
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

MOHAMED KHIDER UNIVERSITY OF BISKRA

Faculty of Exact Sciences, Natural and Life Sciences
Computer Science Department

Dissertation
Presented to obtain the academic master’s degree in Computer Science

Option: Information Systems, Optimization, and Decision (SIOD)

Theme

Detecting Microorganisms in Water Using Deep
Learning

Presented by MOUSSAOUI Kaouthar

Jury:

President Belouaar Houcine MCA
Supervisor Meadi Mohamed Nadjib MCA
Examiner Touil Keltoum MAA

Academic year 2023-2024



Acknowledgements

With great pride and humility, I extend my deepest gratitude to Allah Almighty,
whose grace and mercy have enabled this significant achievement. His unwavering support
has been the light guiding my path to success. I also express my profound appreciation to
my esteemed supervisor, Dr. Meadi Mohamed Nadjib, who has generously shared his
extensive knowledge and provided invaluable guidance throughout the preparation of this

research. His insights and direction have significantly impacted my academic development
and endowed me with essential mentorship skills.

I must not forget to thank the head of the laboratory, whose kind treatment was like a
beacon of hope that illuminated my path during dark times.

I also extend my gratitude to the esteemed committee members for accepting and evaluating
my work, giving me the motivation to continue my academic journey with determination

and persistence.
Finally, I would like to thank everyone who contributed to this journey, whether through

their support, encouragement, or belief in my abilities. Their support has been the fuel that
enabled me to achieve this accomplishment.

To all of you, I say from the depths of my heart: Thank you.

Moussaoui Kaouthar



Dedication
I dedicate this work To my dear father, who has always been my main pillar of support

with his constant concern and limitless encouragement. His presence by my side has given
me the strength and ability to face all challenges.

Special thanks go to my beloved mother, whose tender support created an ideal environment
at home, helping me to focus and strive. Her boundless support has had a profound impact

on me.

I also express my gratitude to my dear uncle, Anouar MOUSSAOUI, who has provided me
with unwavering financial and moral support. His significant role in my success is

unforgettable, and I am deeply thankful to him from the bottom of my heart.

Additionally, I extend my heartfelt thanks to my cousin Messaoud MOUSSAOUI for his
invaluable support and encouragement throughout my academic journey.

To all my friends who have always encouraged me, and to whom I wish more success.

Thank you!

Kaouthar MOUSSAOUI



Abstract

Detecting microorganisms in water is crucial for ensuring water quality and public
health. This study employs deep learning techniques to identify and classify microorganisms
in water samples. The methodology involves collecting dataset included EM images, pre-
processing the data using resizing and normalization, and then applying data augmentation
techniques such as horizontal and vertical flipping, random rotation, Gaussian blur, CLAHE
(Contrast Limited Adaptive Histogram Equalization), and cutout.

The study utilizes pre-trained models such as ResNet50, VGG19, and EfficientNet-B0
for feature extraction and classification. These models are combined with Support Vector
Machines (SVM) and use also Vision Transformers (ViT-B16) to enhance accuracy. The
models are evaluated based on precision, recall, F1-score, and accuracy.

The results show that for the first problem, the best models are the pre-trained models
alone with EfficientNet-B0 and ResNet50 with SVM, achieving 98% accuracy, recall, and
precision. For the second problem, the best model is the pre-trained ResNet50 alone, achiev-
ing 96% recall, 96% precision, and 95% accuracy.After training and evaluation, the model is
deployed in a real-world environment and integrated into a web application via the Gradio
framework.

This advancement offers rapid and accurate detection of harmful microorganisms, im-
proving public health outcomes.

Keywords: Deep learning, Water quality, Microorganism detection, CNN, ViT, Water-
borne diseases, Computer-aided classification.



ملخص

 العامة. والصحة المياه جودة لضمان الأهمية بالغ أمرًا الماء في الدقيقة الحية الكائنات عن الكشف يعَُدُّ
 المنهجية تتضمن المياه. عينات في الدقيقة الحية الكائنات وتصنيف لتحديد العميق التعلم تقنيات الدراسة هذه تستخدم

 حجمها تغيير خلال من مسبقاً البيانات ومعالجة (،EM) إلكتروني مجهر صور على تحتوي بيانات مجموعة جمع
 الغاوسي، والتشويش العشوائي، والتدوير والعمودي، الأفقي الانقلاب مثل البيانات زيادة تقنيات تطبيق ثم وتطبيعها،

الجزئي. والقطع بالهيستوجرام، المحدود التكيفي التباين تعديل و

 لاستخراج EfficientNet-B0و ،ResNet50، VGG19 مثل مسبقاً مدربة نماذج الدراسة تستخدم
 (ViT-B16) البصرية والمحولات (SVM) المتجهية الدعم آلات مع النماذج هذه دمج يتم والتصنيف. الميزات
والدقة. ،F1 مقياس الاسترجاع، الدقة، على بناءً النماذج تقُيم الدقة. لتعزيز

 مع بمفردها مسبقاً المدربة النماذج هي النماذج أفضل الأولى، للمشكلة بالنسبة أنه النتائج تظهر
EfficientNet-B0 وResNet50 مع SVM، 98 إلى تصل تصنيف صحة واسترجاع، دقة، نسبة تحقق حيث.% 

 ودقة استرجاع نسبة يحقق حيث بمفرده، مسبقاً المدرب ResNet50 هو نموذج أفضل فإن الثانية، للمشكلة بالنسبة أما
 ويب تطبيق في دمجه ويتم واقعية بيئة في النموذج نشر يتم والتقييم، التدريب بعد %.95 تصنيف صحة %،96 تبلغ
.Gradio عمل إطار عبر

العامة. الصحة نتائج يحسن مما الضارة، الدقيقة للكائنات ودقيقاً سريعاً كشفاً التقدم هذا يوفر

 الالتفافية، العصبية الشبكات الدقيقة، الكائنات كشف المياه، جودة العميق، التعلم المفتاحية: الكلمات
الكمبيوتر. بمساعدة التصنيف بالماء، المنقولة الأمراض البصرية، المحولات



Contents

Abstract

List of Figures

List of Tables

General introduction 1

1 General overview of water 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Water cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Water resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Groundwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Surface water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Atmospheric water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Water value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Human survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Agricultural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Climate regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.4 Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Water properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 Universal solvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 Density & buoyancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



Contents

1.5.3 Cohesion and adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Water pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.1 Chemical pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.2 Physical pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.3 Microbial pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Biological Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7.1 Pathogenic bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7.2 Viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7.3 Parasites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7.4 Parasitic worms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Water-borne diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8.1 Cholera disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8.2 Typhoid fever disease . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8.3 Shigellosis disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8.4 Hepatitis A virus (HAV) disease . . . . . . . . . . . . . . . . . . . . . 18
1.8.5 Poliomyelitis disease . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.8.6 Amoebiasis disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8.7 Giardiasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8.8 Ascariasis disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Deep learning on microorganisms detection 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Machine learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.4 Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Convolutional neural networks (CNN) . . . . . . . . . . . . . . . . . 29
2.4.2 Recurrent neural networks (RNNs) . . . . . . . . . . . . . . . . . . . 31
2.4.3 Generative adversarial networks (GANs) . . . . . . . . . . . . . . . . 35
2.4.4 Vision transformer (ViT) . . . . . . . . . . . . . . . . . . . . . . . . . 38

Univ-Biskra/Computer Science: 2024



Contents

2.4.5 Transfer learning (TL) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 System Design 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Global architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Detailed architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.4 Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.5 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.6 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.7 Model deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Implementation and results 56
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Implementation tools and languages . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Kaggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 opencv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.4 Pytorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.5 Matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.6 Gradio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.7 NVIDIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.8 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.9 CuDNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.10 NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.11 Scikit-learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Preprocessing steps & Split Dataset . . . . . . . . . . . . . . . . . . . 67
4.3.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Modelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Univ-Biskra/Computer Science: 2024



Contents

4.4.1 Pretrained Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Pretrained & ML Models . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.3 ViT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.4 Evaluating the Models . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.1 Pretrained Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 Pretrained Models & ML Models . . . . . . . . . . . . . . . . . . . . 101
4.5.3 ViT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.4 discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5.5 Model deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

General conclusion 121

Bibliography 122

Univ-Biskra/Computer Science: 2024



List of Figures

1.1 Water Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Classification techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Basic CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 FRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Recursive Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Hopfield Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 SRN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Echo State Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 GRUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.11 Basic GAN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.12 Basic VIT architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.13 VGG-19 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.14 EfficientNet-B0 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.15 Resnet50 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.16 PIX2PIX architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Pre-processing steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Data partitioning: 80% for training and 20% for testing/validation. . . . . . 48
3.4 Training Phase Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Data Augmentation Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Feature Extraction and Classification Architecture . . . . . . . . . . . . . . . 51
3.7 Vision Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 52



List of Figures

3.8 testing Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Model Deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Python version code and output. . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Kaggle Logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 OpenCv logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Pytorch logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Matplotlib logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Gradio logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7 NVIDIA logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 CUDA logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9 CuDNN logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.10 Numpy logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.11 Sklearn logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.12 Pathogenicity Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.13 Data Structure, Pathogenic, and Non-Pathogenic. . . . . . . . . . . . . . . . 65
4.14 Percentage distribution of groups . . . . . . . . . . . . . . . . . . . . . . . . 67
4.15 Python code snippet for importing libraries. . . . . . . . . . . . . . . . . . . 67
4.16 Python code snippet for resizing images. . . . . . . . . . . . . . . . . . . . . 68
4.17 Python code snippet for normalization. . . . . . . . . . . . . . . . . . . . . . 68
4.18 Python code snippet for splitting dataset. . . . . . . . . . . . . . . . . . . . 69
4.19 Results of preprocessing steps. . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.20 Python code snippet for horizontal flip. . . . . . . . . . . . . . . . . . . . . . 70
4.21 Python code snippet for vertical flip. . . . . . . . . . . . . . . . . . . . . . . 70
4.22 Python code snippet for rotation. . . . . . . . . . . . . . . . . . . . . . . . . 70
4.23 Python code snippet for Gaussian blur. . . . . . . . . . . . . . . . . . . . . . 70
4.24 Python code snippet for CLAHE. . . . . . . . . . . . . . . . . . . . . . . . . 71
4.25 Python code snippet for Cutout. . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.26 Original image and its augmented versions. . . . . . . . . . . . . . . . . . . . 73
4.27 Setting up the model using EfficientNet-B0 with ImageNet weights. . . . . . 74
4.28 Setting up the loss function and optimizer. . . . . . . . . . . . . . . . . . . . 75
4.29 Setting up training loop variables. . . . . . . . . . . . . . . . . . . . . . . . . 75
4.30 Epoch loop for training and validation phases. . . . . . . . . . . . . . . . . . 75
4.31 Batch loop for each phase within each epoch. . . . . . . . . . . . . . . . . . . 76

Univ-Biskra/Computer Science: 2024



List of Figures

4.32 Calculating and recording metrics for each epoch phase. . . . . . . . . . . . . 76
4.33 Loading and setting up the pretrained EfficientNet-B0 model. . . . . . . . . 77
4.34 Extracting features from training and test sets. . . . . . . . . . . . . . . . . 77
4.35 Training and evaluating multiple SVM classifiers. . . . . . . . . . . . . . . . 78
4.36 Saving the best SVM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.37 Importing Libraries and Setting up the Device . . . . . . . . . . . . . . . . . 79
4.38 Loading Pretrained ViT Model and Freezing Base Parameters . . . . . . . . 80
4.39 Modifying the Classifier Head . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.40 Displaying Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.41 Setting Up Data Transforms and Loaders . . . . . . . . . . . . . . . . . . . . 81
4.42 Creating Dataloaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.43 Defining Training and Evaluation Functions . . . . . . . . . . . . . . . . . . 82
4.44 Training Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.45 Creating Optimizer and Loss Function . . . . . . . . . . . . . . . . . . . . . 83
4.46 Training the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.47 Loading the best model from the training phase. . . . . . . . . . . . . . . . . 84
4.48 Plotting training and validation accuracy and loss. . . . . . . . . . . . . . . . 84
4.49 Model evaluation on the validation set. . . . . . . . . . . . . . . . . . . . . . 85
4.50 Generating the confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . 85
4.51 Visualizing the confusion matrix using a heatmap. . . . . . . . . . . . . . . . 85
4.52 Printing the classification report. . . . . . . . . . . . . . . . . . . . . . . . . 86
4.53 Confusion matrix showing the performance of the EfficientNet-B0 model (2

classes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.54 Accuracy and Loss Curves During Training and Validation Phases of EfficientNet-

B0 (2 classes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.55 Confusion matrix showing the performance of the EfficientNet-B0 model (40

classes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.56 Accuracy and Loss Curves During Training and Validation Phases of the

EfficientNet-B0 Model (40 classes). . . . . . . . . . . . . . . . . . . . . . . . 91
4.57 Confusion matrix showing the performance of the ResNet-50 model (2 classes). 92
4.58 Accuracy and Loss Curves During Training and Validation Phases of ResNet-

50 (2 classes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.59 Confusion matrix showing the performance of the ResNet-50 model (40 classes). 94

Univ-Biskra/Computer Science: 2024



List of Figures

4.60 Accuracy and Loss Curves During Training and Validation Phases of the
ResNet-50 Model (40 classes). . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.61 Confusion matrix showing the performance of the VGG19 model (2 classes). 97
4.62 Accuracy and Loss Curves During Training and Validation Phases of VGG19

(2 classes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.63 Confusion matrix showing the performance of the VGG19 model (40 classes). 99
4.64 Accuracy and Loss Curves During Training and Validation Phases of the

VGG19 Model (40 classes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.65 Confusion Matrix for EfficientNet-B0 + SVM (2 classes) . . . . . . . . . . . 102
4.66 Confusion Matrix for EfficientNet-B0 + SVM (40 classes). . . . . . . . . . . 103
4.67 Confusion Matrix for ResNet50 + SVM (2 classes). . . . . . . . . . . . . . . 105
4.68 Confusion Matrix for ResNet50 + SVM (40 classes). . . . . . . . . . . . . . 106
4.69 Confusion Matrix for VGG19 + SVM (2 classes). . . . . . . . . . . . . . . . 108
4.70 Confusion Matrix for VGG19 + SVM (40 classes). . . . . . . . . . . . . . . . 109
4.71 Confusion matrix showing the performance of the VIT model (2 classes). . . 112
4.72 Accuracy and Loss Curves During Training and Validation Phases of the VIT

model (2 classes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.73 Confusion matrix showing the performance of the VIT model (40 classes). . . 114
4.74 Accuracy and Loss Curves During Training and Validation Phases of the VIT

model (40 classes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.75 Image Classification using EfficientNet and Gradio Interface . . . . . . . . . 118
4.76 select the classification type . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.77 Application example First problematic. . . . . . . . . . . . . . . . . . . . . . 119
4.78 Application example Second problematic. . . . . . . . . . . . . . . . . . . . . 120

Univ-Biskra/Computer Science: 2024



List of Tables

2.1 Classification of unsupervised clustering methods . . . . . . . . . . . . . . . 26

4.1 Image Counts per Class in EMDS-7 (2 Classes) . . . . . . . . . . . . . . . . 64
4.2 Image Counts per Class in EMDS-7 . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Hyperparameters used for training the VGG19 model. . . . . . . . . . . . . . 74
4.4 Classification Report EfficientNet-B0 (2 classes). . . . . . . . . . . . . . . . . 88
4.5 Classification Report Detailing Precision, Recall, F1-Score, and Support of the

EfficientNet-B0 Model (40 classes) . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Classification Report ResNet-50 (2 classes). . . . . . . . . . . . . . . . . . . . 93
4.7 Classification Report Detailing Precision, Recall, F1-Score, and Support of the

EfficientNet-B0 Model (40 classes) . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8 Classification Report VGG19 (2 classes). . . . . . . . . . . . . . . . . . . . . 98
4.9 Classification Report Detailing Precision, Recall, F1-Score, and Support of the

VGG19 Model (40 classes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.10 Classification Report for EfficientNet-B0 + SVM (2 classes). . . . . . . . . . 102
4.11 Classification Report for EfficientNet-B0 + SVM (40 classes). . . . . . . . . 105
4.12 Classification Report for ResNet50 + SVM (2 classes). . . . . . . . . . . . . 106
4.13 Classification Report for for ResNet50 + SVM (40 classes). . . . . . . . . . 108
4.14 Classification Report for VGG19 + SVM (2 classes). . . . . . . . . . . . . . 109
4.15 Classification Report for VGG19 + SVM (40 classes). . . . . . . . . . . . . . 111
4.16 Classification Report Detailing Precision, Recall, F1-Score, and Support of the

VIT model (2 classes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.17 Classification Report Detailing Precision, Recall, F1-Score, and Support of the

VIT model (40 classes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.18 Comparison of models on two problematics . . . . . . . . . . . . . . . . . . . 117



General introduction

Water quality and safety are crucial priorities for public health and the environment.
Microbial contamination of water poses significant risks to human health and marine life.
Therefore, detecting these microorganisms in water is crucial for maintaining water quality
and preventing waterborne diseases. With technological advancements, deep learning tech-
niques have become powerful tools for analyzing environmental data and detecting biological
pollutants.

