
0.9994 𝑈 14(0) = 𝑈 13(𝑡max) 15.5612 -0.3315 -16.0715

1 𝑈 15(0) = 𝑈 14(𝑡max) -33.7244 -0.0092 35.1636

Using these initial conditions, we get the solutions𝑈 8(𝑡) (Fig. 3.3(a)) with one
spiral to 𝑈 13(𝑡) (Fig. 3.4(g)) with 13 spirals. In each figure, there are a different
odd number of spirals in the attractor. The number of spirals increases by 2 at each
step as displayed on Table 3.2 from 1 to 13 spirals. The values of 𝜀 in this table are
exactly the values of bifurcation points with respect to 𝜀. Therefore Fig. 3.3 and
Fig. 3.4 display the hidden bifurcations of the multi-spiral Chua’s attractor.

Table 3.2: Values of the parameter 𝜀 at the bifurcation points for 𝑐 = 12 (13 spirals).

𝜀

0.80 0.86 0.9785 0.989 0.993 0.9953 0.9994
𝑈 8(0) 𝑈 9(0) 𝑈 10(0) 𝑈 11(0) 𝑈 12(0) 𝑈 13(0) 𝑈 14(0)
1 spiral 3 spirals 5 spirals 7 spirals 9 spirals 11 spirals 13 spirals
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Figure 3.3: The increasing number of spirals of system (3.7) with respect to increasing 𝜀
values. (a) 1-spiral for 𝜀 = 0.80, (b) 3-spirals for 𝜀 = 0.86, (c) 5-spirals for 𝜀 = 0.9785.

Figure 3.4: (continued) The increasing number of spirals of system (3.7) with respect to
increasing 𝜀 values. (d) 7-spirals for 𝜀 = 0.989, (e) 9-spirals for 𝜀 = 0.993, (f) 11-spirals for 𝜀 =
0.9953, (g) 13-spirals for 𝜀 = 0.9994.

3.4 Integration Duration Method for Unveiling
Hidden Patterns of Even Number of Spirals

In the previous section, it is shown that the attractors along the hidden bifurcation
route display an odd number of spirals. In this section, we introduce a novel method
for unveiling hidden patterns of an even number of spirals.

This method is based on the duration of integration of System (3.7). For this
novel method, we fix 𝜀 and we increase the duration of integration 𝑡max. During
the integration process, before reaching the asymptotical attractor which possesses
and odd the number of spirals, the number of spirals increases until it reaches the
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maximum number corresponding to the value fixed by 𝜀.

As a numerical example, we set the value of 𝜀 to 0.9953. For this value, 13 spi-
rals belong to the asymptotic attractor (Fig. 3.4g).
All the patterns are displayed in Fig. 3.5 and Fig. 3.6, and the value of 𝑡𝑠𝑡𝑒𝑝 max is
given in Table.3.3. In each figure, the number of spirals increases by 1 (instead of 2
in the MLC method). MATLAB’s standard solver for ordinary differential equations
ode45 is used in order to integrate Chua’s system. This function implements a
Runge–Kutta method with a variable time step. Therefore, it is difficult to know
𝑡max. The value 𝑡𝑠𝑡𝑒𝑝 max (shown in Table.3.3) which is the maximum number of
steps used (i.e. corresponding to the duration of integration).

Table 3.3: Values of 𝑡𝑠𝑡𝑒𝑝 max for 𝜀 = 0.9994 and 𝑐 = 12.

𝑡𝑠𝑡𝑒𝑝 max 90 900 1450 2220 3480 4000 4480

Number of spirals 1 2 3 4 5 6 7
Figure (a) (b) (c) (d) (e) (f) (g)
𝑡𝑠𝑡𝑒𝑝 max 8020 8780 10125 15000 20000 900000

Number of spirals 8 9 10 11 12 13
Figure (h) (i) (j) (k) (l) (m)

Figure 3.5: The increasing number of spirals for the same values of 𝜀 = 0.9994 and various
values of 𝑡𝑠𝑡𝑒𝑝 max. (a) 1-spiral for 𝑡𝑠𝑡𝑒𝑝 max = 90 ,(b) 2-spirals for 𝑡𝑠𝑡𝑒𝑝 max = 900, (c) 3-spirals
for 𝑡𝑠𝑡𝑒𝑝 max = 1450, (d) 4-spirals for 𝑡𝑠𝑡𝑒𝑝 max = 2220, (d) 5-spirasl for 𝑡𝑠𝑡𝑒𝑝 max = 3480.
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Figure 3.6: (continued) The increasing number of spirals for the same values of 𝜀 = 0.9994
and various values of 𝑡𝑠𝑡𝑒𝑝 max. (f) 6-spirals for 𝑡𝑠𝑡𝑒𝑝 max = 4000 ,(g) 7-spirals for 𝑡𝑠𝑡𝑒𝑝 max =

4480, (h) 8-spirals for 𝑡𝑠𝑡𝑒𝑝 max = 8020, (i) 9-spirals for 𝑡𝑠𝑡𝑒𝑝 max = 8780, (j) 10-spirals for
𝑡𝑠𝑡𝑒𝑝 max = 10125, (k) 11-spirals for 𝑡𝑠𝑡𝑒𝑝 max = 15000, (l) 12-spirals for 𝑡𝑠𝑡𝑒𝑝 max = 20000, (m)
13-spirals for 𝑡𝑠𝑡𝑒𝑝 max = 900000.

In order to study the effect of this integration duration on the basis of this method,
we repeat the same procedure for all values of 𝜀 of Tab. 3.2, we are going to observe
the change of scroll number and we resume our results in Table.3.7.
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Figure 3.7: Values of 𝑡𝑠𝑡𝑒𝑝 max for 𝜀 = 0.80 to 𝜀 = 0.9994 and 𝑐 = 12.
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Figure 3.8: The increasing number of spirals for the same values of 𝜀 = 0.80 and 𝜀 = 0.86
and various values of 𝑡𝑠𝑡𝑒𝑝 max.
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Figure 3.9: The increasing number of spirals for the same values of 𝜀 = 0.9785 and 𝜀 = 0.989
and various values of 𝑡𝑠𝑡𝑒𝑝 max.
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Figure 3.10: (The increasing number of spirals for the same value of 𝜀 = 0.993 and various
values of 𝑡𝑠𝑡𝑒𝑝 max.
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Figure 3.11: The increasing number of spirals for the same value of 𝜀 = 0.993 and various
values of 𝑡𝑠𝑡𝑒𝑝 max.
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Figure 3.12: The increasing number of spirals for the same value of 𝜀 = 0.9994 and various
values of 𝑡𝑠𝑡𝑒𝑝 max.
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4 Stability, Bifurcations, and Analysis of Control and Syn-
chronization in a Chaotic Attractor of Chua System

“The only way to learn mathematics is to do mathematics”

𝑃𝑎𝑢𝑙 .𝐻𝐴𝐿𝑀𝑂𝑆

4.1 Introduction

In the second chapter of this part, we focus on hidden bifurcations of the multispiral
Chua Chaotic attractor generated by the sine function. The general shape of the
chaotic attractors can be described in terms of the number of spirals (also denoted
multiscroll attractor) governed by an integer parameter 𝑐 . Due to the integer nature of
this parameter, it is not possible to observe bifurcations from 𝑛 to 𝑛 + 2 spirals when
this parameter is increased by one. However, using the method of hidden bifurcations,
an additional real parameter 𝜀 allows us to observe such bifurcations. The highlighted
routes of bifurcation display chaotic attractors with either an even number or an
odd number of spirals. Moreover, this additional hidden parameter allows to find the
bifurcation of the multispiral Chua attractor from a stable state to a chaotic state.
Furthermore, the Routh-Hurwitz criteria are used to study the stability, control, and
synchronization of the original equilibrium point of the Chua attractor. Joint work
with T. Menacer and R. Lozi [BML23]

4.2 Stability Of The Origin Equilibrium Point 𝑬0
With Respect To 𝜺

In this section, we study the stability of the equilibrium point 𝐸0 with respect to 𝜀 of
the system (3.7) using Routh-Hurwitz’s conditions [AEE06]. In [MLC16] Menacer
et al. introduce the concept of hidden bifurcation in the system of Chua adding
a new parameter epsilon, which controls the number of spirals. When the value
of 𝜀 increases from 0 to 1 the number of scrolls decreases. Let 𝐸 (𝑥𝑒, 𝑦𝑒, 𝑧𝑒) be an
equilibrium solution of the general three-dimensional system:
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
¤𝑥 (𝑡) = 𝑄 (𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡)),
¤𝑦 (𝑡) = 𝑅(𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡)),
¤𝑧 (𝑡) = 𝑉 (𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡)) .