Research problem and motivation

Classifying microorganisms in water is an intricate task due to their vast diversity in
sizes, densities, shapes, and morphologies. This challenge is heightened when microorganisms
display similar characteristics yet possess distinct attributes, complicating the determination
of their pathogenicity or non-pathogenicity. Traditional detection techniques are not only
costly, time-consuming, and labor-intensive but also often unavailable to people in developing
countries, further exacerbating the issue.

Objectives of the study

The primary objective of this study is to develop an efficient model for classifying
microorganisms that can be easily used by everyone. This goal will be achieved through
several stages. First, we will define the scope and specifications of the domain. Next, we
will fine-tune models to perform the required task. After that, we will compare the obtained
results. Finally, we will create a web application to utilize the most effective model among
the various trained models.

1



General introduction

Structure of the memo

This memo comprises an introduction, four chapters, and a general conclusion, orga-
nized as follows:

• Chapter 1: Overview of Water: Provides an introduction to water, water cycle,
water sources, water importance, water characteristics, water pollution, biological pol-
lutants, and waterborne diseases.

• Chapter 2: Deep Learning for Microorganism Detection: This chapter gives
an overview of deep learning and artificial intelligence models, including Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial
Networks (GANs), Transformer (ViT), and Transfer Learning (TL).

• Chapter 3: System Design: Describes the proposed system architecture, includ-
ing data collection, preprocessing, data splitting, training, testing, and performance
evaluation.

• Chapter 4: Implementation and Results: This chapter presents the tools neces-
sary for implementing the solution, explains the code, and discusses the final results.

• General Conclusion: Summarizes the key findings and provides recommendations
for future research.

This study aims to contribute to improving water quality and protecting public health by
applying deep learning techniques to accurately and effectively detect and classify microor-
ganisms.

Univ-Biskra/Computer Science: 2024 2



Chapter 1

General overview of water

1.1 Introduction

Water is considered the most abundant chemical compound on Earth’s surface, covering
a significant proportion of 71%. This prevalence is due to its crucial role in supporting life and
its diverse forms in nature, which arise from its unique properties. Despite its abundance,
ensuring safe water usage remains a significant challenge, largely due to pollution. Many
people suffer and even die from using contaminated water, as they struggle to determine its
suitability, highlighting the urgent need for effective water safety detection methods.

1.2 Water cycle

The Water Cycle is an open system that converts stored energy locally as well as thermal
and chemical energy inside the system into kinetic energy and heat through interactions
with energy molecules, water, air, and soil/rock. Complex processes including evaporation,
condensation, precipitation, and runoff are a part of the hydrological cycle, often known as
the water cycle. view the diagram in figure 1.1.Any modification (building of reservoirs, land
cultivation, urbanization, industrialization, and river channelization) disturbs energy inputs
and system components, which has an impact on the output [1].

Even though deteriorated water may lose qualities like cleanliness, enthalpy, and potential
energy attraction, most of it is eventually restored by natural mechanisms in the moisture
cycle (water cycle). Human demands can be satisfied by renewable water energy through
careful management of this cycle [2].

3



General overview of water

1.2.1 Evaporation

The transition of water from a liquid to a vapor occurs naturally. The majority of it
occurs near the surface of the Earth, when sunlight heats liquid water and turns it into vapor.
The amount of liquid water lost from a closed system or the movement of water vapor away
from the Earth’s surface in an open system can be used to calculate evaporation. In essence,
it’s about water vaporizing and dissipating into the atmosphere. The energy from the sun or
the air is what drives this process, literally making the water disappear [1] [3].

1.2.2 Condensation

The transition of water from a vapor to a liquid form is known as condensation. On
exposed surfaces like those found in plants, lakes, streams, rocks, snow, and glaciers, this
happens. On mountain slopes, condensation is a significant source of moisture that con-
tributes to precipitation. The properties of the local plant foliage have a significant impact
on the amount of condensation [4].

Clouds are formed when condensation condenses, reflecting sunlight and trapping heat
to beautify the sky and control temperature. Rain is another effect of it that is essential
to weather patterns and climate balance. Furthermore, condensation releases heat, which
affects atmospheric circulation, particularly in tropical regions [5].

1.2.3 Precipitation

The main force behind the natural water cycle is thought to be precipitation, which is
the process of water dropping in either liquid or solid form on the surface of the Earth and
in the oceans. Since precipitation is necessary for all other hydrological processes, including
evaporation, surface runoff, and recharge, rainfall is traditionally acknowledged as the begin-
ning of the water cycle. It is impossible to overestimate the role that rainfall plays in the
natural water cycle [6].

An examination of atmospheric temperatures is one technique used to assess the quality
of surface precipitation. They demonstrate how the presence of a warm layer on top of a
cold layer below frequently results in freezing rain and snow pellets. Precipitation types are
predicted by using predictors based on average layer temperature and depth. Using statistical
analysis of data from meteorological stations, criteria were devised to differentiate between
freezing rain, ice pellets, snow, and rain. Using temperature data from overhead weather
measurements or weather forecast models, meteorologists can readily apply this strategy [7].

Univ-Biskra/Computer Science: 2024 4



General overview of water

1.2.4 Runoff

Water droplets are moved from one place to another during the flow phase by gravity
and the land’s natural curves, preferring paths with few obstacles and dirt. When there are
no obstructions, gravity pulls water droplets toward the center of the Earth.This gravita-
tional force changes the terrain, which in turn modifies the path of water flow. Erosion and
sedimentation are terms used to describe the processes by which water moves sediment in
river systems.Through the removal of dirt or the creation of new routes, these occurrences
actively shape the landscape. The water’s velocity determines how effective these processes
are; higher flows cause soil particles to be suspended, while lower flows cause silt to deposit.
Furthermore, there is a direct relationship between the velocity of the water and the amount
of silt in it [8].

Figure 1.1: Water Cycle [9]

1.3 Water resources

There are two main categories in the field of water resources: conventional and non-
conventional. Natural sources such as groundwater, atmospheric water, and surface water
are considered conventional water resources. However, treated wastewater and desalinated
water are examples of non-conventional water supplies.

In the past, nations mainly depended on traditional resources. Yet, due to contemporary

Univ-Biskra/Computer Science: 2024 5



General overview of water

needs, planning and management of water resources now incorporates both conventional and
non-conventional water resources [10].

1.3.1 Groundwater

One of the main sources of fresh water below the surface of the Earth is groundwater.
It is characterized by porosity and permeability and is found in rocks and soil. Groundwater
flows through porous rocks and sediments, while crystalline rocks and impermeable clay can
act as barriers. The main direction of groundwater flow is from high-porosity to low-porosity
regions. It is essential for sustaining environmental balance and protecting water supplies
during dry spells. It is utilized for industry, agriculture, and human consumption [11].

Alluvial Aquifers, Glacial Terrains, Sandstone-Shale Aquifers, Carbonate Rocks, Volcanic
Terrains, Crystalline Rocks, Coastal Aquifers, and Arid Regions are examples of groundwater
settings [12].

1.3.2 Surface water

Surface water is that which accumulates naturally on the Earth’s surface, such as lakes,
rivers, ponds, and marshes. Surface water is affected by changes in precipitation, evaporation
and discharge, and forms an essential part of the natural water cycle. Surface water is an im-
portant resource for human, animal and agricultural use, and constitutes a vital environment
for many organisms and plants [13].

1.3.3 Atmospheric water

The water that exists in the Earth’s atmosphere in a variety of forms, such as water
vapor, clouds, fog, and precipitation, is referred to as the "water of atmosphere." Through
processes including evaporation, condensation, and precipitation, this atmospheric water is
essential to controlling Earth’s climate and weather patterns [14].

1.4 Water value

For all living things to have access to enough food and a healthy environment, water
and its resources are necessary. Freshwater is becoming more and more in demand worldwide
due to population growth and economic expansion. Water scarcity not only endangers human

Univ-Biskra/Computer Science: 2024 6



General overview of water

food supplies but also drastically lowers ecological biodiversity on land and in water. Vital
water supplies are under rising pressure in many countries as a result of changing lifestyles,
climate change consequences, and growing global population. As a result, the pressing need
to conserve water is becoming more widely recognized [15].

Water is essential for preserving public health and quality of life, but its distribution is
uneven around the globe, making it more difficult to access and utilize effectively [15].

1.4.1 Human survival

Water is essential to all of the bodily processes that take place in it. Since the body’s
cells make up its components, it plays a crucial function in the development and lubrication
of human cushions and joints. Moreover, it helps nutrients to be transported anew as general
physiological processes including digestion and blood pressure, as well as body temperature,
are balanced and reregulated. Studies highlight the various roles that developing cells play,
guaranteeing the discovery of the heart and its functions, and expanding our understanding
and diversity of temperature regulation [16].

1.4.2 Agricultural

Agriculture is a vital component of both human life and the global economy, providing a
significant portion of food and rural income. Globally, the amount of water used for irrigation
has significantly grown, which has enhanced crop productivity and farmers’ livelihoods. But
there are drawbacks to this expansion as well: irrigation uses a lot of energy and leads to
water leaks and soil salinization. Adopting techniques that improve water use efficiency and
lessen adverse environmental effects is necessary for agriculture to become sustainable. This
can be accomplished by implementing cutting-edge irrigation methods and better managing
water resources [17].

1.4.3 Climate regulation

Built wetlands with a free water surface that operate as carbon sinks and have the
capacity to absorb carbon from the atmosphere help regulate the climate. Additionally, they
support the overall balance of greenhouse gases by boosting nitrous oxide emissions and
decreasing methane emissions [18].

Univ-Biskra/Computer Science: 2024 7



General overview of water

1.4.4 Industrial

The various industrial applications of water are described in this paragraph, with the
main ones being cooling, transportation, washing, and solvent use. Due to cooling require-
ments, the production of thermal and atomic power is heavily consumed by industries such as
chemical plants, metallurgy, pulp and paper, petroleum refining, and machinery manufactur-
ing. Climate, water supply systems, and technology all affect how much water is used. Even
though it makes up a small portion of the total intake, industrial water use might be im-
portant for some operations. Reducing withdrawals and pollution is necessary because rapid
industrialization has resulted in untreated wastewater discharge contaminating water sup-
plies. There has been a tendency since the 1970s toward stabilizing or reducing the demand
for industrial water, and future advancements will probably concentrate on more effective
water usage technology [19].

1.5 Water properties

Water’s unique chemical makeup makes it essential for supporting life in all of its forms
on Earth. Water is essential to many biological and industrial processes because of its unique
physical and chemical characteristics [20]. The following are some of these attributes:

1.5.1 Universal solvent

Because it can sustain the complex chemical chemistry that gives rise to life, water is a
popular solvent that is vital to maintaining life. Studies suggest that various organic solvents
might have different chemistries. Because water is so abundant in the universe, it makes an
excellent solvent, which is why biospheres were invented. High constants, scaffolding effects
support, and structural stability across the temperature range that live systems are exposed
to are requirements for a solvent that is able to support life.Although water provides a good
example of these qualities, there are still potential to find substitutes. Aqueous molecules
interact with one another through atom-dependent forces that can be broadly categorized
as splice interactions and electrostatic interactions. For polar or ionic compounds, polar
solvents like water work well; nonpolar solvents offer fewer possibilities. Furthermore, water
facilitates cleavage interactions between nonpolar molecules, meaning that certain cleavage
effects are required for any prospective solvent to support life. Water is the only solvent that
successfully satisfies these conditions, which are necessary for the sustaining of life, but there

Univ-Biskra/Computer Science: 2024 8



General overview of water

may be other solvents that are not as well understood [21].

1.5.2 Density & buoyancy

Understanding water behavior requires an understanding of water density (ρ), which
is the ratio of water mass to volume. Freshwater has a density of about 1000 kg/m3 at
4◦C and atmospheric pressure, whereas seawater has a denser density of about 1027 kg/m3

because of dissolved salts. With only slight changes in pressure and temperature, its density
is comparatively stable. Water defies gravity due to its density, which makes Archimedes’
principle apply. This is especially true in colder climates and ocean. Essentially, density and
buoyancy are related: as a body submerges, water is displaced, producing buoyant force that,
when combined with the body’s weight, determines whether the object floats or sinks [22].

1.5.3 Cohesion and adhesion

A fundamental phenomena, water cohesion reflects its physical and chemical properties
and is essential to many chemical and biological processes. This word describes how molecules
of water interact with one another. In terms of water qualities, it means that molecules of
water can stick together because of hydrogen bonds. Due to their polarity, which allows for
hydrogen bond formation and mutual interaction, water molecules have little positive and
negative charges close to their hydrogen atoms and modest negative charges near their oxygen
atoms. Water’s surface tension is a result of cohesiveness, which acts as a cohesive force and
makes the surface behave like an elastic membrane.Certain species, including water insects,
may move on the water’s surface without sinking thanks to this characteristic.Furthermore,
cohesiveness is essential for the movement of water through plant tissues, as water molecules
stick together to form a continuous column that runs from the roots to the leaves.The at-
traction of molecules of various substances, on the other hand, is referred to as adhesion.
In the case of water, this attraction happens when molecules of water are drawn to other
surfaces, like the surfaces of plant vessels or fibers.Water can ascend or spread on surfaces
thanks to adhesion, which is necessary for activities like plant water intake and other natural
occurrences.In conclusion, adhesion and cohesiveness are complementary forces that influence
critical biological processes and give water its special qualities [23].

Univ-Biskra/Computer Science: 2024 9



General overview of water

1.6 Water pollution

Global water pollution is becoming a bigger issue, so strategies for managing water
resources must be continuously assessed to meet these new demands. Approximately 14,000
individuals worldwide pass away from diseases and fatalities brought on by water contam-
ination every day. Water pollution is a problem in both wealthy and developing nations.
Water quality is influenced by a wide range of elements, including groundwater, precipita-
tion, climate, soil type, vegetation, geology, flow conditions, and human activity. Although
mining, urbanization, and agriculture all have an impact on water quality, point sources like
towns and industries offer the most threat. Sediments, hazardous pollutants, and nutrients
are examples of non-point source pollution [24].

Pollution manifests in three distinct types:

1.6.1 Chemical pollution

The term "chemical pollution" describes the presence of heavy metals, organic and
inorganic pollutants, and chemical toxins in water. These pollutants can originate from
man-made activities like leaking chemicals from various sources or from natural processes
like the chemical breakdown of organic matter. In addition to endangering human health
and welfare, this pollution prevents society and the economy from developing sustainably. In
order to address the effects on the environment and ecology and guarantee that the public
has access to clean drinking water, the current situation necessitates ongoing monitoring [25]
[26].

1.6.2 Physical pollution

When organic and inorganic materials are suspended in water, they alter the water’s
color, flavor, and odor, leading to physical pollution. The rise in water temperature brought
on by the cooling water leakage from nuclear reactors and companies into bodies of water
is one instance of physical pollution. Because of the decrease in dissolved oxygen caused by
this temperature rise, aquatic life may be harmed [25].

1.6.3 Microbial pollution

The term "microbial contamination" describes the introduction of potentially harmful
microorganisms into water, soil, or the atmosphere, including bacteria, viruses, and protozoa.