(4.1)

The eigenvalues equation corresponding to this equilibrium point is given by
the following polynomial:

𝑃 (𝜆) = 𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3. (4.2)

Using the result of the Routh-Hurwitz conditions, where the necessary and
sufficient condition for the equilibrium point 𝐸 to be locally asymptotically stable
is 𝑎1 > 0, 𝑎3 > 0 and 𝑎1 × 𝑎2 − 𝑎3 > 0.
In this section, the parameter 𝑐 is constant, and the bifurcation is studied with

respect to parameter 𝜀, and the values of parameters are 𝛼 = 11, 𝛽 = 15, 𝑎 = 2,
𝑏 = 0.2.

4.2.1 Stability of the Origin Equilibrium Point 𝑬0
The origin 𝐸0(0, 0, 0) is an equilibrium point of System (3.7) independently to ep-
silon. We consider both cases 𝑐 = 11 and 𝑑 = 0, and 𝑐 = 12 and 𝑑 = 𝜋 .

For 𝒄 = 11 and 𝒅 = 0, the Jacobian matrix evaluated at the equilibrium point
𝐸0(0, 0, 0) is:

𝐽𝐸0 =
©­«
−𝛼𝜒 + 𝛼𝜀 (𝜒 + 𝜋𝑏

2𝑎 ) 𝛼 0
1 −1 1
0 −𝛽 0

ª®¬ = ©­«
−0.41756 + 11𝜀 (0.03796 + 0.628

4 ) 11 0
1 −1 1
0 −15 0

ª®¬.
Its characteristic polynomial is:

𝑃 (𝜆) = 𝜆3 + (1.4176 − 2.1446𝜀)𝜆2 + (4.4176 − 2.1446𝜀)𝜆 + (6.2634 − 32.168𝜀).

According to Routh-Hurwitz conditions, the necessary and sufficient condition, for
the equilibrium point 𝐸0 to be stable is 0.00005139 < 𝜀 < 0.1947.

Proof.

𝑎1 = 1.4176 − 2.1446𝜀 > 0 =⇒ 𝜀 < 0.66101,
𝑎3 = 6.2634 − 32.168𝜀 > 0 =⇒ 𝜀 < 0.19472,

𝑎1 × 𝑎2 − 𝑎3 = 4.5993𝜀2 + 19.655𝜀 − 1.6102 × 10−3 > 0 =⇒ 𝜀 < −4.2733 or 𝜀 > 5.1399 × 10−5.
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◀

For 𝒄 = 12 and 𝒅 = 𝝅 , the Jacobian matrix evaluated at the equilibrium point
𝐸0 is:

𝐽𝐸0 =
©­«
−𝛼𝜒 + 𝛼𝜀 (𝜒 − 𝜋𝑏

2𝑎 ) 𝛼 0
1 −1 1
0 −𝛽 0

ª®¬ = ©­«
−0.41756 + 11𝜀 (0.03796 − 0.628

4 ) 11 0
1 −1 1
0 −15 0

ª®¬.
Its characteristic polynomial is:

𝑃 (𝜆) = 𝜆3 + (1.4176 + 1.3094𝜀)𝜆2 + (1.3094𝜀 + 4.4176)𝜆 + (19.642𝜀 + 6.2634).

According to Routh-Hurwitz conditions, the equilibrium point 𝐸0 is unstable.

Proof.

𝑎1 = 1.4176 + 1.3094𝜀 > 0 =⇒ 𝜀 > −1.0826,
𝑎3 = 19.642𝜀 + 6.2634 > 0 =⇒ 𝜀 > −0.3188,

𝑎1 × 𝑎2 − 𝑎3 = 1.7145𝜀2 − 12.001𝜀 − 1.012 × 10−3 > 0 =⇒ 𝜀 < −8.4175 × 10−5

or 𝜀 > 6.998.

because there is a contradiction with 0 < 𝜀 < 1. Therefore, the limit cycle is
unstable. ◀

Special case 𝜺 = 0 : the system (3.7) becomes linear:
¤𝑥 (𝑡) = −𝛼𝜒𝑥 (𝑡) + 𝛼𝑦 (𝑡),
¤𝑦 (𝑡) = 𝑥 (𝑡) − 𝑦 (𝑡) + 𝑧 (𝑡),
¤𝑧 (𝑡) = −𝛽𝑦 (𝑡).

(4.3)

The Jacobian matrix is:

𝐽𝐸0 =
©­«
−𝛼𝜒 + 𝛼𝜀 (𝜒 + 𝜋𝑏

2𝑎 ) 𝛼 0
1 −1 1
0 −𝛽 0

ª®¬ = ©­«
−0.41756 + 11𝜀 (0.03796 + 0.628

4 ) 11 0
1 −1 1
0 −15 0

ª®¬.
The characteristic polynomial is given by:

𝑃 (𝜆) = 𝜆3 + (1.4176 − 2.1446𝜀)𝜆2 + (4.4176 − 2.1446𝜀)𝜆 + (6.2634 − 32.168𝜀).
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One has

𝑎1 = 1.4176 − 2.1446𝜀 > 0 =⇒ 𝜀 < 0.66101,
𝑎3 = 6.2634 − 32.168𝜀 > 0 =⇒ 𝜀 < 0.19472,

𝑎1 × 𝑎2 − 𝑎3 = 4.5993𝜀2 + 19.655𝜀 − 1.6102 × 10−3 > 0 =⇒ 𝜀 < −4.2733 or 𝜀 > 5.1399 × 10−5.

Therefore, the Routh-Hurwitz conditions are not verified, because 𝜀 = 0, and
then the system (3.7) is unstable. Fig. 4.1 displays the corresponding unstable
limit cycle .

Figure 4.1: The attractor of the system (4.3) where 𝜀 = 0: limit cycle unstable.

4.2.2 Other Equilibrium Points:
The equilibrium point E of system (3.7) is obtained solving,

¤𝑥 (𝑡) = 0
¤𝑦 (𝑡) = 0
¤𝑧 (𝑡) = 0

⇔


−𝛼 (𝜒𝑥 (𝑡) − 𝑦 (𝑡)) + 𝜀𝑔(𝑥 (𝑡)) = 0,
𝑥 (𝑡) − 𝑦 (𝑡) + 𝑧 (𝑡) = 0,
−𝛽𝑦 (𝑡) = 0.

(4.4)

In addition to the origin equilibrium point 𝐸0(0, 0, 0), there are several other
equilibrium points: 𝐸𝑘+ (𝑥𝑒𝑞, 0,−𝑥𝑒𝑞) and 𝐸𝑘− (−𝑥𝑒𝑞, 0, 𝑥𝑒𝑞).