Univ-Biskra/Computer Science: 2024 10



General overview of water

Natural ecosystems are contaminated by this type of pollution, which originates from a variety
of sources such as untreated sewage, agricultural runoff, and industrial discharge. Elevated
levels of total aerobic bacteria and fecal coliforms, particularly Escherichia coli, have been
reported in water bodies such as Golbasi Lake, indicating microbial pollution and possible
health hazards [27].

1.7 Biological Pollutants

Biological pollutants primarily refer to invasive and non-native species of microorgan-
isms in water samples. These pollutants can cause adverse effects at multiple levels of bio-
logical organization. At the ecosystem level, they can alter the flow of organic materials and
energy, while at the habitat level, they can modify chemical and physical conditions. At the
community level, biological pollutants can cause structural changes, such as the dominance,
elimination, or replacement of native species by invasive species. At the population level,
they can induce genetic changes, such as hybridization between invasive and native species,
and at the individual organism level, they can lead to contamination by internal parasites
or pathogens. Biological pollutants can result in economic losses, human health problems,
and a decline in the authenticity of nature conservation areas. The concept of "biological
pollutants" proposed by Elliott, is recognized in invasion biology. This concept is used to
develop bio-pollution level assessments and standards for environmental status descriptors in
European marine strategy frameworks [28]. Examples of biological pollutants include various
types that can be classified as follows:

1.7.1 Pathogenic bacteria

Microorganisms known as pathogenic bacteria are responsible for infectious diseases
in humans, animals, or plants. These microbes can cause illness or even death in their
hosts. Important characteristics include their capacity to infiltrate and colonize host cells,
create toxins that impair normal function, elude immune responses, and transfer across hosts
through a variety of channels [29].

1.7.1.1 Vibrio cholerae

The Gram-negative bacterium Vibrio cholerae is the source of the serious gastroin-
testinal illness cholera. The bacteria is a well-known worldwide waterborne infection that is

Univ-Biskra/Computer Science: 2024 11



General overview of water

mainly spread via sewage and tainted water. Cholera can be prevented and controlled by
maintaining good personal hygiene and making sure food is safe to eat, which includes thor-
oughly boiling meat, drinking pasteurized milk, and using chlorinated water. The relevance
of Vibrio cholerae is found in its capacity to induce severe diarrheal illness, which can result
in significant morbidity and mortality, particularly in impoverished nations [30].

1.7.1.2 Salmonella

The gram-negative bacterium salmonella is the source of enterocolitis and gastritis. In
order for Salmonella to be deadly, complex combinations of lethality factors that enable the
bacterium to elude the host immune system must be coordinatedly expressed. Every species
of Salmonella has the capacity to enter the host by triggering bacterial autophagy within in-
testinal epithelial cells. Furthermore, species linked to gastritis cause the intestines to become
inflamed and secretory, whereas species that cause enteric fever cause a systemic infection by
living and multiplying in mononuclear phagocytes [31]. Salmonella Infantis, Salmonella New-
port, Salmonella Hadar, Salmonella Bareilly, Salmonella Nchanga, Salmonella Montevideo,
Salmonella Tennessee, Salmonella Oranienburg, Salmonella Typhi, and Salmonella Paratyphi
A are a few names for different serotypes of Salmonella [32].

1.7.1.3 Shigella

Shigella is a rod-shaped, gram-negative enteric bacteria that is spread through the fecal-
oral pathway. It causes shigellosis, also known as bacillary dysentery, which is characterized
by symptoms like fever, abdominal pain, and bloody diarrhea in humans. There are four
primary species: Shigella dysenteriae, Shigella sonnei, Shigella flexneri, and Shigella Boydii
[33].

1.7.2 Viruses

A class of diseases known as enteric viruses can be harmful to both human and animal
health in aquatic environments. These viruses produce a wide range of illnesses and symptoms
in humans and other animals because they are host-specific [34]. As an illustration:

1.7.2.1 Adenoviruses (AdVs)

AdVs, or adenoviruses, are members of the Adenoviridae family, which includes a range
of illnesses that impact different kinds of animals. Six genes in this family can infect any

Univ-Biskra/Computer Science: 2024 12



General overview of water

animal, including fish and humans. The seven species (HAdV A-G) and up to 113 recognized
kinds of human adenoviruses (HAdVs) are grouped under the Mastadenovirus genus. AdVs
are important in environmental and medicinal contexts [35].They can result in a variety of
illnesses in humans, ranging from minor respiratory infections to serious ailments. AdVs are
also important environmental pathogens because they can contaminate water supplies and
perhaps spread waterborne diseases [36].

1.7.2.2 Hepatitis A virus (HAV)

The fecal-oral pathway is the main means by which the hepatitis A virus (HAV) spreads,
and tainted water is a major factor in this process. It may survive for several months in the
environment and shows tolerance to certain situations like as low pH and high concentrations
of chlorine. Elderly people, people with impaired immune systems, and people living in
crowded environments are high-risk categories. Adults are more likely to develop serious
disease from infections, whereas children may only show no symptoms [37].

1.7.2.3 F-specific (F+) RNA phages

Enteric viruses and fecal contamination in water are frequently detected using F-specific
(F+) RNA phages as markers. The monitoring of microbiological sources is made possible
by identifying particular subgroups of these phages. Temperature, pH, and the presence
of organic materials are some of the variables that affect their survival and length of time
in river water. The differential persistence patterns exhibited by different subgroups could
skew assessments of their abundance in surface water. It’s important to take water features
into account when using F+ RNA phages for identifying microbial sources since differences
in subgroup persistence can provide false information about their initial proportions. In
conclusion, even though F+ RNA phages are useful markers, it is essential to comprehend
the dynamics of their persistence in order to appropriately interpret the data [38].

1.7.3 Parasites

Parasites can be transmitted to humans through various means, including the direct
consumption of contaminated water, causing 842,000 deaths annually [39]. They can find
the following examples:

Univ-Biskra/Computer Science: 2024 13



General overview of water

1.7.3.1 Giardia

When consumed through tainted food or water, the protozoan parasite Giardia can
cause the gastrointestinal disease Giardiasis in both humans and animals. It is among the
most prevalent parasites spread by water and can infect drinking water. Research indicates
that traditional methods of treating water, such as filtration, sedimentation, and coagula-
tion, are usually successful in eliminating Giardia from potable water. Advanced treatment
techniques like UV disinfection and membrane filtration can also offer extra barriers to help
remove and inactivate Giardia. Giardia removal methods for water are determined by a
number of criteria, including raw water quality, treatment goals, and legal restrictions. To
guarantee that the treatment procedures are successful in eliminating Giardia from the final
drinking water supply, testing and monitoring are essential [40].

1.7.3.2 Cryptosporidium

The diarrheal disease known as "cryptosporidiosis" is brought on by the tiny proto-
zoan parasite Cryptosporidium. Consuming food or water tainted with resistant cysts, or
"oocysts," is how this parasite spreads. Severe diarrhea, vomiting, and abdominal pain can be
symptoms of a Cryptosporidium infection, particularly in young children and immunocom-
promised people. Rarely, it can result in fatalities or very serious complications such acute
dehydration. The basic course of treatment for a Cryptosporidium infection is to replace
lost fluids and electrolytes using intravenous and dietary fluids; however, there are no proven
treatments for this infection. While some treatments can be used to treat symptoms, they
don’t really work to get rid of the parasite. By enhancing personal cleanliness habits and
water quality, one can prevent illness better than treating it [41].

1.7.3.3 Cyclospora

is a parasite that can lead to cyclosporiasis, an intestinal ailment. It is a parasite with
a single cell that can only reproduce in human hosts. Consuming food or water tainted
with Cyclospora oocysts causes infection. Watery diarrhea, appetite loss, significant weight
loss, exhaustion, and other flu-like symptoms are among the symptoms. If treatment is not
received, the sickness may linger for several weeks, a month, or longer. People with impaired
immune systems, such those living with HIV/AIDS, may be more vulnerable to more serious
or protracted illnesses. Antibiotics, such as trimethoprim-sulfamethoxazole, are commonly
used to treat cyclosporiasis. As part of supportive treatment, it’s crucial to stay hydrated

Univ-Biskra/Computer Science: 2024 14



General overview of water

[42].

1.7.4 Parasitic worms

Many low-income communities and developing countries face serious health difficulties
due to parasitic worm or helminth infections. Prior studies have detected the existence of
parasitic worms in water sources in different nations. Humans who contract these infections
may experience a variety of health problems, such as diarrhea, vomiting, nausea, skin rashes,
dry coughs, and swelling and pain in the abdomen [43]. The following helminths are some of
the most common ones found in water sources:

1.7.4.1 Ascaris lumbricoides

The huge parasitic roundworm Ascaris lumbricoides is a prominent cause of ascariasis,
a parasitic illness that is common throughout the world. Symptoms of ascariasis include
vomiting, diarrhea, congestion in the nose, and abdominal pain. Severe cases may result in
biliary or intestinal obstruction, which could cause problems for the liver or lungs, among
other organs. Usually, anti-worm drugs such as mebendazole and albendazole are used in
treatment. Surgical intervention may be required in difficult cases. Promoting good personal
hygiene, sanitation, and waste disposal techniques are among the prevention tactics; these
are especially important for the health and wellbeing of children [44].

1.7.4.2 Strongyloides stercoralis

Strongyloides stercoralis, also referred to as the little intestinal worm, is a parasitic
nematode that can cause serious health problems if it becomes infected. Strongyloidiasis is
an illness that can be fatal, especially in people with impaired immune systems. Diarrhea,
abdominal pain, rash, and inflammation of the lungs are among the symptoms. Antiparasitic
drugs such as albendazole or ivermectin are commonly used in treatment, with an empha-
sis on the significance of prompt action to avoid serious consequences. For early detection
and management, high-risk populations must undergo routine screening and treatment. Pre-
vention is key to reducing the chance of contracting this parasite, including good personal
hygiene, secure waste disposal, and sufficient water disinfection [45].

Univ-Biskra/Computer Science: 2024 15



General overview of water

1.7.4.3 Trichuris trichiura

Humans harbor the parasitic worm Trichuris trichiura in their large intestines, which is
spread by consuming tainted food or drink. Diarrhea, abdominal pain, anemia, malnutrition,
distension in the abdomen, weight loss, and decreased productivity can all result from this
infection. Anti-worm drugs, such as mebendazole or albendazole, are used as part of the
treatment under a doctor’s supervision. Strict attention to the specified treatment plan, tak-
ing medication with food, getting enough fluids, and seeing a doctor right away if symptoms
worsen or don’t go away are all advised in order to reduce complications and side effects [46].

1.8 Water-borne diseases

A variety of disorders caused by bacterial, viral, or parasite pathogens found in contami-
nated water sources are referred to as waterborne diseases. Water that has been contaminated
is frequently the transit medium. A description of the pathogens that cause diseases that are
transmitted by water is provided in Section 1.7Types of biological pollutants. When
they spread quickly through contaminated water, diseases might come out. While bacterial
indicators are frequently employed in the evaluation of water quality, virus contamination
may not always be reflected by them. Studies have shown that disease outbreaks can originate
from water that satisfies local quality standards. The Centers for Disease Control (CDC)
gather information and publish epidemiological surveillance reports on a regular basis to su-
pervise the tracking and monitoring of outbreaks of waterborne diseases. However, a large
number of outbreaks go unreported, which results in insufficient surveillance [47].

It is crucial to recognize that notable waterborne diseases include:

1.8.1 Cholera disease

The World Health Organization estimates that cholera, a waterborne illness, causes
between three and five million cases and more than 100,000 deaths yearly, making it a
serious worldwide health concern. Current cholera outbreaks in Haiti, Zimbabwe, Angola,
and South Africa highlight the critical need for a more thorough understanding of these and
related aquatic illnesses. A popular model for studying disease dynamics is the Susceptible-
Infected-Recovered (SIR) model, in which water sources provide the means of transmission
for cholera. The length of time the pathogen remains in water determines how long illnesses
last. Taking into account both direct and indirect transmission pathways, the Susceptible-

Univ-Biskra/Computer Science: 2024 16



General overview of water

Infected-Water-Recovered (SIWR) model offers important insights into these dynamics and
aids in directing public health initiatives. Studies show that several transmission channels
are important for disease localization, and the SIWR model helps to make sense of these
pathways. Although the model is fundamentally recognizable, determining useful parameters
from real-world data may provide difficulties. Thus, adding more data regarding illness
distribution and water quality over time can improve the model’s identifiability and increase
its usefulness for managing and preventing disease [48].

1.8.2 Typhoid fever disease

TThe Salmonella typhi bacteria, which causes yphoid fever, normally takes one to three
weeks to mature. Mild exhaustion, appetite loss, and mild muscle aches are among the early
symptoms. Severe symptoms including chills, coated tongue, nosebleeds, coughing, sleepless-
ness, nausea, and diarrhea develop later. A defining feature of the illness is severe fever, which
frequently reaches 105oF (40.6oC). At their worst, three weeks after incubation, patients may
have blood-tinged stools, psychosis, and emaciation; one in five also develop gastrointestinal
hemorrhage. Because of the high fever, neuropsychiatric abnormalities such as hallucinations,
aberrant behavior, tremors in the nervous system, and enlargement of the brain are common.
Ninety to ninety-five percent of people who contract typhoid disease survive.The effects of
typhoid disease go beyond direct mortality since survivors are more likely to die from other
causes, especially heart failure and tuberculosis. Typhoid-affected pregnant women are more
likely to miscarry and give birth before term. Typhoid disease increases morbidity in young
children and can affect cognitive performance in adulthood.Low death rates from typhoid
indicate pure water, while high rates indicate contamination. Typhoid acts as an indicator of
water quality. Typhoid rates are significantly decreased by chlorinating and filtering water;
data indicates that large reductions in mortality occur when purification technologies are
used. The benefits of water purification efforts for public health are further highlighted by
the fact that these improvements in water quality also lower mortality from other diseases
[49].

1.8.3 Shigellosis disease

The severe diarrheal illness known as shigellosis, which is primarily responsible for mil-
lions of illnesses and thousands of fatalities each year in Asia, is brought on by bacteria
belonging to the genus Shigella. Despite its seriousness and widespread effects, there is cur-

Univ-Biskra/Computer Science: 2024 17



General overview of water

rently no approved vaccination against Shigella, and the underlying mechanisms of protection
are still unknown. The requirement for a multivalent vaccination to protect against the var-
ious serotypes of Shigella complicates vaccine development even more.There are four species
in the genus Shigella; Shigella dysenteriae was formerly the cause of significant outbreaks but
is now quite uncommon. Rarely, S. boydii is also isolated. S. flexneri is widespread through-
out the world and comes in several serotypes, especially in nations with little resources.
On the other hand,Conversely, S. sonnei, which has a single serotype, is more common in
high-income areas, though it’s unknown why it’s so dominant there.The rising percentage
of S. sonnei-caused shigellosis cases in developed nations is correlated with rising economic
growth. As a result, S. flexneri has decreased proportionately while S. sonnei has emerged in
quickly developing nations. The precise causes of this change are yet unknown, though, and
S. sonnei’s increasing antibiotic resistance has alarming consequences for world public health
[50].

1.8.4 Hepatitis A virus (HAV) disease

Hepatitis A virus (HAV) disease, also known as HAV, is a serious global health risk
due to its waterborne nature. Although direct contact between individuals remains the most
common mode of transmission, outbreaks of HAV associated with drinking contaminated
water have been reported in many different countries. Understanding the environmental
behavior of HAV only became possible with the development of cultivation and enumeration
techniques in tissue culture. HAV has been reported in concentrated wastewater, natural
water sources, and often observed post-outbreak. It shows remarkable resilience, lasting
at least a month at room temperature and months in colder climates. Factors affecting
its survival include humidity, pH, temperature, salt concentration, microbial activity, and
parallels with other enteric viruses. To completely remove HAV from water, effective removal
techniques such as coagulation, high-rate filtration, and disinfection are essential [51].