The solution of (4.4) are :
• If 𝑥 ≥ 2𝑎𝑐 or 𝑥 ≤ −2𝑎𝑐

𝑥𝑒𝑞 =
2𝜀𝑏𝜋𝑎𝑐

2𝑎(𝜀𝜒 − 𝜒) − 𝜀𝑏𝜋
.

For the values of parameters above, with 𝑐 = 11; one finds:

𝑥𝑒𝑞 = ± 27.6460𝜀
0.1518(𝜀 − 1) − 0.6283𝜀 .
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• If −2𝑎𝑐 < 𝑥 < 2𝑎𝑐; one obtains:

−𝛼 (𝜒𝑥 (𝑡) − 𝑦 (𝑡)) + 𝜀𝑔(𝑥 (𝑡)) = 0, (4.5)

that is
−𝛼 (𝜒𝑥 (𝑡) − 𝜀𝑏 sin(𝜋𝑥 (𝑡)2𝑎 ) − 𝜀𝜒𝑥 (𝑡)) = 0.

Case 𝜺 = 1 : the system (3.7) is the original system (3.1). In this case, in addition
to the origin 𝐸0(0, 0, 0) the other equilibrium points of this system are (𝑥𝑒𝑞, 0,−𝑥𝑒𝑞),
with 𝑥𝑒𝑞 = 2𝑎𝑘 and 𝑘 = ±1,±2, ...,±𝑐 [Tan+01].

Case 0 < 𝜺 < 1 : in addition to the origin 𝐸0(0, 0, 0) the other equilibrium points
cannot be obtained using a closed formula. It is possible to compute them numeri-
cally by solving ¤𝑥 (𝑡) = 0 in equation (4.5). The number of equilibrium points set
are shown in Table. 4.1 and Fig. 4.2, Fig. 4.3 replacing the values of parameters
above and 𝑐 = 11 in the interval [−44, 44]

Table 4.1: Number of equilibrium points in the equation (4.5) for different values of 𝜀 and
𝑐 = 11.

Values of 𝜀 0.30 0.50 0.70 0.80 0.90 0.95 1

Number of equilibrium points 2 2 6 10 22 22 22

Figure 4.2: Number of equilibrium points in the equation (4.5) for different values of 𝜀 and
𝑐 = 11. (a) for 𝜀 = 0.30, (b) for 𝜀 = 0.50, (c) for 𝜀 = 0.70, (d) for 𝜀 = 0.80.
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Figure 4.3: Number of equilibrium points in the equation (4.5) for different values of 𝜀 and
𝑐 = 11. (a) for 𝜀 = 0.90, (b) for 𝜀 = 0.95, (c) for 𝜀 = 1.

4.3 Numerical Analysis of Bifurcations

4.3.1 Case 𝒄 = 11

In this section, a numerical analysis of the bifurcations of this system is done for
c = 11. In this case, one can observe only an even number of scrolls. The value of 𝜀 is
increased from 0 to 1 . For each value of 𝜀 the same initial conditions [0.001, 0, 0.001]
are chosen. The bifurcation diagram with respect to 𝜀 is given in Fig. 4.4, Fig. 4.5

Figure 4.4: Bifurcation diagram with respect to 𝜀 of the component 𝑥 and 𝑧, with c=11.
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Figure 4.5: Bifurcation diagram with respect to 𝜀 of the component 𝑦, with c=11.

In order to highlight the symmetry of the bifurcation diagrams versus the com-
ponents 𝑥 and 𝑧, Fig. 4.6 displays the superimposition of both Fig. 4.4 and
Fig. 4.5.

Figure 4.6: Bifurcation diagram with respect to 𝜀 of the superimposed components 𝑥 and 𝑧
with c=11.

In Figs. 4.7 and 4.8 one displays some corresponding attractors.

• For 𝜀 < 0.195, the equilibrium point 𝐸0 is a locally asymptotically stable focus.

• For 0.195 < 𝜀 ≤ 0.43 the fixed point 𝐸0 becomes unstable, a period-one limit
cycle appears, as shown in Fig. 4.7a.

• When 𝜀 ≈ 0.46, a new bifurcation occurs, the period-one limit cycle becomes
unstable and a period-two limit cycle appears (Fig. 4.7b).
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• For 𝜀 ≈ 0.495, a period-4 limit cycle appears through a new bifurcation, as
shown in Fig. 4.7c, followed by a bifurcation to a period-8 limit cycles at
𝜀 ≈ 0.501 (Fig. 4.7d). This doubling period bifurcation process continues up
to the critical value 𝜀 = 0.56, where one chaotic attractor appears (see Fig.
4.7e). For 𝜀 = 0.57 a two-scrolls chaotic attractor appears (see Fig. 4.7f).

Figure 4.7: Phase portrait of Chua system for different values 𝜀 and 𝑐 = 11(attractors). (a)
a period-one limit cycle for 𝜀 = 0.43, (b) a period-two limit cycle for 𝜀 = 0.46, (c) a period-4
limit cycle for 𝜀 = 0.495, (d) a period-8 limit cycle for 𝜀 = 0.501, (e) a chaotic attractor
chaotic attractor for 𝜀 = 0.56, (f) a 2-spirals for 𝜀 = 0.57.

Fig. 4.8 displays the sequence of bifurcations of the number of spirals of the
chaotic attractors

Figure 4.8: (Continued). Phase portrait of Chua system for different values 𝜀 and
𝑐 = 11(attractors). (g) 4-spirals for 𝜀 = 0.97, (h) 6-spirals for 𝜀 = 0.987, (i) 8-spirals for
𝜀 = 0.992, (j) 10-spirals for 𝜀 = 0.995, (k) 12-spirals for 𝜀 = 0.998.
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4.3.2 Case 𝒄 = 12

In this case, one can observe only an odd number of scrolls. Fig. 4.9 displays the
bifurcation diagram with respect to 𝜀.

Figure 4.9: Bifurcation diagram with respect to 𝜀 of the component 𝑦, for 𝑐 = 12.

In Fig. 4.10 and Fig. 4.11 one displays some corresponding attractors.

• For 𝜀 < 0.55, the equilibrium point 𝐸0 is a locally asymptotically stable focus.

• When 𝜀 ≈ 0.55, the system of Chua in the fixed point 𝐸0 becomes unstable,
and a period-one limit cycle appears for 0.55 < 𝜀 ≤ 0.60, as shown in Fig.
4.10a.

• When 𝜀 ≈ 0.68, a new bifurcation occurs, and the period-one limit cycle
becomes unstable and a period-two limit cycle appears (Fig. 4.10b).

• For 𝜀 ≈ 0.706, a-period-4 limit cycle appears through a new bifurcation, as
shown in Fig. 4.10c, followed by a bifurcation to a period-8 limit cycles
at 𝜀 ≈ 0.7109; (see Fig. 4.10d). This bifurcation process continues up to
a critical value of 𝜀 = 0.72, where one chaotic attractor appears; (see Fig.
4.10e). At 𝜀 = 0.80 a 1-scroll chaotic attractor appears (see Fig. 4.10f).
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Figure 4.10: Phase portrait of Chua system for different values 𝜀 and 𝑐 = 12(attractors). (a)
a limit cycle for 𝜀 = 0.60, (b) a period-two limit cycle for 𝜀 = 0.68, (c) a period-4 limit cycle
for 𝜀 = 0.706, (d) a period-8 limit cycle for 𝜀 = 0.7109, (e) one chaotic attractor for 𝜀 = 0.72,
(f) 1-spirals for 𝜀 = 0.80

The figure. 4.11 displays the sequence of bifurcations of the number of spirals
of the chaotic attractors with an odd number of scrolls.

Figure 4.11: Phase portrait of Chua system for different values 𝜀 and 𝑐 = 21(attractors). (g)
3-spirals for 𝜀 = 0.86, (h) 5-spirals for 𝜀 = 0.978, (i) 7-spirals for 𝜀 = 0.989, (j) 9-spirals for
𝜀 = 0.993, (k) 11-spirals for 𝜀 = 0.9953, (l) 13-spirals for 𝜀 = 0.9994

▶ Remark 4.1. • When we increase the value of 𝜀, the number of scrolls keeps
increasing while staying in the chaos zone.

• We have two different notions of bifurcation, the first one the classic definition,
the second definition by Menacer et al [MLC16].

◀
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4.4 Chaos Control

When dealing with chaotic dynamical systems in general, particular interest is
paid to our ability to control or stabilize these systems. By control, we refer to the
addition of new adaptively updated terms to the chaotic s system in order to force
its states towards zero asymptotically. One of the applications of this topic is in
robotics where the control of the chaotic motion of a rigid body is considered.
This section suggests the aim of this section is to control chaotic Chua circuit
systems.
The description of a chaotic system in three dimensions is as follows:

¤𝑈 = 𝑀 (𝑈 ) (4.6)

where𝑈 = (𝑥,𝑦, 𝑧) ∈ ℝ3, the The controlled system is described by :

¤𝑈 = 𝑀 (𝑈 ) −𝑇 (𝑈 −𝑈 ) (4.7)

where 𝑇 = 𝑑𝑖𝑎𝑔(𝑇1,𝑇2,𝑇3); 𝑇1,𝑇2,𝑇3 ≥ 0 and 𝑈 is an equilibrium point of the
system (4.6).
Now, if one selects the appropriate feedback control gains 𝑇1,𝑇2,𝑇3 which then

make the eigenvalues of the linearized equation of the controlled system (4.7) satisfy
one of the above-mentioned Routh-Hurwitz conditions [AEE06], therefore the
trajectories of the controlled system (4.7) asymptotically approaches the unstable
equilibrium point𝑈 in the sense that lim𝑡→∞ ∥𝑈 −𝑈 ∥ = 0 where is the Euclidean
norm[35].

let us consider the controlled system of the system has the form:
¤𝑥 (𝑡) = −𝛼 (𝜒𝑥 (𝑡) − 𝑦 (𝑡)) + 𝜀𝑔(𝑥 (𝑡)) −𝑇1(𝑥 (𝑡) − 𝑥 (𝑡)),
¤𝑦 (𝑡) = 𝑥 (𝑡) − 𝑦 (𝑡) + 𝑧 (𝑡) −𝑇2(𝑦 (𝑡) − 𝑦 (𝑡)),
¤𝑧 (𝑡) = −𝛽𝑦 (𝑡) −𝑇2(𝑧 (𝑡) − 𝑧 (𝑡)),

(4.8)

Where 𝑇1,𝑇2,𝑇3 > 0 are external control inputs that will drag the chaotic tra-
jectory (x,y,z) of the modified Chua system (4.8) to 𝐸 = (𝑥,𝑦, 𝑧) one of the steady
states 𝐸0 and 𝐸 is equilibrium point of the system (4.8).

We choose the feedback gains 𝑇 = 𝑑𝑖𝑎𝑔(𝑇1, 0, 0).The control law take the follow-
ing form: 

¤𝑥 (𝑡) = −𝛼 (𝜒𝑥 (𝑡) − 𝑦 (𝑡)) + 𝜀𝑔(𝑥 (𝑡)) −𝑇1(𝑥 (𝑡) − 𝑥 (𝑡)),
¤𝑦 (𝑡) = 𝑥 (𝑡) − 𝑦 (𝑡) + 𝑧 (𝑡),
¤𝑧 (𝑡) = −𝛽𝑦 (𝑡).

(4.9)
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4.4.1 Stabilizing the Equilibrium Point 𝑬0 = (0.0.0)

▶ Proposition 4.2. If T1∈ [T0
𝜀 ;∞] and T1∈ [T1

𝜀 ;∞]where :

T
0
𝜀 = 2.1455𝜀 − 0.41756,

𝑇 1
𝜀 = 2.1455𝜀 + 4.5824 + 0.5

√︄
2.2281 × 10−4𝜀2 − 1.5194 × 10−3𝜀

+83.998.

The system (4.9) is controlled. ◀

Proof. We consider the system (4.9) in the cases 𝑐 = 11 and 𝑑 = 0, the Jacobian
matrix for evaluated at the equilibrium point 𝐸0 = (0, 0, 0) is:

𝐽𝐸0 =
©­«
−𝛼𝜒 + 𝛼𝜀 (𝜒 + 𝜋𝑏

2𝑎 ) −𝑇1 𝛼 0
1 −1 1
0 −𝛽 0

ª®¬.
The characteristic equation of the controlled system (4.9) at 𝐸0 = (0.0.0) is given as:
𝑃 (𝜆) = 𝜆3 +

(
𝑇1 + 𝛼𝜒 − 𝛼𝜀

(
𝜒 + 𝜋

2𝑎𝑏
)
+ 1

)
𝜆2 +

(
𝛽 − 𝛼 +𝑇1 + 𝛼𝜒 − 𝛼𝜀

(
𝜒 + 𝜋

2𝑎𝑏
) )
𝜆+(

𝛽
(
𝑇1 + 𝛼𝜒 − 𝛼𝜀

(
𝜒 + 𝜋

2𝑎𝑏
)
+ 1

)
− 𝛽

)
.

For the values of parameters fixed for: 𝛼 = 11, 𝛽 = 15, 𝑎 = 2, 𝜒 = 0.03796 and
𝑏 = 0.2, then :
𝑃 (𝜆) = 𝜆3 + (𝑇1 − 11𝜀 (0.05𝜋 + 0.03796) + 1.4176)𝜆2 + (4 + 𝑇1 + 11 ∗ 0.03796 −
11𝜀

(
0.03796 + 𝜋

4 0.2
)
𝜆) + 15

(
𝑇1 + 11 ∗ 0.03796 − 11𝜀

(
0.03796 + 𝜋

4 0.2
)
+ 1

)
− 15.

According to the Routh-Hurwitz conditions :
𝑎1 = 𝑇1 − 2.145 4𝜀 + 1.4176 > 0 ⇒ 𝑇1 ∈ [2.1454𝜀 − 1.4176;+∞],

𝑎3 = 15𝑇1 − 32.182𝜀 + 6.263 4 > 0 ⇒ 𝑇1 ∈ [2.1455𝜀 − 0.41756;+∞],

from 𝑎1 et 𝑎3 we find: 𝑇1 ∈ [𝑇 0
𝜀 ;+∞] where 𝑇 0

𝜀 = 2.1455𝜀 − 0.41756,
and
𝑎1 × 𝑎2 − 𝑎3 = 4.602 9𝜀2 − 4.2909𝜀𝑇1 + 19.663𝜀 +𝑇 2

1 − 9.1648𝑇1 − 1.0669 × 10−3 > 0,
⇒ 𝑇 1

1 < 2.1455𝜀 + 4.5824 − 0.5
√

2.2281 × 10−4𝜀2 − 1.5194 × 10−3𝜀 + 83.998𝑜𝑟
T2

1 > 2.1455𝜀 + 4.5824 + 0.5
√

2.2281 × 10−4𝜀2 − 1.5194 × 10−3𝜀 + 83.998

⇒ T1∈ [T1
𝜀 ;∞];where T1

𝜀 = 2.1455𝜀+4.5824+0.5
√

2.2281 × 10−4𝜀2 − 1.5194 × 10−3𝜀 + 83.998.
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We conclude that
T1∈ [T0

𝜀 ;∞] and T1∈ [T1
𝜀 ;∞] .