1.8.5 Poliomyelitis disease

Poliomyelitis, commonly referred to as polio, is an infectious viral disease that mainly
affects the neurological system.Even while the theory connecting polio to water is not new
and has been debated by numerous organizations for about 50 years, it did not get popular
acceptance until 1937, when it attracted a large number of supporters throughout the pre-
ceding five years.It’s unknown if the poliovirus can spread by food and drink, contaminated

Univ-Biskra/Computer Science: 2024 18



General overview of water

objects, or airborne particles, even though laboratory tests suggest that it enters the body
through the digestive system.According to studies, the poliovirus can be found in the feces of
infected people, even those who don’t exhibit any symptoms, and human feces are thought
to be a fertile reservoir of the virus.Moreover, the virus has been found in sewage water
samples, indicating the possibility of feces contaminated with viruses getting into sewage
systems. But just because a virus is found in sewage water doesn’t indicate that people can
contract it by drinking it. It is currently unknown how long the poliovirus may stay in water
and how contagious it is, despite laboratory tests suggesting that it can persist for a while
outside of the human or animal body under certain circumstances. The idea that polio may
spread through water is supported by some evidence, although it is inconsistent with the
epidemiological pattern of the disease. The idea that water is a major factor in the spread of
the poliovirus is not supported by enough evidence, in contrast to other waterborne illnesses
like cholera and typhoid [52].

1.8.6 Amoebiasis disease

Entamoeba histolytica in particular is the cause of the serious bowel illness known as
amoebic colitis, sometimes known as amoebiasis. The parasitic cysts that are present in food
and water might spread infection when consumed. Clinical signs include ulcers forming in the
large intestine, skin ulceration in the perianal region, fever, diarrhea, dysentery, and stomach
pain. Metronidazole, secnidazole, and ornidazole are just a few of the drugs used to treat the
condition, which can be identified through laboratory testing on stool samples. As of right
now, there is no vaccine to prevent amoebiasis, but it can be managed with good personal
hygiene, sanitation, and public awareness campaigns about the disease’s causes [53].

1.8.7 Giardiasis

Among parasite disorders, gastrointestinal infections like giardiasis are common around
the world. These epidemics are mostly caused by Giardia, of which 60 percent of cases are
waterborne. Fecal matter deposition from humans and animals is the cause of this parasite’s
presence in water; contamination levels can range from 0.3 to 100 cysts per 100 liters of
surface water. Giardia cysts in treated drinking water must be eliminated in surface water
by at least 99.9 percent according to regulatory requirements. The maximum daily infection
rates for systems using contaminated water, however, are five times greater than for those
using clean sources. The attack rate of Giardia in outbreaks linked to untreated surface

Univ-Biskra/Computer Science: 2024 19



General overview of water

water can range from 0.5 to 16 percent, contingent on the degree of cyst contamination.
Even while Giardia infections are common and asymptomatic, eating as few as 10 cysts
might cause disease. In order to guarantee adequate protection against waterborne illnesses,
risk assessment models are essential for assessing the relevance of Giardia contamination in
water and directing public health initiatives [54].

1.8.8 Ascariasis disease

Acariasis is a frequent health issue that mostly affects youngsters in warm, semi-tropical
climates.The helminthic sickness is caused by eating the eggs of Ascaris lumbricoides round-
worms, which can contaminate food, water, or soil. Following ingestion, the eggs hatch into
adult worms in the intestines, which can cause a variety of clinical symptoms, including fever,
vomiting, coughing, wheezing, appetite loss, shortness of breath, stomach pain, malnutrition,
and stunted growth, particularly in children. Clinical signs and symptoms, blood and stool
testing, and chemical medicines are used in the diagnosis and treatment processes. It is cru-
cial to adhere to preventive and control measures, such as drinking cleaned water, avoiding
contact with polluted soil, and enhancing sanitary systems, in order to prevent this neglected
disease [55].

1.9 Conclusion

Ultimately, water is a natural resource of incomparable beauty and importance. Its
harmonious cycle, many forms, and unique properties make it an essential element for life on
Earth. However, pollution is seriously threatening this vital resource, exposing humanity to
serious water-borne diseases.

In the face of these challenges, it is everyone’s duty to preserve the purity of water
and ensure healthy access to this substance that surrounds us with so much grace. Through
concerted monitoring, treatment and awareness efforts, we can hope to conserve this precious
resource and ensure a bright future for future generations. Water, in its magnificence, deserves
our deepest respect and greatest vigilance.

Univ-Biskra/Computer Science: 2024 20



Chapter 2

Deep learning on microorganisms
detection

2.1 Introduction

The study of microorganisms is crucial for scientists in various fields such as clinical
microbiology, agriculture, medical science, and food production due to their importance.
Observing microorganisms under a microscope and using cultivation techniques is necessary
to understand their biological, genetic, and physiological properties. However, traditional
methods are labor-intensive and expensive. Microorganisms can have similar morphological
features, making classification challenging. To streamline the classification process, a machine
learning (ML) powered recognition tool can be developed to reduce the need for extensive
human intervention [56].

The dissertation’s Chapter 2 provides a thorough summary of the various machine learning
models. The first section of the chapter defines machine learning and how it can help com-
puters learn and adapt without the need for explicit programming. After that, it explores the
different kinds of learning models, such as supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning. The chapter concludes with a summary
of deep learning that covers its definition, features, and several varieties of deep learning
networks.

This chapter provides a solid basis for comprehending the various artificial intelligence
methodologies.

21



Deep learning on microorganisms detection

2.2 Machine learning

Within computer science, machine learning is a specialized discipline that focuses on
creating algorithms and methods to automatically solve complicated problems that are chal-
lenging to program using conventional approaches. Machine Learning algorithms use a set
of labeled data and analyze it to create a model or set of rules that can predict outcomes for
fresh data, rather than depending on the creation of precise designs beforehand. Using la-
beled data as a source, this learning model is used to forecast future outcomes. This method,
called supervised learning, works better than conventional techniques in terms of accuracy
and efficiency and may be used to a wide range of difficult tasks. The difficulty, though is in
understanding how issues are resolved, particularly in neural network-based algorithms [57].

Furthermore, there are several formal definitions of machine learning in the literature. "A
field of study that gives computers the ability to learn without being explicitly programmed"
is how Arthur Samuel described machine learning in his groundbreaking work. "A computer
program is said to learn from experience (E) with respect to some class of tasks (T) and
performance measure (P), if its performance at tasks in T, as measured by P,improves with
experience E" according to Tom Mitchell’s explanation in computer science terminology.
Machine learning is described as "programming computers to optimize a performance criterion
using example data or past experience" by Ethem Alpaydin in his book. The concept of
teaching computers to do things beyond simple computations intelligently is shared by these
several definitions [58].

2.3 Machine learning models

The most prominent learning models along with their various algorithms or applications
that will be considered are illustrated in Figure 2.2 and explained below:

2.3.1 Supervised learning

In supervised learning, a knowledge base is built using preclassified patterns, which
support the classification of new patterns. The primary task of this type of learning is to
link input features to an output defined as a class. The result of this learning is to create
a model that can be used to classify unseen instances correctly. In general, the model is
represented as a function f(x), where x represents the input patterns and y represents the
resulting class. The preclassified patterns are referred to as the "training set" which consists

Univ-Biskra/Computer Science: 2024 22



Deep learning on microorganisms detection

of pairs of input and output, while the unseen patterns are referred to as the "test set" which
contains only input patterns. Where DS = {< X1, y1 >, < X2, y2 >, . . . , < Xn, yn >}, where
n is the number of patterns or observations and p represents the number of classes. The
general algorithm for supervised learning is presented as shown in Algorithm 1 below [59].
There are several proposed supervised learning algorithms, which we can classify into two
categories:

Algorithm 1 Generic Supervised Learning [59]
Require: N training examples with labels dataset: {X −Y }, {< x1, y1 >, < x2, y2 >, . . . , <

xn, yp >}, k ± 10; //cross validation
Ensure: M - training model based on probabilistic approach

1: i← 0
2: for each i in k do
3: dataset_samples← dataset/k // training dataset
4: dataset_samples[i]
5: Mi ← Classifier(training)
6: M ←Mi

7: end for
8: return M

2.3.1.1 Classification

Classification is a fundamental method in machine learning and data mining, used to
predict the group membership of data instances. Despite the availability of various techniques
in these fields, classification remains the most widely used approach, given its vital role in
future planning and knowledge discovery. Researchers in the fields of machine learning and
data mining extensively explore the details of classification, considering it a thoroughly stud-
ied problem. Figure 2.1 illustrates a comprehensive model of supervised learning, focusing on
various classification techniques employed.However, despite its prevalence, classification faces
challenges, especially in dealing with missing data. The absence of values within datasets
poses challenges during both the training and classification phases. The reasons for missing
data vary, ranging from misunderstandings leading to the non-entry of records, to data being
deemed invalid at the time of entry, and even data removal due to inconsistencies with other
documented data or equipment malfunction [60].

Univ-Biskra/Computer Science: 2024 23



Deep learning on microorganisms detection

Supervised Learning(classification Techniques)

Logic based techniques Perceptron based technique Statistical Learning techniques SVMInstance based learning

Decision tree

Learning set of rules

Single layer Perceptron

Multi layer Perceptron

RBF Network

Naïve Bayes classifier

Bayesian Network

K-Nearest Neighbor (KNN)

Figure 2.1: Classification techniques

2.3.1.2 Regression

Regression analysis is a technique used for two purposes. Firstly, regression analyses are
commonly employed for forecasting and prediction, where their applications heavily intersect
with the field of machine learning. Secondly, regression analysis can be used in some cases
to determine the causal relationships between independent and dependent variables [61].And
this is the 3 main types of regression:

- Simple Linear Regression: This model involves a single independent variable pre-
dicting the dependent variable. The relationship is defined by the equation y = β0 + β1x + ϵ,
where β0 and β1 are coefficients and ϵ represents the error term [61].

- Multiple Linear Regression (MLR): MLR uses multiple independent variables to
predict the dependent variable. The model aims to establish a linear relationship between
the independent variables x and the dependent variable y [61], expressed as:

y = β0 + β1x1 + . . . + βmxm + ϵ[61] (2.1)

- Polynomial Regression: Polynomial regression involves modeling the relationship
between the independent and dependent variables using a polynomial equation of nth degree.
It extends beyond linear relationships to capture curvilinear interactions. The model is
expressed as:

y = β0 + β1x + β2x
2 + . . . + βhxh + ϵ[61] (2.2)

where h is the polynomial degree [61].

Univ-Biskra/Computer Science: 2024 24



Deep learning on microorganisms detection

2.3.2 Unsupervised learning

Unsupervised learning algorithms rely on unlabeled data to build models. These models
aim to extract the underlying relationships inherent in the structure of the features them-
selves, with examples including clustering and principal component analysis [62]. The general
algorithm for unsupervised learning is presented as shown in Algorithm 2 below. There are
several proposed unsupervised learning algorithms, which we can classify into four categories:

Algorithm 2 Generic Unsupervised Learning [59]
Input: N training examples without labels dataset: {X →?}

2: Output: Mc - returns model with k number of clusters and center of each cluster
k ← 5 // number of clusters

4: cv ← 10 // cross-validation
i← 0

6: // iterate cv times
for i in cv do

8: // iterate over cv times
dataset_samples← dataset/k

10: trainingi ← dataset \ dataset_samples[i]
Mi ← Cluster(trainingi)

12: c← ci

M ←Mi

14: end for

2.3.2.1 Clustring

Clustring is an exploratory technique aimed at identifying groups or clusters of high
density, where observations within each cluster are more similar to each other than to ob-
servations in different clusters. This process relies on quantifying the degree of similarity or
dissimilarity between observations, and the results of the analysis are greatly influenced by
the type of similarity metric used [63].

In the realm of deep learning applications, several clustering algorithms stand out for their
suitability and effectiveness. Among the most notable are those listed in the table below:

Univ-Biskra/Computer Science: 2024 25



Deep learning on microorganisms detection

Class Methods
Distance measure based K-means clustering

Hierarchical clustering
Fuzzy clustering
Support vector machines
Spectral clustering
Decision trees

Statistical Expectation maximization algorithm
Neural networks Self organizing maps (Kohonen networks)

Adaptive resonance theory
Autoencoders
Co-localization
Generative models

Table 2.1: Classification of unsupervised clustering methods [63]

2.3.2.2 Association rule mining

After clustering, association rules mining is a crucial unsupervised data mining tech-
nique that uncovers intriguing associations (dependencies, links) in sizable data sets. The
data is kept in the form of transactions, which might come from relational databases or data
warehouses or be created by an outside process. Association rules are a crucial data mining
tool for knowledge extraction from data because of their strong scalability features and the
constantly expanding volume of gathered data. Finding intriguing correlations opens up a
supply of data that organizations frequently use to inform their decisions. Market-basket data
analysis, cross-marketing, catalog design, loss-leader analysis, clustering, data preprocessing,
genomics, and other fields are some of the application areas of association rules [64].

2.3.2.3 Dimensionality Reduction

In order to improve computing efficiency and analysis accuracy, dimensionality re-
duction (DR) techniques are applied as a preprocessing step for data, identifying a low-
dimensional version of the original data. Finding a lower-dimensional representation that
retains as much of the original data’s substance as feasible is the mathematical definition of
the dimension reduction problem. Based on the learning process, DR approaches are divided
into supervised and unsupervised categories. In order to learn the lower-dimensional rep-
resentation and predict class labels on unknown data, supervised algorithms make use of a
training set. The Linear Discriminant Analysis (LDA), Maximum Margin Criterion (MMC),

Univ-Biskra/Computer Science: 2024 26



Deep learning on microorganisms detection

and Orthogonal Centroid (OC) method are a few instances of supervised techniques. Singular
Value Decomposition (SVD) and other unsupervised techniques project the original data into
a new lower-dimensional space without the need for label information. DR approaches work
by either picking a subset of the current features or by changing the existing features into a
new reduced set of features. Through the use of linear or nonlinear combinations of vector
coordinates in the original dimensions, feature transformation approaches seek to reduce the
dimensionality of data to a minimal number of dimensions. It is thought that these methods
are effective in revealing latent structures within datasets. Principal component analysis
(PCA), independent component analysis (ICA), projection pursuit, and factor analysis are
a few examples of feature transformation methods. Techniques for unsupervised feature se-
lection are far more difficult than those under supervision. Techniques for data reduction
using linear algebra are predicated on projections, in which the data matrix is transformed or
multiplied to decrease the dimensionality of the matrix. SVD, ICA, and Non-negative Ma-
trix Factorization (NMF) are a few of these methods. The focus of the literature is on text
retrieval applications of DR, including PCA, ICA, Random Mapping (RM), and FastMap
[65].

2.3.2.4 Anomaly detection

An anomaly is an occurrence that results in a percentage of network traffic deviating
from what is considered normal or typical. These instances eloquently demonstrate the
necessity of detecting such incidents [66]. Unsupervised anomaly detection algorithms can
be applied if the dataset has anomalies and abnormal data together with no labels at the
same time. The key takeaway here is to just employ intrinsic information, such a dataset’s
density estimate. The density of the region each instance dwells in is then used to assign a
score. The most adaptable approach is unsupervised anomaly detection, particularly in real-
world scenarios when data has been gathered and needs to be examined without any further
information. However, it is very dependent on the input data. Success requires appropriate
preprocessing and the creation of data views [67].

2.3.3 Semi-supervised learning

Semi-supervised learning bridges the gap between supervised and unsupervised learn-
ing, offering a balanced approach that harnesses the strengths of both methods. By leveraging
both labeled and unlabeled data, semi-supervised learning aims to outperform purely super-

Univ-Biskra/Computer Science: 2024 27



Deep learning on microorganisms detection

vised methods in terms of learning performance. This approach is particularly valuable in
fields where collecting labeled data is challenging or costly, whereas unlabeled data is abun-
dant and easily accessible. By employing semi-supervised learning algorithms, it becomes
possible to achieve better or comparable results with fewer labeled instances, thereby re-
ducing the expenses and efforts associated with data annotation. Moreover, semi-supervised
learning provides a computational model that emulates certain aspects of human learning,
illuminating how humans learn from a combination of labeled and unlabeled information [68].

2.3.4 Reinforcement

Reinforcement learning is the process of figuring out how to optimize a numerical reward
signal by mapping situations to actions. Unlike most forms of machine learning, the learner
is not informed which actions to do. Instead, they must experiment to determine which
activities provide the greatest reward. The most intriguing and difficult situations are those
in which decisions can impact not just the immediate reward but also the circumstance that
arises later and all benefits that follow. The two key aspects of reinforcement learning that
set it apart are trial-and-error search and delayed reward [69].

Figure 2.2: Learning methods [70]

Univ-Biskra/Computer Science: 2024 28



Deep learning on microorganisms detection

2.4 Deep learning

Deep learning (DL), a specialized subset of machine learning (ML), excels in adapt-
ability and learning capacity by structuring concepts hierarchically. In this structure, simple
concepts form the foundation for more abstract representations. The architecture of DL
involves multiple hidden layers, where categories are progressively learned. Each node in
the network represents a part of the whole system, and together they form a complete pic-
ture. These nodes have weights that indicate the strength of their connections to the output,
which are adjusted as the model learns. The widespread popularity and effectiveness of DL
are largely due to its ability to utilize large amounts of data. The rise of big data has opened
up new opportunities for DL advancements. Andrew Ng famously compared DL models to
rocket engines, with vast amounts of data serving as the fuel that powers these algorithms
[71]. In the next section, we will explore the different types of deep learning models:

2.4.1 Convolutional neural networks (CNN)

Convolutional Neural Networks (CNN) have emerged as one of the most intriguing
methods recently, and they have played a pivotal role in a number of successful and diffi-
cult machine learning applications. Convolutional neural networks (CNNs), a type of deep
artificial neural network, are utilized in numerous applications requiring visual data [72].

2.4.1.1 Overall architecture

Convolutional neural networks (CNNs) are composed of three main types of layers:
convolutional layers, fully-connected layers, and pooling layers. Stacking these layers results
in a CNN architecture, as seen in Figure 2.3.

1. Convolutional Layer: This layer uses the scalar product of the weights of the neurons
connected to particular sections of the input and the region connected to the input
volume to calculate the output of those neurons. The output of the activation created
by the preceding layer is subjected to an elementwise activation function by the Rectified
Linear Unit, or ReLU for short.

2. Pooling Layer: This layer further reduces the number of parameters inside that
activation by performing downsampling along the spatial dimensions of the provided
input.

Univ-Biskra/Computer Science: 2024 29



Deep learning on microorganisms detection

3. Fully-Connected Layers: These layers try to generate class scores from the activa-
tions to be utilized for classification, carrying out the same tasks as ordinary ANNs.
To enhance performance in between these layers, ReLU can also be applied.

CNNs use convolutional and upsampling techniques to process the original input through
the previously mentioned successive layers and produce class scores for tasks involving re-
gression and classification [73].

Figure 2.3: Basic CNN Architecture [74]

2.4.1.2 Evolution of Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are modeled after the architecture of the hu-
man cerebral cortex, which comprises cells sensitive to distinct regions of the visual field.
These networks are composed of layers ordered according to their functions. CNNs are said
to have their origins in the "Neocognitron" a device that Fukushima unveiled in 1980 and
which transformed images by using local connections between neurons [75]. Subsequently,
significant prominent constructions have been listed chronologically with increased accuracy.
These include:

1. LeNet: Yann LeCun created LeNet-5, which was mostly used for character recognition
jobs like reading numbers and zip codes. LeCun also presented the MNIST database,
a common reference point for digit identification.

Univ-Biskra/Computer Science: 2024 30



Deep learning on microorganisms detection

2. AlexNet: The ImageNet ILSVRC challenge was won in 2012 by AlexNet, a system
developed by Alex Krizhevsky et al., with top-1 and top-5 error rates of 37.5% and
17.0%, respectively. It popularized CNNs in computer vision and is composed of five
convolutional layers followed by three fully connected layers.

3. ZFNet: A proposal by Rob Fergus and Matthew Zeiler, took home the 2013 ILSVRC
title. By modifying the hyperparameters, it outperformed AlexNet, especially by en-
larging the middle convolutional layers and decreasing the stride and filter size of the
first layer.

4. VGGNet: With 19 layers, VGGNet—the runner-up in the ILSVRC 2014—from the
Oxford VGG group proved that performance increases with network depth. Neverthe-
less, its high processing demands render it ineffective for implementation on low-end
GPUs.

5. GoogLeNet: Developed at Google by Szegedy et al., it was awarded the 2014 ILSVRC.
With the addition of the inception module, which approximates a sparse CNN, the
number of parameters was greatly decreased. Additionally, it increased computational
efficiency and achieved 93.3% top-5 accuracy on ImageNet by substituting global aver-
age pooling for fully connected layers.

6. ResNet: A 152-layer network with batch normalization and skip connections, designed
by Kaiming He et al., took first place in the 2015 ILSVRC. With a classification layer
and global average pooling, it achieves 95.51% top-5 accuracy and is computationally
more economical than VGGNet.

7. DenseNet: Published by Gao Huang et al. and recognized as the best article at CVPR
2017, establishes a feed-forward connection between every layer and every other layer.
On benchmark tasks like CIFAR-10, CIFAR-100, SVHN, and ImageNet, it demon-
strated notable gains.

These networks are strong instruments in the field of computer vision, exhibiting notable
improvements in accuracy and performance over time [76].

2.4.2 Recurrent neural networks (RNNs)

Recurrent Neural Networks (RNNs) belong to a category of supervised machine learning
models comprising artificial neurons featuring one or more feedback loops [77]. In the context

Univ-Biskra/Computer Science: 2024 31



Deep learning on microorganisms detection

of a recurrent neural network (RNN), a discrete-time dynamical system is represented by an
input xt, an output yt, and a hidden state ht. time is denoted by the subscript t. The
formulation of the dynamical system is expressed as follows:

ht = fh(xt, ht−1)[78] (2.3)

yt = fo(ht)[78] (2.4)

When an output function is denoted by fo and a state transition function by fh, re-
spectively. A pair of parameters, θh and θo, define each function. To estimate the parameters
of an RNN, given a collection of N training sequences D = {(x(n)

1 , y
(n)
1 ), . . . , (x(n)

Tn
, y

(n)
Tn

)}N
n=1,

the cost function can be minimized as follows:

J(θ) = 1
N

N∑
n=1

Tn∑
t=1

d(y(n)
t , fo(h(n)

t )), [78] (2.5)

where h
(n)
t = fh(x(n)

t , h
(n)
t−1)as well as h

(n)
0 = 0. A predetermined divergence measure,

such as cross-entropy or Euclidean distance, between a and b is denoted by the symbol d(a, b)
[78].

2.4.2.1 RNN architecture types

The consists of the following components: The most prominent architecture types of
an RNN that will be explained below:

1. Fully Recurrent Neural Network (FRNN): The 1980s saw the development of
the FRNN, which has two layers—input and output—connected by movable weights.
Through feeding back activations to input layer units, it is able to learn temporal
sequences. Mapping input sequences to output sequences across several time steps is
the process of learning [79].

Figure 2.4: FRNN [79]

Univ-Biskra/Computer Science: 2024 32



Deep learning on microorganisms detection

2. Recursive Neural Network: This network, which is frequently used in natural lan-
guage processing to process distributed representations of structures, applies the same
set of weights recursively in a graph-like form. The Recursive Neural Tensor Network
is one variant that makes use of tensor-based composition functions [79].

Figure 2.5: Recursive Neural Network [79]

3. Hopfield Network: It was created in 1982 by John Hopfield and has symmetric
connections between neurons. Neurons individually and asynchronously adjust their
activity values. It is taught utilizing either the Hebbian or the Storkey learning princi-
ples, and it is utilized for Content Addressable Memory (CAM) [79].

Figure 2.6: Hopfield Network [79]

4. Elman Networks and Jordan Networks (Simple Recurrent Network): Elman
networks store past values of hidden units and have an extra context layer. Similar
to hidden layer networks, Jordan networks use feedback context units from the output
layer [79].

Univ-Biskra/Computer Science: 2024 33



Deep learning on microorganisms detection

Figure 2.7: SRN [79]

5. Echo State Network: This network’s hidden layer has a fixed random weight assign-
ment and sparse connection. It is possible to learn the weights of output neurons to
replicate particular time-based patterns [79].

Figure 2.8: Echo State Network [79]

6. Long Short-Term Memory (LSTM): The vanishing gradient issue is avoided in the
task-learning process by LSTM. To preserve recollection of previous occurrences, it has
recurrent gates such as "forget" gates [79].

Figure 2.9: LSTM [79]

Univ-Biskra/Computer Science: 2024 34



Deep learning on microorganisms detection

7. Gated Recurrent Units (GRUs): GRUs, which Kyunghyun Cho first introduced
in 2014, have gating processes akin to LSTM but with fewer parameters. Activities like
as speech signal modeling and polyphonic music are areas in which they excel [79].

Figure 2.10: GRUs [79]

2.4.3 Generative adversarial networks (GANs)

With the use of two neural networks staged as opponents to one another, generative
adversarial networks, or GANs, create fresh synthetic sample data that closely mimics real
sample data and has a high chance of being accepted as real inputs. They are widely employed
in the production of speech, films, and photographs. Due to their superior performance in
image tasks, GANs are especially well-suited for image processing. They are employed in
many different applications and are thought to be the most effective method for creating
images. The discriminator’s primary objective is to determine if a sample is true or false
in its distribution. In the meantime, the generator generates a false trial distribution in an
attempt to trick the discriminator. The discriminator determines the likelihood or not that
a given sample is authentic. If the likelihood value is higher, the sample is more likely to be
representative of the population. If the value is around 0, the sample is bogus. The optimal
answer is provided when the probability value is close to 0.5, which illustrates the absence of
difference between synthetic and real sample data [80].

2.4.3.1 Network architecture and learning

As illustrated in Figure 2.11, the architecture of Generative Adversarial Networks
(GANs) comprises of a Generator (G) and a Discriminator (D). The generator uses a random
noise vector (Z) as input and outputs an image (G(z)) in an attempt to create an image. After
that, the Discriminator receives the created image and uses its output to update the Gener-
ator’s parameters. The Discriminator is a binary classifier that checks samples produced by

Univ-Biskra/Computer Science: 2024 35



Deep learning on microorganisms detection

the Generator simultaneously, distinguishing between those that are real and those that are
fraudulent. The Discriminator simulates the likelihood that a sample image, X, is authentic
or fraudulent. The Generator then receives these probabilities back as feedback.The word
"adversarial" in Generative Adversarial Networks originates from the competition that both
the Generator and the Discriminator have over time as they attempt to outsmart one an-
other. The minimax game problem forms the basis of the optimization procedure. In order
to enable the Generator to generate realistic-looking images and the Discriminator to get in-
creasingly better at differentiating between real and fake generated images, backpropagation
is used during training to update the parameters of both the Generator and the Discrimi-
nator.The Minimax loss function, which was first proposed by Goodfellow et al., is used by
GANs. Whereas the Discriminator seeks to increase the following function, the Generator
seeks to decrease it [81]. The Minimax loss is represented by:

min
G

max
D

f(D, G) = Ex[log(D(x))] + Ez[log(1−D(G(z)))][81] (2.6)

Figure 2.11: Basic GAN architecture [81]

2.4.3.2 Types of GANs

The following is an explanation of the most common Types of GANs:

1. Vanilla GANs: is characterized as a kind of generative model in which the discrim-
inator and generator are multi-layer perceptrons. The minimax optimization problem
must be solved in order to formulate a Vanilla GAN mathematically. While the discrim-
inator D attempts to discern between the genuine samples from µ and the generated
samples from G, the generator G generates samples from a latent space distribution γ

to mimic the data distribution µ [82]. Given is the objective function:

V (D, G) = Ex∼µ[log D(x)] + Ez∼γ[log(1−D(G(z)))][82] (2.7)

Univ-Biskra/Computer Science: 2024 36



Deep learning on microorganisms detection

The optimization problem is then:

min
G

max
D

V (D, G)[82] (2.8)

The generator iteratively tries to make its output better in an attempt to trick the
discriminator, and the discriminator adjusts itself in order to become more adept at
differentiating between produced and genuine samples. The goal is to get to a point of
equilibrium where the discriminator cannot tell the difference between the generated
and genuine samples [82].

2. Deep Convolutional GAN (DCGAN):The generator G and discriminator D are
two deep neural networks that make up a deep convolutional generative adversarial
network (dCGAN). Fake molecular fingerprints are produced by G, which begins with
random noise inputs and goes through the reverse convolutional process to capture the
data distribution. In order to determine whether or not a sample fingerprint origi-
nates from G, D is trained with real data using a chosen CNN architecture. The idea
of dCGAN is to simultaneously train these two models iteratively and enhance their
performance. When D is unable to identify the data produced by G from real data,
it means that G has already mastered the hidden pattern needed to sample fresh fin-
gerprints. In the section on convolutional neural networks, the construction process
of D was described. In general, the method of developing G is the opposite of that
of building a CNN model. A reshape layer was inserted using reshape in between
the first convolution layer and the fully linked layer. Between each convolution layer,
UpSampling1D was applied to gradually change the data’s output shape [83].

3. Conditional Generative Adversarial Networks (CGANs): are regarded as the
main method for producing images from text; they enable content control by giving the
discriminator and generator an extra condition.Controllable and semantically matched
visuals are produced as a result, matching the supplied text.Innovative solutions, like
the LD-CGAN model, have been proposed in spite of obstacles like unstable training
processes and nonsensical results. This model uses effective guidance of semantic infor-
mation and partitioning to simplify the network and enhance the quality of generated
images.Enhancement of spatial characteristics in multi-scale contexts, differentiation of
semantic processes in producing images ranging from low to high resolution, and use of
numerous losses to improve the quality of generated images are other notable aspects
of LD-CGAN [84].

Univ-Biskra/Computer Science: 2024 37



Deep learning on microorganisms detection

4. CycleGAN: is a new method for image-to-image translation. CycleGAN’s unique
power comes from the fact that it just needs unpaired instances from the X and Y

picture domains. In order to meet the following two requirements, CycleGAN trains
two transformations, F : X → Y and G : Y → X, in parallel: 1. F (x) ∼ p(y) for
x ∼ p(x), and G(y) ∼ p(x) for y ∼ p(y); 2. GF (x) = x for all x ∈ X, and F (G(y)) = y

for all y ∈ Y , The distributions of the two picture domains, X and Y , are described
by the expressions p(x) and p(y). The first criterion, which is implemented by training
two discriminators on X and Y , respectively, makes sure that the output images seem
to originate from the desired domains. The second requirement, which is imposed by
a cyclic consistency loss of the form ∥GF (x) − x∥ + ∥F (G(y)) − y∥, makes sure that
the information about a source image is encoded in the generated image. Semantically
encoding the information from the source picture x into the components of the output
image F (x) is the aim [85].

2.4.4 Vision transformer (ViT)

Perspective Since their initial introduction by Dosovitskiy et al., Transformers (ViTs)
have shown greater performance in image classification applications when trained on large-
scale datasets when compared to state-of-the-art (SOTA) Convolutional Neural Networks
(CNNs). On the other hand, ViTs need a lot of processing power and training data. Touvron
et al. addressed this problem by introducing a data-efficient ViT that made use of regular-
ization and data augmentation strategies that were previously used for CNNs. They further
enhanced performance by implementing a Transformers-based teacher-student method.ViTs
have been used by researchers to tackle a variety of vision problems, including object de-
tection and image segmentation. For example, Carion et al. developed a new architecture
for object detection on the COCO dataset that uses a Transformer encoder-decoder and a
set-based global loss to achieve competitive results. Transformers have been applied to 3D
medical picture segmentation, leveraging global attention features by combining the bene-
fits of Transformer networks with U-Net.Choosing the right pre-trained model for transfer
learning (TL) remains a difficulty, even with the many advancements made to ViT models
and the abundance of pre-trained ViT models available. To efficiently attain the greatest
performance for new tasks, Steiner et al. advised selecting a small number of well performing
pre-trained models for fine-tuning rather than adjusting all pre-trained Transformers [86].