◀

4.4.2 Numerical Results
We will show a numerical experiment to demonstrate the effectiveness of the
proposed control scheme. The MATLAB’s code standard solver for the fourth-order
Runge–Kutta method is used to integrate the differential equations. The initial
states are 𝑥 (0) = 0.001, 𝑦 (0) = 0 and 𝑧 (0) = 0.001. The equilibrium 𝐸0 = (0, 0, 0) of
the system (1.1) is stable :

• For 𝜀 = 0.10 :
we have:

𝑇
0
𝜀 > 2.1455𝜀 − 0.41756 ⇒ 𝑇

0
𝜀 > −0.20301

so 𝑇1 ∈ [𝑇 0
𝜀 ;∞],

and 𝑎1 × 𝑎2 − 𝑎3 = 4.602 9𝜀2 − 4.290 9𝜀𝑇1 + 19.663𝜀 +𝑇 2
1 − 9.164 8𝑇1 − 1.066 9 × 10−3 > 0

⇒ 𝑇1 ∈ 𝑇
1
𝜀 ∪𝑇

2
𝜀 ,

where 𝑇 1
𝜀 = [−∞; 0.214 43] or 𝑇 2

𝜀 = [9.379 5;∞];
we conclude that : T1∈ T

0
𝜀∩T

1
𝜀 .

• For 𝜀 = 0.70 :

𝑇
0
𝜀 = 1.0843 ⇒ 𝑇1 ∈ [𝑇 0

𝜀 ;∞],
and 𝑎1 × 𝑎2 − 𝑎3 = 4.602 9𝜀2 − 4.290 9𝜀𝑇1 + 19.663𝜀 +𝑇 2

1 − 9.164 8𝑇1 − 1.066 9 × 10−3 > 0,
⇒ 𝑇1 ∈ 𝑇

1
𝜀 ∪𝑇

2
𝜀 ,

where 𝑇 1
𝜀 = [−∞; 1.5017] or 𝑇 2

𝜀 = [10.667;∞];
we conclude that : T1∈ T

0
𝜀∩T

1
𝜀 .

We choose 𝑇1 = 0.15 for 𝜀 = 0.10 and 𝑇1 = 1.10, for 𝜀 = 0.70 as shown in the
figure. 4.12a and 4.12b respectively, where chaos is suppressed to 𝐸0 with time. The
control is activated at 𝑡 = 180 and 𝑡 = 120 respectively.
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Figure 4.12: The trajectories of the controlled system (1.1). (a) The control 𝑇1 = 0.15,
𝑇2 = 𝑇3 = 0 is activate at 𝑡 = 180 for 𝐸0. (b) The control 𝑇1 = 1.10, 𝑇2 = 𝑇3 = 0 is activate at
𝑡 = 120 for 𝐸0.

4.5 Chaos Synchronization
▶ Definition 4.3. The fact of happening at the same time, or the act of making
things happen at the same time: The words flash on a TV screen in synchronization
with the music, and like the hummingbird migration depends on the synchroniza-
tion between the end of the relatively warm winter in Mexico and the beginning of
the temperate summer in the Elk Mountains. (Cambridge Dictionary) ◀

▶ Definition 4.4. In the realm of chaotic systems, synchronization refers to the
remarkable ability of two or more such systems to evolve together over time,
displaying similar or identical behavior, despite their intrinsic chaos. ◀

Types of Synchronization:

Different types of synchronization exist within chaotic systems, including com-
plete synchronization, phase synchronization, and lag synchronization. Each type
signifies a specific level of coordination and order between the systems.
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In recent years, chaos synchronization has been widely explored and studied be-
cause of its potential applications, such as in secure communication, biological
systems, and information science [MKH10] [KA] and[AVO17]. Therefore, a variety
of approaches have been proposed for the synchronization of chaotic systems, such
as complete synchronization, generalized synchronization, and projective synchro-
nization. Each type signifies a specific level of coordination and order between the
systems[Mes20] .

In recent years, research has shown that synchronization can also be extended
to systems with fractional derivatives and this is what we attempt to do in future
research with the fractional version of a system modeling the dynamics systems
circuits.
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4Conclusions & Outlook

We conclude this thesis with some research perspectives that could be the subject
of future research

• Study the adaptive control and synchronization of Fractional-order Chua’s
and Chen circuit systems with other functions, with a comparison of numeri-
cal results.

• Based on the results given in chapters two and three, we can establish a novel
system of three-dimensional (3D n×m×l grid scroll) parameters in the situa-
tion of multidirectional multi-scroll chaotic Chen attractors with saturated
function.

• Study the synchronization for the same chaotic Chua system with multispiral
attractors generated via tooth function and saturated function.

• Applied the same method for the numerical localization of hidden attractors
in a Fractional-order chaotic system.
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4Appendix: Programs in Matlab for Hidden Bifurcation

Plot the orbit around the Chua chaotic attractor:
function dy = Chuanew(t,y)
a=2;
b=0.2;
c=12;
d=pi;
alpha=11;
beta=15;
k=0.03796;
eps=0.80;
if y(1)<=-2*a*c
f=b*pi*(y(1)+2*a*c)/(2*a);
end
if abs(y(1))< 2*a*c
f=-b1*sin((pi*y(1)/(2*a))+d);
end
if y(1)>= 2*a*c
f=b*pi*(y(1)-2*a*c)/(2*a);
end
dy = double(zeros(3,1));
dy(1) = alpa*(y(2)-k*y(1)-eps*f+eps*k*y(1));
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dy(2) = y(1)-y(2)+y(3);
dy(3) = -beta*y(2);
end
******************************************************
clear all
close all
clc
hold on
options = odeset(’AbsTol’,1e-11,’RelTol’,1e-6);
fsize=15;
N=size(Y);
nn=round(9*N(1)/10);
for i=1:N(1)-nn
y1(i)=Y(i+nn,1);
y2(i)=Y(i+nn,2);
y3(i)=Y(i+nn,3);
end
yy=Y(N(1),:)
figure(1)
plot(y1,y2,’r’)
******************************************
Plot the diagramm of bifurcation:
clc
clear
global eps
eps=0:0.001:1;

80



L=length(eps);
for i=1:L
eps=eps(i);
datb=Y(500:end,2); for j=2:(length(data)-1)
plot(eps,data(j),’b.’,eps,datc(j),’b.’);
hold on;
if j>=100 break;
end
end
end end
xlabel(’eps’)
ylabel(’ymax)

81





4Bibliography
[AEE06] E Ahmed, AMA El-Sayed, and Hala AA El-Saka. On some Routh–Hurwitz

conditions for fractional order differential equations and their appli-
cations in Lorenz, Rössler, Chua and Chen systems. Physics Letters A
358:1 (2006), 1–4 (see pages 19, 61, 71).

[Ame07] Ikhleuf Ameur. Controle, Chaotification et hyperchaotification des
systèmes dynamiques. PhD thesis. Thèse de Magister en Electronique.
Université de Mentouri Constantine, 2007 (see page 24).

[Are+96] Paolo Arena, Salvatore Baglio, Luigi Fortuna, and Gabriele Manganaro. Gen-
eration of n-double scrolls via cellular neural networks. International
Journal of circuit theory and applications 24:3 (1996), 241–252 (see page 2).

[AVO17] Ahmad Taher Azar, Sundarapandian Vaidyanathan, and Adel Ouannas. Frac-
tional order control and synchronization of chaotic systems. Vol. 688.
Springer, 2017 (see page 75).

[Ban+15] Bijnan Bandyopadhyay, Shyam Kamal, Bijnan Bandyopadhyay, and Shyam
Kamal. Contraction Analysis by Integer Order and Fractional Order In-
finitesimal Variations. Stabilization and Control of Fractional Order Systems:
A Sliding Mode Approach (2015), 181–197 (see page 3).