Univ-Biskra/Computer Science: 2024 38



Deep learning on microorganisms detection

2.4.4.1 Vision transformer’s operation

The following processes, which are all essential to the overall operation of the Vision
Transformer, can be used to break down how it operates as shown in Figure 2.12:

1. Patch Embedding:One way to partition the incoming image is into square patches
of fixed size. Learnable linear projection is used to turn each patch into a vector. This
generates a series of patch embeddings that act as input tokens for layers that follow
[87].

2. Positional Embedding: The intentional provision of positional information makes
up for the Transformer’s inbuilt lack of spatial awareness. In order for the model to
discern between different places in the image and capture spatial relationships, posi-
tional encodings are usually added to patch embeddings during the input stage and are
often learned [87].

3. Encoder Layers: Multiple encoder layers, each with two main sub-layers—multi-
head self-attention and feedforward neural networks—make up the core of the Vision
Transformer [87].

4. Multi-Head Self-Attention: Relationships between various patches in the input
sequence are captured by this method. For every patch, it calculates a weighted sum
of all patch embeddings, with weights based on importance. Using numerous sets
of learnable characteristics (attention heads), multi-head attention captures different
kinds of relationships [87].

5. Feedforward Neural Networks: The output of each patch is fed via a feedforward
neural network after self-attention. Usually, this network consists of ReLU activation
and a completely connected layer. By doing this, non-linearity is introduced, allowing
the model to pick up intricate patch correlations [87].

6. Layer Normalization and Residual Connections: Layer normalization and resid-
ual connections follow both feedforward network outputs and self-attention network
outputs. By normalizing sub-layer inputs, layer normalization stabilizes training. Dur-
ing training, residual connections help gradient flow, which reduces the risk of disap-
pearing gradient problems [87].

Univ-Biskra/Computer Science: 2024 39



Deep learning on microorganisms detection

Figure 2.12: Basic VIT architecture [88]

2.4.5 Transfer learning (TL)

The concept of Transfer Learning (TL) involves describing the notion of transferring
knowledge across tasks and domains through TL. To enhance learning in a target domain
and task, it entails leveraging past knowledge from a source domain and task. For example,
since riding a bike and learning to ride a motorbike are in the same domain, learning to ride
a motorbike can benefit from prior cycling experience. TL is a useful strategy in a variety of
learning contexts where it reduces the need for large amounts of training data and laborious,
from-scratch model training [89].

Its known as A machine learning technique involves developing and training a model
for one job, then using it for a related secondary task. It describes the circumstance in
which knowledge gained in one context is applied to improve performance in another. When
a fresh dataset is available that is smaller than the one that was initially used to train
the pre-trained model, transfer learning is usually used. Instead of beginning the learning
process from scratch with random weight initialization, it enables us to start with the learned
features on the ImageNet dataset and modify these features, as well as maybe the model’s
structure, to suit the new dataset/task. This makes Transfer Learning possible for picture
classification. Even with limitations in terms of time and computer power, we are able to
identify the variables influencing classification accuracy by testing the network and adjusting
its topology (i.e., parameters) and dataset properties [90].

Univ-Biskra/Computer Science: 2024 40



Deep learning on microorganisms detection

2.4.5.1 Pre-trained models categories

Pretrained models are classified based on the kind of data they utilize and tasks they
accomplish. The following three fall into these categories:

1. Image Classification Models: possess a range of alternatives at their disposal for
classifying images:

• VGG19: VGG19 is a Convolutional Neural Network (ConvNet) model developed
by the Visual Geometry Group (VGG) at the University of Oxford. This model
is part of the VGG models family, which was introduced in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2014.

The VGG19 model consists of 19 deep layers, including Convolutional Layers,
Max-Pooling Layers, and Fully Connected Layers. The model is characterized by
using small filters of size 3×3 in the convolutional layers, allowing it to capture
fine details in images while maintaining relatively low computational complexity.

VGG19 starts with an input of size 224×224×3 (the original image is resized to
this size) and passes through several convolutional and pooling layers before the
output is passed through three fully connected layers and then to a Softmax layer
for image classification. The model uses 2×2 max-pooling after each block of
convolutional layers to reduce the spatial feature size.

The key features of VGG19 include:

– Simplicity in design, as only small (3×3) convolutional filters are used.

– Significant depth with 19 convolutional and fully connected layers.

– Excellent performance in image classification tasks.

VGG19 has been widely used in various research and commercial applications
due to its high performance and ease of modification and extension to other deep
learning models [91]. Its architecture is shown in the figure 2.13.

Univ-Biskra/Computer Science: 2024 41



Deep learning on microorganisms detection

Figure 2.13: VGG-19 Architecture [92]

• EfficientNet-B0: One Convolutional Neural Network (CNN) architecture that
use the compound scaling technique to boost accuracy is called EfficientNet. Using
a compound coefficient, this method uniformly scales the three dimensions (width,
depth, and resolution). EfficientNet comes in a variety of models, from B0 to
B7.The elements of MobileNetV2, which comprise the Mobile Inverted Bottleneck
Conv (MBConv) with the inclusion of Squeeze and Excitation (SE) optimization,
form the foundation of the EfficientNet-B0 architecture. Studies have indicated
that the utilization of MBConv and SE blocks can improve precision while reducing
the quantity of parameters, which qualifies this architecture for use in mobile
applications [93]. The EfficientNet-B0 architecture’s layer arrangement is shown
in Figure 2.14.

Figure 2.14: EfficientNet-B0 architecture [94]

• Resnet50: Is deep convolutional neural network with 50 layers, addresses the
challenges of training deep networks, such as vanishing or exploding gradients
and accuracy degradation. This architecture includes groups of identical layers,
highlighted in different colors, and identity blocks that use outputs from previous
layers in subsequent layers. The initial layer features 64 filters with a 7x7 kernel,
followed by a 3x3 max-pooling layer. The first group has three identical blocks,
the second and third groups have four, and the fourth group has three. Blue

Univ-Biskra/Computer Science: 2024 42



Deep learning on microorganisms detection

curves represent identity blocks connecting layers of different sizes. The network
culminates in 38 fully connected layers for classification [95]. As shown in Figure
2.15.

Figure 2.15: resnet50 architecture [95]

2. Generative Models:There are many such options for generative models. For exam-
ple, Pix2Pix is an image-to-image translation technique that transfers images between
domains. It uses the generative adversarial network framework: a discriminator model
decides whether an image is actual or generated, and a generator converts input im-
ages into new images. Unlike a plain GAN, the discriminator in Pix2pix is conditioned
on image pairs: one image comes from the generator’s output and the other from the
target image instead of drawing the generator from a noise vector. The pix2pix loss
is a concatenation of an L1 loss and an adversarial loss. The L1 does not bring up
blurriness as it measures the dissimilarity between the generated and target images.
The adversarial loss makes sure there is enough realism in the generated images to be
able to fool the discriminator. These two losses are then summed to arrive at the final
loss function, weighted by the parameter lambda (‘λ‘) [96]. The Pix2pix architecture
is shown in Figure 2.16.

Univ-Biskra/Computer Science: 2024 43



Deep learning on microorganisms detection

Figure 2.16: PIX2PIX architecture [97]

3. VIT Models:There are numerous options available for ViT models, such as ViT-B/16,
a variant of the Vision Transformer (ViT) architecture. The "B" stands for "Base"
indicating the model size, and "16" refers to the patch size (16x16 pixels) used in the
model. Vision Transformers, or ViTs, are a type of neural network architecture designed
for image recognition tasks, leveraging the transformer model originally designed for
natural language processing.

ViT-B/16 employs self-attention mechanisms to process image patches, enabling it to
capture long-range dependencies and spatial information across the entire image. This
approach contrasts with traditional Convolutional Neural Networks (CNNs) that rely
on convolutional operations. ViT-B/16 has demonstrated competitive performance
across various image classification benchmarks and is part of a family of models that
vary by the number of parameters and patch sizes, including ViT-L/16 for "Large" and
ViT-H/14 for "Huge" [98].

2.5 Conclusion

This chapter has examined the theoretical foundations and real-world applications of
deep learning methods for the identification of microorganisms in water. The study examined
the use of neural network techniques and their diverse applications in enhancing the precision
and velocity of biological pollutant detection in potable water.

In the upcoming chapter, the focus will be on the techniques used to achieve Electron Mi-
croscopy (EM) detection of microorganisms in drinking water. Key models to be developed,
data preparation methods, and performance testing will be emphasized to ensure accurate
and reliable results. This will enable the presentation of innovative and effective solutions to
improve the quality of drinking water and ensure its safety.

Univ-Biskra/Computer Science: 2024 44



Chapter 3

System Design

3.1 Introduction

The significant advancements in the field of artificial intelligence and its applications
in various sectors, including environmental monitoring, have paved the way for innovative
systems capable of predicting trends and aiding in decision-making processes. This chapter
provides an overview of the system designed for the identification and classification of EM
using microscopic images.

Firstly, we will discuss the general architecture of our classification model. Following this,
we will delve into the specific functionalities of our model, including dataset preparation,
model training, and performance evaluation, and model deployment.

3.2 Global architecture

The global architecture describes the microscopic images classification process. This
process begins with the collection of a dataset comprising electron microscope images, which
then undergo pre-processing to enhance their quality. The pre-processed data is subsequently
split into training, testing, and validation sets. The training set is used to train the model
to detect patterns and extract significant features. After training, the model’s performance
is analyzed using the testing and validation sets to ensure accuracy and generalizability.
Based on this analysis, a decision is made: if the model meets the performance criteria, it
is accepted and used to create a web application for real-time water quality assessment. If
the model does not meet the criteria, it undergoes further training and refinement. This
iterative process ensures the development of a robust and effective system for identifying and

45



Conception

classifying waterborne pathogens. As shown in the figure 3.1.

Dataset Pre-processing Preprocessed
data

Split data

TrainTest/valid

Model

Training

Performance Analysis

Accepted

create web application

Test

Yes

No

Figure 3.1: General architecture

3.3 Detailed architecture

The comprehensive architecture and procedures for managing the dataset, from collec-
tion to preprocessing, are described in this section. The objective is to guarantee that the
data is adequately prepared for training machine learning models through adherence to a
methodical and comprehensive procedure.

3.3.1 Data gathering

The gathered dataset included PNG-formatted EM images from various classes. There
are 41 folders (classes) in each part, except for one class that we did not put in a folder

Univ-Biskra/Computer Science: 2024 46



Conception

because it does not contain any images, which is named "unknown".

3.3.2 Pre-processing

The pre-processing phase is a critical stage in image classification tasks, where we
modify the data through processes such as resizing, applying filters, and removing noise
before passing the data to the training model. In our system, we resized all the images to
224x224 pixels and performed normalization (see Figure 3.2).

Resizing: The original dataset images had varying dimensions. To standardize these
dimensions, we resized the images to (224x224x3), where the first two numbers correspond
to the width and height of the image, and the third number refers to the image channels,
indicating that the images are RGB.

Normalization: After resizing, the images were normalized to ensure consistent pixel
value ranges across all images. This process involves scaling the pixel values to a range of
[0, 1] by dividing each pixel value by 255 (the maximum pixel value for an 8-bit image).
Normalization helps in speeding up the convergence of the training process and improves the
overall performance of the machine learning model.

Raw Images Resize to 224x224 Perform Normalization preprocessed Images

Figure 3.2: Pre-processing steps.

3.3.3 Splitting

When partitioning a dataset in deep learning, we typically divide it into subsets. The
common practice involves three partitions: a training set, a test set, and a validation set.
However, due to the small size of the dataset in this scenario, we opted for only two partitions:
one for training and one for testing. In this setup, 80% of the data is used for training, while
20% is allocated for testing. The division is performed accordingly. In this arrangement, the
test set also serves as the validation set, meaning the same dataset is used to evaluate the
model’s performance and validate its generalization ability (see 3.3).

Univ-Biskra/Computer Science: 2024 47



Conception

Preprocessed
data

TrainTest/valid

Split data

Figure 3.3: Data partitioning: 80% for training and 20% for testing/validation.

3.3.4 Train

In deep learning, the training phase is essential for developing a model that can make
accurate predictions on new data. This phase involves multiple steps, starting with data
preparation and ending with model fitting. Data augmentation is a crucial technique in
this process, used to artificially expand the size of a training dataset by creating modified
versions of existing images. This enhances the model’s performance by making it more robust
to variations in the data. The typical architecture of the training phase includes collecting
training data, applying data augmentation techniques, using the augmented data for training,
and ultimately obtaining a fitted model.

Training Data Augmentation Augmented
Data

Training Fitted Model

Figure 3.4: Training Phase Architecture

3.3.4.1 Augmentation

Data augmentation is a technique used to increase the size and diversity of training
data for deep learning networks, which helps improve the performance of neural networks by
reducing overfitting and enhancing generalization. This technique includes several methods
such as traditional geometric transformations (e.g., rotation, flipping, scaling), color adjust-

Univ-Biskra/Computer Science: 2024 48



Conception

ments (e.g., increasing contrast, adjusting white balance, sharpening), and using Generative
Adversarial Networks (GANs) to create new images. Additionally, it involves texture transfer
and style transfer techniques that enable the creation of high-quality perceptual images that
combine the content of one image with the style of another [99]. These are the methods we
employed in my work to augment and enhance the train dataset (see figure 3.5):

Flipping: Horizontal flipping is frequently used to increase the variety of training data.
It helps mitigate misclassification issues caused by uniform image orientations. However,
it might not be effective for datasets with asymmetrical or directionally sensitive data, like
characters or digits, as it can lead to incorrect or opposing classifications [100].

Random Rotations: The images are rotated at random by multiples of ninety degrees
(90°, 180°, 270°) to guarantee that the model becomes invariant to various object orientations.

Blurring the Image: A regression technique used as a preprocessing step in many
computer vision algorithms to smooth, blur, and remove noise from an image is included
in the Gaussian blur technique (Chauhan, 2018). Gaussian blur is a kind of linear low-pass
filter in which the Gaussian function is used to determine the pixel value (Novák et al., 2012).
Equation 3.1 (Novák et al., 2012) defines the two-dimensional Gaussian function as the sum
of two one-dimensional Gaussian functions:

G(x, y) = 1
2πσ2 e− x2+y2

2σ2 [101] (3.1)

Where the coordinates are (x, y), and the Gaussian distribution’s standard deviation is
’σ’ [101].

Contrast Limited Adaptive Histogram Equalization (CLAHE): CLAHE is an
image enhancement technique that modifies the histogram’s structure to ensure a more evenly
distributed intensity level across an image. Unlike Adaptive Histogram Equalization (AHE),
which can overly enhance contrast, CLAHE limits the histogram to a boundary value to
avoid this issue. By dividing the image into contextual sections and applying histogram
equalization to each pixel value, CLAHE makes hidden features in the image more visible
[102].

Cutout Augmentation: According to DeVries and Taylor (2017), cutout is an image
enhancement method that removes contiguous areas of data from images. For multivariate
time series (MTS), temporal cutout randomly selects a time segment and a number of chan-
nels, setting the chosen values to zero. The size of the time segment is randomly determined
between specified maximum and minimum hyperparameter values. The probability of each
channel being selected is controlled by a hyperparameter [103].

Univ-Biskra/Computer Science: 2024 49



Conception

Train dataset Gaussian Blur

Random Rotation

Flip(horizontal ,vertical)

CLAHE

Cutout

Augmented
dataset

Figure 3.5: Data Augmentation Processes

3.3.4.2 Used Models

In this work, we employ a variety of models to tackle the challenges of microorganism
detection in water samples. These models are presented in the following subsection:

1. Pretrained Models: wewill use well-known pretrained models in my project as they
provide substantial knowledge gained from training on large datasets. We will uti-
lize ResNet50, VGG19, and EfficientNet-B0 to achieve my goal of image classification.
These models excel in accurately and effectively classifying images into specific cate-
gories.

Additionally, We will leverage these pretrained models for feature extraction. The
hidden layers in ResNet50, EfficientNet-B0, and VGG19 provide rich representations
of images, which can be used in various applications. Using these models saves time
and resources, and enhances model performance and accuracy across different tasks.