[Bel58] Boris P Belousov. A periodic reaction and its mechanism. Ref. Radiats.
Med. (1958) (see page 32).

[BL00] Soraya Boughaba and Rene Lozi. Fitting trapping regions for Chua’s
attractor—a novel method based on isochronic lines. International Jour-
nal of Bifurcation and Chaos 10:01 (2000), 205–225 (see page 2).

[BML19] Malika Belouerghi, Tidjani Menacer, and René Lozi. Integration Duration-
Based Method for Unveiling Hidden Patterns of Even Number of
Spirals of Chua Chaotic Attractor. Indian Journal of Industrial and Applied
Mathematics 10:1 (2019), 13–33 (see page 45).

[BML23] Malika Belouerghi, Tidjani Menacer, and René Lozi. The Routh Hurwitz
Criteria for Studying The Stability and Bifurcation in Multispiral
Chua Chaotic Attractor. In: MENDEL. Vol. 29. 1. 2023, 71–83 (see page 61).

83



[Boc+00] Stefanos Boccaletti, Celso Grebogi, Y-C Lai, Hector Mancini, and Diego Maza.
The control of chaos: theory and applications. Physics reports 329:3
(2000), 103–197 (see page 3).

[Boz97] Zsolt Bozóki. Chaos theory and power spectrum analysis in computer-
ized cardiotocography. European Journal of Obstetrics & Gynecology and
Reproductive Biology 71:2 (1997), 163–168 (see page 1).

[BP08] Eleonora Bilotta and Pietro Pantano.Gallery Of Chua Attractors, A (With
Dvd-rom). Vol. 61. World Scientific, 2008 (see page 38).

[Cha+07] François Charru et al. Instabilités hydrodynamiques. EDP sciences Les
Ulis, 2007 (see page 15).

[CHU92] LO CHUA. The genesis of Chua’s circuit. Archiv fur Elektronik und Uber-
tragungstechnic 46 (1992), 250–257 (see pages 2, 46).

[Chu93] Leon O Chua. A zoo of strange attractors from the canonical Chua’s
circuits. In: MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS. Vol. 35.
PROCEEDINGS PUBLISHED BY VARIOUS PUBLISHERS. 1993, 916–916 (see
pages 34, 38).

[Chu95] Leon O Chua. A glimpse of nonlinear phenomena from Chua’s os-
cillator. Philosophical Transactions of the Royal Society of London. Series A:
Physical and Engineering Sciences 353:1701 (1995), 3–12 (see page 38).

[CKM86] LEONO Chua, Motomasa Komuro, and Takashi Matsumoto. The double
scroll family. IEEE transactions on circuits and systems 33:11 (1986), 1072–
1118 (see page 2).

[Dev86] RL Devaney. Benjamin/-Cummings. 1986 (see page 11).
[Dim12] Habib Dimassi. Synchronisation des systèmes chaotiques par obser-

vateurs et applications à la transmission d’informations. PhD thesis.
Paris 11, 2012 (see page 13).

[DWH04] Zhisheng Duan, Jinzhi Wang, and Lin Huang. Multi-input and multi-
output nonlinear systems: Interconnected Chua’s circuits. International
Journal of Bifurcation and Chaos 14:09 (2004), 3065–3081 (see page 2).

[DWY20] Quanli Deng, Chunhua Wang, and Linmao Yang. Four-wing hidden attrac-
torswith one stable equilibriumpoint. International Journal of Bifurcation
and Chaos 30:06 (2020), 2050086 (see page 41).

[Elh06] Zeraoulia Elhadj. Etude de quelques types de systèmes chaotiques:
généralisation d’un modèle issu du modèle de Chen. PhD thesis. Thèse
de 3ème cycle, Université Mentouri de Constantine, 2006 (see page 1).

84



[FEA06] Alexander L Fradkov, Robin J Evans, and Boris R Andrievsky. Control of
chaos: methods and applications in mechanics. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences
364:1846 (2006), 2279–2307 (see page 3).

[GH13] JohnGuckenheimer and Philip Holmes.Nonlinear oscillations, dynamical
systems, and bifurcations of vector fields. Vol. 42. Springer Science &
Business Media, 2013 (see page 24).

[Ham] N Hamri. Synchronisation des systèmes dynamiques chaotiques à
dérivées fractionnaires () (see page 13).

[HK12] Jack KHale andHüseyin Koçak.Dynamics and bifurcations. Vol. 3. Springer
Science & Business Media, 2012 (see page 25).

[HS13] PING HAN and LIHUI SONG. CHAOS CONTROL OF THE MODIFIED
CHUA’S CIRCUIT SYSTEM BASED ON FEEDBACK LINEARIZATION.
ICIC express letters. Part B, Applications: an international journal of research
and surveys 4:5 (2013), 1353–1358 (see page 3).

[HSD03] Morris W Hirsch, Stephen Smale, and Robert L Devaney. Differential Equa-
tions, Dynamical Systems, and an Introduction to Chaos. Vol. 60. Else-
vier, 2003 (see pages 2, 45).

[Hua+96] Anshan Huang, Ladislav Pivka, Chai Wah Wu, and Martin Franz. Chua’s
equation with cubic nonlinearity. International Journal of Bifurcation and
Chaos 6:12a (1996), 2175–2222 (see page 2).

[KA] Smail Kaouache and Mohammed-Salah Abdelouahab. Synchronisation des
systèmes chaotiques et hyperchaotiques. PhD thesis. Université Frères
Mentouri-Constantine 1 (see pages 3, 11, 12, 75).

[Khe+19] Amina-Aicha Khennaoui, Adel Ouannas, Samir Bendoukha, Giuseppe Grassi,
Xiong Wang, Viet-Thanh Pham, and Fawaz E Alsaadi. Chaos, control, and
synchronization in some fractional-order difference equations. Ad-
vances in Difference Equations 2019:1 (2019), 1–23 (see page 3).

[Kis+18] MAKiseleva, Elena VKudryashova, Nikolay VKuznetsov, OlgaAKuznetsova,
Gennady A Leonov, Marat V Yuldashev, and Renat V Yuldashev.Hidden and
self-excited attractors in Chua circuit: synchronization and SPICE
simulation. International Journal of Parallel, Emergent and Distributed Sys-
tems 33:5 (2018), 513–523 (see page 34).

[KLV10] Nikolay VKuznetsov, GennadyA Leonov, andVladimir I Vagaitsev.Analytical-
numerical method for attractor localization of generalized Chua’s
system. IFAC Proceedings Volumes 43:11 (2010), 29–33 (see pages 34, 38).

[KO21] Amina Aicha Khennaoui and Adel Ouannas. Chaos, control and synchro-
nization of discrete (2021) (see page 1).

85



[KRC93] Alexander I Khibnik, Dirk Roose, and Leon O Chua. On periodic orbits and
homoclinic bifurcations in Chua’s circuit with a smooth nonlinear-
ity. International Journal of Bifurcation and Chaos 3:02 (1993), 363–384 (see
page 2).

[Kuz+23] Nikolay Kuznetsov, Timur Mokaev, Vladimir Ponomarenko, Evgeniy Se-
leznev, Nataliya Stankevich, and Leon Chua. Hidden attractors in Chua
circuit: mathematical theory meets physical experiments. Nonlinear
Dynamics 111:6 (2023), 5859–5887 (see page 34).

[Las00] Nick Laskin. Fractional market dynamics. Physica A: Statistical Mechanics
and its Applications 287:3-4 (2000), 482–492 (see page 1).

[Lay+15] GC Layek et al. An introduction to dynamical systems and chaos.
Vol. 449. Springer, 2015 (see page 24).