2. Pretrained & Machine Learning Models: We propose utilizing pretrained mod-
els for feature extraction, while employing traditional machine learning algorithms for
classification. For this purpose (see figure 3.6), we have selected the following algo-
rithms:

Support Vector Machines (SVM): A collection of supervised machine learning
techniques called Support Vector Machines (SVM) are utilized in regression and clas-
sification. SVM is characterized as a predictive tool that prevents overfitting to the

Univ-Biskra/Computer Science: 2024 50



Conception

data by utilizing machine learning theory to improve prediction accuracy. SVM, which
allows for control over complexity and avoids problems with high-dimensional data,
is frequently used in text analysis, handwriting recognition, and image classification.
It plays a significant role in pattern classification and addressing regression problems.
By transforming data into a high-dimensional feature space where linear classification
is carried out, the kernel technique allows SVM to extend this method to non-linear
boundaries. SVM operates by determining the ideal hyperplane that divides various
data classes with the widest feasible margin. The ideal hyperplane is defined by a
collection of "support vectors" that are included in the final model. Since its initial in-
troduction at the COLT-92 conference in 1992, SVM has developed into a vibrant field
of machine learning research. Its remarkable efficacy in a wide range of real-world appli-
cations, including text categorization and handwriting recognition, has contributed to
its growing popularity. SVM is a potent and adaptable method for regression and clas-
sification that combines real-world applications with mathematical theory to produce
precise and broadly applicable findings [104].

fitted Model Feature Extraction Features Machine Learning classifier

Classification Model

Figure 3.6: Feature Extraction and Classification Architecture

3. Vit Models: Vit Models are a promising new technique that we would like to use
in this research on the detection of microorganisms in water. This technology is part
of the ongoing development in the field of artificial intelligence and deep learning, and
is primarily used for analyzing large datasets and enhancing prediction accuracy and
processing. And this is our vit architecture we used ViT-B16 as pretrained model (see
Figure 3.7).

Univ-Biskra/Computer Science: 2024 51



Conception

VisionTransforme

Conv2d (conv_proj)

Encoder (encoder)

Linear (heads)

Dropout (dropout)

Sequential (layers)

Linear (LayerNorm (ln))

encoder_layer_5

encoder_layer_4

encoder_layer_3

encoder_layer_2

encoder_layer_1

encoder_layer_0

encoder_layer_6

encoder_layer_7

encoder_layer_8

encoder_layer_9

encoder_layer_10

encoder_layer_11

Figure 3.7: Vision Transformer Architecture

3.3.5 Test

The testing phase is when the trained model is assessed using the test set to gauge
its performance. This step is crucial as it is the last one before the model is deployed in a
real-world setting.

To get a class prediction from the trained model, an image of the same dimensions as the
training image is fed into the network (see figure 3.8).

Univ-Biskra/Computer Science: 2024 52



Conception

Fitted Model Prediction

Input Image

Figure 3.8: testing Phase.

3.3.6 Evaluation metrics

We’ve put in place a number of indicators to make sure our system is sturdy and de-
pendable. By comparing expected and actual results, these measures generate scores that
indicate how effective the model is. They are used in a traditional data classification proce-
dure in both the training and testing stages. Generally speaking, scores fall between 0 and
1, where 0 denotes subpar performance and 1 (or 100%) denotes perfect performance.

Confusion Matrix

A table known as a confusion matrix is frequently used to explain how well a classifica-
tion model performs when applied to a set of test data for which the true values are known.
It makes it possible to visualize how well an algorithm performs. In the matrix, the examples
in a predicted class are represented by each column, and the occurrences in an actual class
are represented by each row. There are four parts to the confusion matrix:

• True Positives (TP): The number of observations correctly predicted as positive.

• True Negatives (TN): The number of observations correctly predicted as negative.

• False Positives (FP): The number of observations incorrectly predicted as positive.

• False Negatives (FN): The number of observations incorrectly predicted as negative.

The confusion matrix is often presented in the following format:

Actual Positive Actual Negative
Predicted Positive TP FP

Predicted Negative FN TN

Univ-Biskra/Computer Science: 2024 53



Conception

precision

The positive patterns that are successfully predicted from all of the projected patterns
in a positive class are measured using precision. The equation for precision is given by:

Precision (p) = TP

TP + FP
(3.2)

Recall

The percentage of positive patterns that are correctly categorized is measured by recall.
The recall equation is provided by:

Recall (r) = TP

TP + FN
(3.3)

F1-Score

The harmonic mean of recall and precision yields the F1-score, which strikes a balance
between the two measures. It is computed with the following formula:

F1-Score (F1) = 2× Precision× Recall
Precision + Recall (3.4)

Accuracy

The ratio of accurate predictions to all instances analyzed is the measure of accuracy.
It is computed with the following formula:

Accuracy (acc) = TP + TN

TP + FP + FN + TN
(3.5)

3.3.7 Model deployment

Training a model is not the end goal in deep learning. A deep learning project only
gains interest when it is widely adopted, regardless of its application—for example, object
detection or image categorization. Herein lies the role of deployment. The process of putting
a completed machine learning model into a real-world setting where it may be utilized for
the intended goals is known as deployment. Models can be implemented in many different
contexts, and in order to make them available to end users, they are frequently connected
into applications using an API [105].

Univ-Biskra/Computer Science: 2024 54



Conception

Deploying our model requires multiple processes, which are frequently completed con-
currently, after it has been trained and evaluated. The model must first be moved to the
deployment environment so that it may access the required data sources and hardware re-
sources. The model must be incorporated into the operational procedure second. Making it
available to end users via a web browser is part of this (see figure 3.9).

Dataset

Trained Model

Create a
web application

End
User

Figure 3.9: Model Deployment.

3.4 Conclusion

In conclusion, the aim of this chapter was to present a detailed system design for
leveraging electron microscopy images to detect and classify microorganisms in water. We
covered the methodologies involved in data collection, preprocessing, model training, and
performance evaluation, demonstrating how these elements contribute to the development
of an effective real-time water quality assessment tool. The system’s ability to enhance the
accuracy and speed of microorganism detection offers a scalable solution for various water
monitoring scenarios.

The iterative process of reevaluation and adjustment highlighted our commitment to
achieving optimal model performance. In the next chapter, we will focus on the implemen-
tation of this system and the practical applications of our findings in real-world scenarios,
providing insights into the operational aspects and potential improvements for future devel-
opments in water safety technology.

Univ-Biskra/Computer Science: 2024 55



Chapter 4

Implementation and results

4.1 Introduction

In this chapter, we discuss the implementation of deep learning models for detecting mi-
croorganisms in water and evaluate the performance of these models using a specific dataset.
The study focuses on comparing several advanced models, including pre-trained models and
models combined with traditional machine learning algorithms such as SVM, in addition to
Vision Transformer (ViT) models. In this chapter, we will review the implementation steps,
from data collection and preprocessing to model training and evaluation. Additionally, we
will discuss the performance of different models based on various metrics such as precision,
recall, and classification accuracy. Finally, we will cover the deployment process of the model
using tools like Gradio to facilitate model access and application in a real-world environment.

4.2 Implementation tools and languages

We were able to familiarize ourselves with a variety of development methodologies and
tools during the project’s implementation phase, which required the use of specific program-
ming domains. These are listed below:

4.2.1 Python

Python is a high-level, interpreted, object-oriented language with dynamic semantics.
Its dynamic typing and dynamic binding, along with its high-level built-in data structures,
make it an appealing language for Rapid Application Development and for usage as a scripting

56



Implementation and results

or glue language to join existing components. Because of its straightforward, basic syntax,
Python promotes readability, which lowers software maintenance costs. Python’s support
for packages and modules promotes code reuse and program modularity. The large standard
library and the Python interpreter are freely distributable and accessible for free on all major
platforms in source or binary form [106].

The version of Python used in this project is 3.10.13, as shown in Figure 4.1.

1 from platform import python_version

2 python_version ()

3 ’3.10.13 ’

4

Figure 4.1: Python version code and output.

4.2.2 Kaggle

Kaggle is the world’s largest community of over 18 million data scientists and machine
learning/data science enthusiasts [107][108]. Founded in 2010 by Anthony Goldbloom and
Ben Hamner, the company is headquartered in the San Francisco Bay Area . Kaggle provides
a vibrant platform where data scientists compete to solve complex, real-world problems using
the latest machine learning techniques [108].

The platform offers a plethora of resources, including over 338,000 public datasets, more
than 1,080,000 public notebooks, and over 4,900 pre-trained models. Kaggle hosts more than
27,000 competitions to help users develop their skills and learn new methods. It also provides
free educational courses on programming, machine learning, and data manipulation, complete
with certificates. The supportive and inclusive learning environment encourages interaction
through forums and mentorship programs [107].

Kaggle has a proven track record of delivering cutting-edge business results, especially in
the Energy sector, as well as solving challenging problems across a diverse array of industries
including life sciences, financial services, aviation, information technology, and retail. The
dedicated team, led by D. Sculley, Jeff Moser, and William Cukierski, works diligently to
ensure Kaggle remains at the forefront of innovation and education in the field of data
science and machine learning [107].

Univ-Biskra/Computer Science: 2024 57



Implementation and results

Figure 4.2: Kaggle Logo [107]

4.2.3 opencv

A comprehensive open-source software library for computer vision and machine learning
applications is called OpenCV, or Open Source Computer Vision Library. It was established
in 2010 and offers a shared infrastructure to hasten the application of machine perception in
items for sale. OpenCV provides both traditional and cutting-edge methods for applications
like object identification, face recognition, human activity classification in films, and much
more. It has over 2500 optimized algorithms. With more than 47,000 users and an estimated
18 million downloads, it is widely used by businesses, academic institutions, and governments
all around the world. The library leverages specific hardware instructions and supports a
variety of operating systems and programming languages, with a bias toward real-time vision
applications. Furthermore, it fosters community involvement and offers multiple channels for
assistance and cooperation, guaranteeing ongoing advancements and novelty in the domain
of computer vision and machine learning [109].

Figure 4.3: OpenCv logo [109]

Univ-Biskra/Computer Science: 2024 58



Implementation and results

4.2.4 Pytorch

The PyTorch Foundation serves as a collaborative hub for the deep learning commu-
nity, fostering the growth of the open-source PyTorch framework. PyTorch was created in
September 2016 by Meta AI (formerly Facebook AI). Led by experienced AI/ML experts
from major tech companies, the Foundation facilitates community engagement and supports
the development of the PyTorch ecosystem. As part of The Linux Foundation, the PyTorch
community works on initiatives like training, events, tooling, and research to enable PyTorch
usage at scale. The Foundation’s guiding principles focus on democratizing state-of-the-art
AI/ML tools and making them accessible to all. The Foundation has a governance structure
and encourages contributions from developers and member companies. Developers can join
the community, access comprehensive resources, and collaborate with the PyTorch Founda-
tion representatives [110].

Figure 4.4: Pytorch logo [110]

4.2.5 Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive
visualizations in Python. It makes easy things easy and hard things possible. It allows
you to create publication-quality plots, make interactive figures that can zoom, pan, and
update, customize visual styles and layouts, export to many file formats, and embed plots
in JupyterLab and graphical user interfaces. You can also use a rich array of third-party
packages built on Matplotlib. Matplotlib was created by neurobiologist John Hunter to work
with EEG data, and it has grown to be used in many other fields [111].

Univ-Biskra/Computer Science: 2024 59



Implementation and results

Figure 4.5: Matplotlib logo [111].

4.2.6 Gradio

Gradio is an open-source Python library used to create machine learning and data
science demos, as well as web applications. With Gradio, you can quickly build a user-friendly
interface around your machine learning models or data workflows, allowing users to interact
with your demo by dragging and dropping images, pasting text, recording audio, and more,
all through their web browser. Gradio is useful for rapidly deploying models with shareable
links, gathering feedback on model performance, and debugging models interactively using
built-in processing and interpretation tools [112].

Figure 4.6: Gradio logo [112].

4.2.7 NVIDIA

American-born NVIDIA is a multinational technology company with headquarters in
Santa Clara, California. It is a leading manufacturer of graphics processing units (GPUs)
and high-performance computer equipment. The GPU was developed by NVIDIA, which
is well known for its innovative products and technologies. These include gaming, artificial
intelligence, robotics, autonomous vehicles, and high-performance computing. On April 5,
1993, Jensen Huang, Chris Malachowsky, and Curtis Priem established Nvidia [113][114].

Univ-Biskra/Computer Science: 2024 60



Implementation and results

Figure 4.7: NVIDIA logo [113]

4.2.8 CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
API developed by Nvidia, enabling the use of GPUs for general-purpose computing. Launched
in 2006, it supports programming languages such as C, C++, Fortran, and Python, facil-
itating accelerated processing. Key features include parallel computing, explicit memory
management, and efficient thread management. Widely adopted in machine learning, scien-
tific research, and other fields, CUDA’s extensive tools and libraries are vital for enhancing
computational performance [115][116][117][118].

Figure 4.8: CUDA logo[117]

4.2.9 CuDNN

cuDNN (CUDA Deep Neural Network) is a GPU-accelerated library by NVIDIA for
deep learning, offering optimized implementations for convolution, attention, matmul, pool-
ing, and normalization. It supports multi-threading and CUDA streams for enhanced perfor-

Univ-Biskra/Computer Science: 2024 61



Implementation and results

mance. NVIDIA provides extensive resources including installation guides, API references, a
developer guide, and troubleshooting documentation to assist with using cuDNN effectively.
These resources are available on the NVIDIA cuDNN documentation hub [119].

Figure 4.9: CuDNN logo[119]

4.2.10 NumPy

NumPy is a fundamental Python open-source project that provides robust numerical
computing capabilities. Established in 2005, it extends the functionality of earlier libraries
while maintaining a commitment to open accessibility. Governed by a Steering Council,
NumPy promotes community collaboration via GitHub, with various teams dedicated to de-
velopment, documentation, and optimization. Funding from foundations and institutional
partners ensures its continued growth. NumPy’s significance lies in its pivotal role in sci-
entific computing, offering users a vast array of manipulation functions and mathematical
operations, rendering it an indispensable tool for numerical analysis and data manipulation
tasks [120].

Figure 4.10: Numpy logo [120]

4.2.11 Scikit-learn

An open-source machine learning library for the Python programming language is called
Scikit-learn. David Cournapeau started the idea in 2007 as a Google Summer of Code project,

Univ-Biskra/Computer Science: 2024 62



Implementation and results

and Matthieu Brucher expanded on it for his thesis. The first public release occurred on
February 1st, 2010, after INRIA’s Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort,
and Vincent Michel assumed leadership in 2010. Numerous supervised and unsupervised
learning methods for tasks like classification, statistical analysis, dimensionality reduction,
and model selection are included in the collection. The NumFOCUS group provides financing
for Scikit-learn, which is also funded by INRIA, Microsoft, and Nvidia. Donations are used
to pay for organizational budget and other costs, such workshop travel [121].

Figure 4.11: Sklearn logo [121]

4.3 Realization

Before sending the final images to the following steps, we will do preprocessing operations
on the dataset that was utilized for this project. Tumor binary classification will be denoted
as "Pathogenic & Non-Pathogenic Detection" whereas multiclass classification will be called
"EMs Detection".

4.3.1 Dataset description

The dataset used in this project is the EMDS-7, which includes 2,365 PNG images across
42 classes. We removed the "unknown" class because it was empty and since class 2 and class
11 share the same name and content, they have been combined. We can classify the objects
into two categories: Pathogenic or Non-Pathogenic. Between 2018 and 2019, environmental
biologists in Shenyang, China, took the photos from different lakes and rivers using a 400×
optical microscope. From 2020 to 2021, bioinformatics experts manually annotated the items
in XML format. [122].

Univ-Biskra/Computer Science: 2024 63



Implementation and results

4.3.1.1 First problematic

Table 4.1 provides the number of images for each category in the EMDS-7 dataset.
Each row consists of the folder name, category name, and the number of images. This
information is necessary to understand data distribution and organization for preprocessing,
model training, and data analysis.

Folder Name Class Name Image Count

Pathogenic Pathogenic 1063
Non-Pathogenic Non-Pathogenic 1302

Table 4.1: Image Counts per Class in EMDS-7 (2 Classes)

The Figure 4.12 provides a graph illustrating the pathogenicity distribution.