[Leo+14] GA Leonov, NV Kuznetsov, MA Kiseleva, EP Solovyeva, and AM Zaretskiy.
Hidden oscillations in mathematical model of drilling system actu-
ated by induction motor with a wound rotor. Nonlinear Dynamics 77
(2014), 277–288 (see pages 31, 34).

[Leo09] Gennadii Alekseevich Leonov. On the method of harmonic linearization.
Automation and Remote Control 70:5 (2009), 800–810 (see pages 3, 36).

[LK11a] GA Leonov and NV Kuznetsov. Algorithms for searching for hidden
oscillations in the Aizerman and Kalman problems. In: Doklady Mathe-
matics. Vol. 84. 1. Springer. 2011, 475–481 (see page 34).

[LK11b] GA Leonov and NV Kuznetsov. Analytical-numerical methods for in-
vestigation of hidden oscillations in nonlinear control systems. IFAC
Proceedings Volumes 44:1 (2011), 2494–2505 (see pages 2, 36).

[LK11c] GA Leonov and NV Kuznetsov. Analytical-numerical methods for in-
vestigation of hidden oscillations in nonlinear control systems. IFAC
Proceedings Volumes 44:1 (2011), 2494–2505 (see page 34).

[LK13a] Gennady A Leonov and Nikolay V Kuznetsov. Hidden attractors in dy-
namical systems. From hidden oscillations in Hilbert–Kolmogorov,
Aizerman, and Kalman problems to hidden chaotic attractor in Chua
circuits. International Journal of Bifurcation and Chaos 23:01 (2013), 1330002
(see pages 31, 36).

[LK13b] Gennady A Leonov and Nikolay V Kuznetsov. Hidden attractors in dy-
namical systems. From hidden oscillations in Hilbert–Kolmogorov,
Aizerman, and Kalman problems to hidden chaotic attractor in Chua
circuits. International Journal of Bifurcation and Chaos 23:01 (2013), 1330002
(see page 34).

86



[LKM15] Gennady A Leonov, Nikolay V Kuznetsov, and Timur N Mokaev.Hidden
attractor and homoclinic orbit in Lorenz-like system describing con-
vective fluid motion in rotating cavity. Communications in Nonlinear
Science and Numerical Simulation 28:1-3 (2015), 166–174 (see page 34).

[LKV11a] GA Leonov, NV Kuznetsov, and VI Vagaitsev. Localization of hidden
Chua02bcs attractors. Physics Letters A 375:23 (2011), 2230–2233 (see
pages 2, 36).

[LKV11b] GA Leonov, NV Kuznetsov, and VI Vagaitsev. Localization of hidden
Chua02bcs attractors. Physics Letters A 375:23 (2011), 2230–2233 (see
pages 34, 38).

[LKV12a] GA Leonov, NV Kuznetsov, and VI Vagaitsev. Hidden attractor in smooth
Chua systems. Physica D: Nonlinear Phenomena 241:18 (2012), 1482–1486
(see pages 3, 36).

[LKV12b] GA Leonov, NV Kuznetsov, and VI Vagaitsev. Hidden attractor in smooth
Chua systems. Physica D: Nonlinear Phenomena 241:18 (2012), 1482–1486
(see page 31).

[Lor63] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric
sciences 20:2 (1963), 130–141 (see page 2).

[Lu91] Kening Lu.AHartman-Grobman theorem for scalar reaction-diffusion
equations. Journal of differential equations 93:2 (1991), 364–394 (see page 16).

[LU93] Rene Lozi and Shigehiro Ushiki.The theory of confinors in Chua’s circuit:
accurate analysis of bifurcations and attractors. International Journal of
Bifurcation and chaos 3:02 (1993), 333–361 (see page 2).

[Lur57] AI Lur’e. Certain Nonlinear Problems in the Theory of Automatic
Control, Gostekhizat, Moscow, Leningrad, 1951. Translated into English,
HM Stationery (1957) (see page 48).

[LVK10] GA Leonov, VI Vagaitsev, and NV Kuznetsov. Algorithm for localizing
Chua attractors based on the harmonic linearization method. In: Dok-
lady Mathematics. Vol. 82. 1. Springer. 2010, 663–666 (see pages 3, 36, 37).

[Mad93] Rabinder N Madan. Chua’s circuit: a paradigm for chaos. Vol. 1. World
Scientific, 1993 (see page 46).

[Mar03] Charles-Michel Marle. Systèmes dynamiques: une introduction. Ellipses,
2003 (see page 9).

[Mat11] AEMatouk.Chaos, feedback control and synchronization of a fractional-
order modified Autonomous Van der Pol–Duffing circuit. Communica-
tions in Nonlinear Science and Numerical Simulation 16:2 (2011), 975–986 (see
page 3).

87



[Mat84a] Takashi Matsumoto. A chaotic attractor from Chua’s circuit. IEEE Trans-
actions on Circuits and Systems 31:12 (1984), 1055–1058 (see page 2).

[Mat84b] Takashi Matsumoto. A chaotic attractor from Chua’s circuit. IEEE Trans-
actions on Circuits and Systems 31:12 (1984), 1055–1058 (see page 34).

[Mer96] David R Merkin. Introduction to the Theory of Stability. Vol. 24. Springer
Science & Business Media, 1996 (see page 19).

[Mes20] Labid Messaouda. Contrôle et synchronisation de quelques types de
systèmes dynamiques chaotiques. PhD thesis. Abdelhafid boussouf uni-
versity Centre mila, 2020 (see page 75).

[Min+90] Gabriel BMindlin, Xin-JunHou, Hernán G Solari, R Gilmore, and NB Tufillaro.
Classification of strange attractors by integers. Physical Review Letters
64:20 (1990), 2350 (see page 13).

[MKH10] Olga I Moskalenko, Alexey A Koronovskii, and Alexander E Hramov. Gen-
eralized synchronization of chaos for secure communication: Re-
markable stability to noise. Physics Letters A 374:29 (2010), 2925–2931 (see
page 75).

[MLC16] Tidjani Menacer, René Lozi, and Leon O Chua.Hidden bifurcations in the
multispiral Chua attractor. International Journal of Bifurcation and Chaos
26:14 (2016), 1630039 (see pages 3, 47, 61, 70).

[MM76] JE Marsden and M McCracken. The Hopf Bifurcation and Its Applications.
1976 (see page 2).

[Nat+18] Hayder Natiq, MRM Said, MRK Ariffin, Shaobo He, Lamberto Rondoni, and
Santo Banerjee. Self-excited and hidden attractors in a novel chaotic
system with complicated multistability. The European Physical Journal
Plus 133 (2018), 1–12 (see page 41).

[NG20] Sayantan Nag Chowdhury and Dibakar Ghosh. Hidden attractors: A new
chaotic system without equilibria. The European Physical Journal Special
Topics 229:6-7 (2020), 1299–1308 (see page 41).

[Poi85] Henri Poincaré. Sur l’équilibre d’une masse fluide animée d’un mouve-
ment de rotation. Bulletin astronomique, Observatoire de Paris 2:1 (1885),
109–118 (see page 1).

[Pol26] Balth van der Pol. On relaxation-oscillations. Philos. Mag. 2:7 (1926), 978–
992 (see page 32).

[PSJ18] Shirin Panahi, Julien C Sprott, and Sajad Jafari. Two simplest quadratic
chaotic maps without equilibrium. International Journal of Bifurcation
and Chaos 28:12 (2018), 1850144 (see page 31).

88



[Sat73] DH Sattinger. Topics in Stability and Bifurcation Theory Lecture Notes in
Mathematics 309 Springer-Verlag. 1973 (see page 1).

[SC08] Huijing Sun and Hongjun Cao. Chaos control and synchronization of a
modified chaotic system. Chaos, Solitons & Fractals 37:5 (2008), 1442–1455
(see page 3).

[Sha+15] Pooja Rani Sharma, Manish Dev Shrimali, Awadhesh Prasad, Nikolay V
Kuznetsov, and Gennady A Leonov. Controlling dynamics of hidden at-
tractors. International Journal of Bifurcation and Chaos 25:04 (2015), 1550061
(see page 31).

[SHI94] LEONID P SHIL’NIKOV. Chua’s circuit: Rigorous results and future
problems. International journal of bifurcation and chaos 4:03 (1994), 489–519
(see page 2).

[SL+91] Jean-Jacques E Slotine,Weiping Li, et al.Applied nonlinear control. Vol. 199.
1. Prentice hall Englewood Cliffs, NJ, 1991 (see pages 17, 18).

[SV91] Johan Suykens and Joos Vandewalle. Quasilinear approach to nonlinear
systems and the design of n-double scroll (n= 1, 2, 3, 4,. . . ). IEE Proceed-
ings G (Circuits, Devices and Systems) 138:5 (1991), 595–603 (see page 2).

[Tan+01] Wallace KS Tang, GQ Zhong, G Chen, and KF Man. Generation of n-scroll
attractors via sine function. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications 48:11 (2001), 1369–1372 (see pages 2, 3,
45–47, 65).

[Vai15] Sundarapandian Vaidyanathan. Lotka-Volterra two-species mutualistic
biology models and their ecological monitoring. International Journal
of PharmTech Research 8:7 (2015), 199–212 (see page 1).

[Via09] Thierry Vialar. Complex and chaotic nonlinear dynamics. Springer, 2009
(see page 11).

[Wei11] Zhouchao Wei. Dynamical behaviors of a chaotic system with no equi-
libria. Physics Letters A 376:2 (2011), 102–108 (see page 31).

[WWH21] Xianming Wu, Huihai Wang, and Shaobo He. Localization of hidden at-
tractors in Chua’s system with absolute nonlinearity and its FPGA
implementation. Frontiers in Physics 9 (2021), 788329 (see page 41).

[Yas03] MT19343201038 Yassen.Adaptive control and synchronization of amod-
ified Chua’s circuit system. Applied Mathematics and Computation 135:1
(2003), 113–128 (see page 3).

[YZ15] Jihua Yang and Liqin Zhao. Bifurcation analysis and chaos control of
the modified Chua’s circuit system. Chaos, Solitons & Fractals 77 (2015),
332–339 (see page 3).

89



[ZA85] G-Q Zhong and Farhad Ayrom. Experimental confirmation of chaos
from Chua’s circuit. International journal of circuit theory and applications
13:1 (1985), 93–98 (see page 2).

[Zel+13] Ivan Zelinka, Mohammed Chadli, Donald Davendra, Roman Senkerik, and
Roman Jasek. An investigation on evolutionary reconstruction of con-
tinuous chaotic systems. Mathematical and Computer Modelling 57:1-2
(2013), 2–15 (see page 33).

[Zha+14] Fuchen Zhang, Chunlai Mu, LiangweiWang, XingyuanWang, and Xianzhong
Yao. Estimations for ultimate boundary of a new hyperchaotic system
and its simulation. Nonlinear Dynamics 75 (2014), 529–537 (see page 33).

[Zho+11] Nanrun Zhou, Yixian Wang, Lihua Gong, Hong He, and Jianhua Wu. Novel
single-channel color image encryption algorithm based on chaos and
fractional Fourier transform. Optics Communications 284:12 (2011), 2789–
2796 (see page 1).

90



4Abstract

Chaos is a typical phenomenon of nonlinear systems and is currently widely studied, because

of its features and many potential applications.

The main aim of this thesis concerns principally two major subjects. the first is to

deploy a method for uncovering a hidden bifurcation in a multispiral Chua system with a

sine function that is based on the famous paper by Menacer et al. This method is based on the

core idea of Leonov and Kuznetsov for searching hidden attractors while keeping 𝜀 constant, a

new bifurcation parameter is introduced. We end this part with the introduction of a novel

method based on the duration of integration for unveiling hidden patterns of an even number

of spirals.

In the second part, We used the Routh-Hurwitz Criteria for studying the stability of

the Chua system at equilibrium point 𝐸0 concerning 𝜀. Furthermore, we made a theoretical

and numerical study of bifurcation and chaos control on Multispiral Chua’s system.

Keywords: Chaos, Hidden Attractor, Bifurcation, Equilibrium point, Stability, Chua

Chaotic system, Integration duration, Control, Routh-Hurwitz criterion, Synchronization.
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4Résumé

Le chaos est un phénomène typique des systèmes non linéaires, et actuellement largement

étudié, en raison de ses caractéristiques et de ses nombreuses applications potentielles.

L’objectif principal de cette thèse concerne principalement deux sujets majeurs. Le

premier est de déployer une méthode, pour découvrir une bifurcation cachée dans un système

multispirale de Chua avec une fonction sinus, qui est basée sur le célèbre article de Menacer

et al. Cette méthode est basée sur l’idée centrale de Leonov et Kuznetsov pour la recherche

d’attracteurs cachés, tout en gardant 𝜀 constant, un nouveau paramètre de bifurcation est

introduit. Nous terminons cette partie par la présentation d’une nouvelle méthode basée sur la

durée d’intégration pour dévoiler les modèles cachés d’un nombre pair de spirales.

Dans la deuxième partie, nous avons utilisé les critères de Routh-Hurwitz pour

étudier la stabilité du système de Chua, aux point d’équilibre 𝐸0 par rapport à 𝜀 . De plus, nous

avons fait une étude théorique et numérique de la bifurcation et du contrôle du chaos sur le

système de Chua multispiral.

Mots-clés: Chaos, Attracteur caché, Bifurcations, Point d’équilibre, Stabilité, Système

chaotique de Chua, Durée d’intégration, Contrôle, Critères de Routh-Hurwitz, Synchronisation.
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 ملخص

والعديد من  الفوضى: هي ظاهرة نموذجية للأنظمة غير الخطية، تتم دراستها حاليا على نطاق واسع بسبب ميزاتها

 التطبيقات المحتملة.

الموضوع الأول: نشر طريقة  لأساسين. يتناوالهدف الرئيسي من هذه الأطروحة يتعلق بشكل أساسي بموضوعين  

لبحث التي ا ورقة على هذه الطريقة تعتمد جيبيه،للكشف عن التشعب الخفي في نظام تشوا متعدد اللوالب معرف بدالة 

امل للباحثين ليونوف وكوزنتسوف، للبحث عن عو  منصر وزملاؤه. تستند هذه الأخيرة الى الفكرة الأساسيةالباحث كتبها 

ثابت فينتج عنه معامل تشعب جديد. ننهي هذا الجزء بتقديم طريقة جديدة تعتمد على  εفية بإبقاء المتغير الجذب المخ

 في عدد اللوالب الزوجية.المخفية  لتكامل للكشف عن التشعبات والجواذبمدة ا

 نقطةتشوا عند  الفوضوي  نظاماللدراسة استقرار  هرويترز-معايير روثستخدام االموضوع الثاني، تم فيما يخص 

للتحكم في التشعب والفوضى على نظام تشوا  ةوعددي ةنظري دراسة أجرينا . علاوة على ذلك،εالى  بالنسبة التوازن 

 متعدد اللوالب.

 

معيار فوضوي تشوا، مدة التكامل، التحكم، الاستقرار، النظام ال التشعبات،، الفوضى، جواذب مخفية الكلمات المفتاحية:

المزامنة. رويتز،و ه-روث  
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