55.1%

44.9%

Non Pathogenic

Pathogenic

Figure 4.12: Pathogenicity Distribution

My database is stored on the Kaggle platform. The Figure 4.13 below illustrates the
data organization as it is structured on Kaggle, facilitating effective information management
and ease of access for various analyses.

Univ-Biskra/Computer Science: 2024 64



Implementation and results

Figure 4.13: Data Structure, Pathogenic, and Non-Pathogenic.

4.3.1.2 Second problematic

The table 4.2 prefrovides the count of images per class in the EMDS-7 dataset, along
with information on whether each class is harmful (pathogenic) or not. the table is ordered
to list all harmful classes first, followed by non-pathogenic ones.

Table 4.2: Image Counts per Class in EMDS-7

Index Harmful Folder Name Class Name Image Count

1 1 EMDS7-G001 Oscillatoria 41
2 1 EMDS7-G003 Microcystis 307
3 1 EMDS7-G014 Pediastrum 95
4 1 EMDS7-G021 Staurastrum 9
5 1 EMDS7-G022 Phormidium 276
6 1 EMDS7-G023 Fragilaria 55
7 1 EMDS7-G024 Anabaenopsis 22
8 1 EMDS7-G025 Coelosphaerium 77
9 1 EMDS7-G031 Merismopedia 33
10 1 EMDS7-G034 Raphidiopsis 9
11 1 EMDS7-G035 Gomphosphaeria 58
12 1 EMDS7-G036 Euglena 81
13 0 EMDS7-G002 Ankistrodesmus 69
14 0 EMDS7-G004 Gomphonema 87
15 0 EMDS7-G005 Sphaerocystis 55
16 0 EMDS7-G006 Cosmarium 17
17 0 EMDS7-G007 Cocconeis 14
18 0 EMDS7-G008 Tribonema 49
19 0 EMDS7-G009 Chlorella 80

Univ-Biskra/Computer Science: 2024 65



Implementation and results

Index Harmful Folder Name Class Name Image Count

20 0 EMDS7-G010 Tetraedron 25
21 0 EMDS7-G012 Brachionus 113
22 0 EMDS7-G013 Chaenea 6
23 0 EMDS7-G015 Spirulina 18
24 0 EMDS7-G016 Actinastrum 23
25 0 EMDS7-G017 Navicula 75
26 0 EMDS7-G018 Scenedesmus 86
27 0 EMDS7-G019 Golenkinia 60
28 0 EMDS7-G020 Pinnularia 36
29 0 EMDS7-G026 Crucigenia 9
30 0 EMDS7-G027 Achnanthes 18
31 0 EMDS7-G028 Synedra 77
32 0 EMDS7-G029 Ceratium 23
33 0 EMDS7-G030 Pompholyx 49
34 0 EMDS7-G032 Spirogyra 89
35 0 EMDS7-G033 Coelastrum 29
36 0 EMDS7-G037 Euclanis 14
37 0 EMDS7-G038 Keratella 65
38 0 EMDS7-G039 diversicornis 89
39 0 EMDS7-G040 Surirella 22
40 0 EMDS7-G041 Characium 5

Univ-Biskra/Computer Science: 2024 66



Implementation and results

EM
D

S7
-G

00
1

EM
D

S7
-G

00
2

EM
D

S7
-G

00
3

EM
D

S7
-G

00
4

EM
D

S7
-G

00
5

EM
D

S7
-G

00
6

EM
D

S7
-G

00
7

EM
D

S7
-G

00
8

EM
D

S7
-G

00
9

EM
D

S7
-G

01
0

EM
D

S7
-G

01
2

EM
D

S7
-G

01
3

EM
D

S7
-G

01
4

EM
D

S7
-G

01
5

EM
D

S7
-G

01
6

EM
D

S7
-G

01
7

EM
D

S7
-G

01
8

EM
D

S7
-G

01
9

EM
D

S7
-G

02
0

EM
D

S7
-G

02
1

EM
D

S7
-G

02
2

EM
D

S7
-G

02
3

EM
D

S7
-G

02
4

EM
D

S7
-G

02
5

EM
D

S7
-G

02
6

EM
D

S7
-G

02
7

EM
D

S7
-G

02
8

EM
D

S7
-G

02
9

EM
D

S7
-G

03
0

EM
D

S7
-G

03
1

EM
D

S7
-G

03
2

EM
D

S7
-G

03
3

EM
D

S7
-G

03
4

EM
D

S7
-G

03
5

EM
D

S7
-G

03
6

EM
D

S7
-G

03
7

EM
D

S7
-G

03
8

EM
D

S7
-G

03
9

EM
D

S7
-G

04
0

EM
D

S7
-G

04
1

0

2

4

6

8

10

12

14

Groups

Pe
rc

en
ta

ge
(%

)

Figure 4.14: Percentage distribution of groups

4.3.2 Preprocessing steps & Split Dataset

The preprocessing steps and dataset splitting are common to both problematics. There is no
difference in this stage; only the inputs and outputs vary according to the specific dataset
for each problematic. To begin, we imported the necessary libraries in Python.

1 import numpy as np

2 import cv2

3 from PIL import Image

4 from torchvision import transforms

5

Figure 4.15: Python code snippet for importing libraries.

Univ-Biskra/Computer Science: 2024 67



Implementation and results

4.3.2.1 Data loading

in this phase is to load the images from the dataset directory using a custom dataset
class. This method ensures that images are organized by class labels and can handle different
formats and structures.

4.3.2.2 Resizing the Images

The first step in preprocessing is to resize the images to a uniform size. This is cru-
cial as models require fixed input dimensions. We use transforms.Resize() from the
torchvision.transforms module to resize the images. The syntax is:

1 # Define the target image size

2 image_size = (224 , 224)

3
4 transforms . Resize ( image_size )

5

Figure 4.16: Python code snippet for resizing images.

4.3.2.3 Normalization

Normalization adjusts the pixel values to a common scale, typically using the mean
([0.485, 0.456, 0.406]) and standard deviation ([0.229, 0.224, 0.225]) of the dataset. This step is
important for efficient and stable training. We use transforms.Normalize() to standardize
the pixel values. The syntax is:

1 # transforms . Normalize (mean , std)

2 transforms . Normalize ([0.485 , 0.456 , 0.406] , [0.229 , 0.224 , 0.225])

3
4

Figure 4.17: Python code snippet for normalization.

4.3.2.4 Split Dataset

Splitting the dataset is a crucial step in preparing the data for model training and
evaluation. Typically, the dataset is divided into training and testing sets to evaluate the
model’s performance on unseen data. Here, we use an 80-20 split, where 80% of the data is
used for training and 20% for testing. The syntax is:

Univ-Biskra/Computer Science: 2024 68



Implementation and results

1 from torch . utils .data import random_split

2
3 # Split dataset into training and testing sets (80 -20 split )

4 train_size = int (0.8 * len( dataset ))

5 test_size = len( dataset ) - train_size

6 train_dataset , test_dataset = random_split (dataset , [ train_size , test_size ])

7

Figure 4.18: Python code snippet for splitting dataset.

(a) Original Image (b) Resized (c) Normalization

Figure 4.19: Results of preprocessing steps.

4.3.3 Data Augmentation

Data augmentation is an important technique to enhance the dataset by applying var-
ious transformations. Here, we describe and demonstrate the code for each augmentation
method used. The difference lies in how the augmentation technique is implemented for the
two problematics.

In the first problematic, as observed in Image 4.12, the distribution among classes is equal.
Therefore, we applied each upcoming augmentation technique to every image and saved it.

However, in the second problematic, as illustrated in Image 4.14, the image distribution
among classes is not consistent at all. Because of this, we had to adapt our augmentation
strategy differently. For the second problematic, we applied specific augmentation techniques
selectively based on the class distribution to ensure a more balanced dataset.

4.3.3.1 Horizontal Flip

This transformation flips the image horizontally with a probability of 1.0.

Univ-Biskra/Computer Science: 2024 69



Implementation and results

1 import torchvision . transforms as transforms

2
3 # Horizontal flip

4 horizontal_flip = transforms . RandomHorizontalFlip (p =1.0)

5

Figure 4.20: Python code snippet for horizontal flip.

4.3.3.2 Vertical Flip

This transformation flips the image vertically with a probability of 1.0.

1 import torchvision . transforms as transforms

2
3 # Vertical flip

4 vertical_flip = transforms . RandomVerticalFlip (p =1.0)

5

Figure 4.21: Python code snippet for vertical flip.

4.3.3.3 Rotation

This transformation rotates the image by 30 degrees.

1 import torchvision . transforms as transforms

2
3 # Rotation

4 rotation = transforms . RandomRotation (30)

5

Figure 4.22: Python code snippet for rotation.

4.3.3.4 Gaussian Blur

This transformation applies Gaussian blur with a kernel size of 3.

1 import torchvision . transforms as transforms

2
3 # Gaussian blur

4 gaussian_blur = transforms . GaussianBlur (3)

5

Figure 4.23: Python code snippet for Gaussian blur.

Univ-Biskra/Computer Science: 2024 70



Implementation and results

4.3.3.5 CLAHE

CLAHE (Contrast Limited Adaptive Histogram Equalization) is a custom transforma-
tion.

1 import cv2

2 import numpy as np

3 from PIL import Image

4
5 # Custom CLAHE transformation

6 class CLAHE :

7 def __init__ (self , clip_limit =2.0 , tile_grid_size =(8 , 8)):

8 self. clip_limit = clip_limit

9 self. tile_grid_size = tile_grid_size

10
11 def __call__ (self , img):

12 img = np. array (img)

13 if len(img. shape ) == 2:

14 img = cv2. cvtColor (img , cv2. COLOR_GRAY2BGR )

15 lab = cv2. cvtColor (img , cv2. COLOR_BGR2LAB )

16 lab_planes = list(cv2. split (lab))

17 clahe = cv2. createCLAHE ( clipLimit =self. clip_limit , tileGridSize =self. tile_grid_size )

18 lab_planes [0] = clahe . apply ( lab_planes [0])

19 lab = cv2. merge ( lab_planes )

20 img = cv2. cvtColor (lab , cv2. COLOR_LAB2BGR )

21 return Image . fromarray (img)

22
23 clahe = CLAHE ()

24

Figure 4.24: Python code snippet for CLAHE.

4.3.3.6 Cutout

Cutout is a custom transformation that masks out square regions of the input image.

Univ-Biskra/Computer Science: 2024 71



Implementation and results

1 import numpy as np

2 from PIL import Image

3
4 # Custom Cutout transformation

5 class Cutout :

6 def __init__ (self , num_holes =1, size =50):

7 self. num_holes = num_holes

8 self.size = size

9
10 def __call__ (self , img):

11 img = np. array (img)

12 h, w, _ = img. shape

13 mask = np.ones ((h, w), np. float32 )

14
15 for _ in range (self. num_holes ):

16 y = np. random . randint (h)

17 x = np. random . randint (w)

18
19 y1 = np.clip(y - self.size // 2, 0, h)

20 y2 = np.clip(y + self.size // 2, 0, h)

21 x1 = np.clip(x - self.size // 2, 0, w)

22 x2 = np.clip(x + self.size // 2, 0, w)

23
24 mask[y1: y2 , x1: x2] = 0

25
26 mask = np. expand_dims (mask , axis = -1)

27 img = img * mask

28 img = img. astype (np. uint8 ) # Convert to uint8

29 return Image . fromarray (img)

30
31 cutout = Cutout ()

32

Figure 4.25: Python code snippet for Cutout.

The figure 4.26 below showcases the results obtained after applying the previously
mentioned augmentation techniques to the original image.

Univ-Biskra/Computer Science: 2024 72



Implementation and results

(a) Original

(b) F Horizontally (c) F Vertically (d) Rotated

(e) Blurred (f) CLAHE Applied (g) Cutout

Figure 4.26: Original image and its augmented versions.

4.4 Modelisation

In this section, we will present the code used in the creation, training, and evaluation
phases of the various models.

4.4.1 Pretrained Models

The PyTorch library includes models such as ResNet50, VGG19, and EfficientNet-B0
to assist with transfer learning. The final layer of the model (_fc) was adjusted to match the

Univ-Biskra/Computer Science: 2024 73



Implementation and results

number of classes in our dataset: 2 for the first problematic (Pathogenic & Non-Pathogenic
Detection) and 40 for the second (EMs Detection).

Models built on PyTorch are trained using custom training loops. This process allows us
to evaluate our model during the training phase. Here, we utilize the split data, specifically
the training data, to adjust the model.

4.4.1.1 Model Setup

In this stage, we configure the device (GPU or CPU) to be used and load the pre-
trained EfficientNet-B0 model. We modify the final layer of the model to align with the
number of classes in our dataset (2 classes in this case). Finally, we move the model to the
appropriate device.

1 # Model Setup

2 device = torch . device ("cuda :0" if torch .cuda. is_available () else "cpu")

3 model = EfficientNet . from_pretrained (’efficientnet -b0 ’) # Using EfficientNet -B0 with ImageNet weights

4 num_ftrs = model ._fc. in_features # Getting the number of input features for the final layer

5 model ._fc = nn. Linear (num_ftrs , 2) # Modifying the final layer to match the number of classes

6 model = model .to( device ) # Moving the model to the appropriate device (GPU or CPU)

7

Figure 4.27: Setting up the model using EfficientNet-B0 with ImageNet weights.

4.4.1.2 Training

The parameters were selected to optimize the model’s performance and ensure
stable convergence during training.

Hyperparameters Value

Loss Function CrossEntropyLoss
Optimizer SGD
Metrics Accuracy
Epochs 100
Batch Size 32
Learning Rate 0.001
Momentum 0.9

Table 4.3: Hyperparameters used for training the VGG19 model.

Univ-Biskra/Computer Science: 2024 74



Implementation and results

Loss Function and Optimizer Setup: At this stage, we define the loss function as
CrossEntropyLoss and use the SGD optimizer with a learning rate of 0.001 and momentum
of 0.9.

1 criterion = nn. CrossEntropyLoss ()

2 optimizer = optim .SGD( model . parameters () , lr =0.001 , momentum =0.9)

3

Figure 4.28: Setting up the loss function and optimizer.

Training Loop: In this stage, we define variables to store the training and validation
accuracy and loss histories, and specify the best validation accuracy to track and save the
best model.

1 num_epochs = 100

2 train_acc_history = []

3 train_loss_history = []

4 val_acc_history = []

5 val_loss_history = []

6
7 best_val_acc = 0.0

8 best_model_path = ’best_model .pth ’

9

Figure 4.29: Setting up training loop variables.

Epoch Loop: In this stage, we iterate over epochs for both training and validation. In
each epoch, we set the model to either train or evaluate mode based on the current phase.

1 for epoch in range ( num_epochs ):

2 print (f’Epoch { epoch }/{ num_epochs - 1} ’)

3 print (’-’ * 10)

4
5 for phase in [’train ’, ’val ’]:

6 if phase == ’train ’:

7 model . train ()

8 dataloader = dataloaders [’train ’]

9 else:

10 model .eval ()

11 dataloader = dataloaders [’val ’]

12

Figure 4.30: Epoch loop for training and validation phases.

Batch Loop: In this stage, we define a loop to iterate over batches within each phase. We
compute the loss, perform weight updates during training, and accumulate accuracy and loss
metrics.

Univ-Biskra/Computer Science: 2024 75



Implementation and results

1 running_loss = 0.0

2 running_corrects = 0

3
4 for inputs , labels in dataloader :

5 inputs = inputs .to( device )

6 labels = labels .to( device )

7
8 optimizer . zero_grad ()

9
10 with torch . set_grad_enabled ( phase == ’train ’):

11 outputs = model ( inputs )

12 _, preds = torch .max(outputs , 1)

13 loss = criterion (outputs , labels )

14
15 if phase == ’train ’:

16 loss. backward ()

17 optimizer .step ()

18
19 running_loss += loss.item () * inputs .size (0)

20 running_corrects += torch .sum( preds == labels .data)

21

Figure 4.31: Batch loop for each phase within each epoch.

Calculating and Recording Metrics: In this stage, we calculate the loss and accuracy
for each epoch and record them. If the validation accuracy is the best encountered so far, we
save the model.

1 epoch_loss = running_loss / len( dataloader . dataset )

2 epoch_acc = running_corrects . double () / len( dataloader . dataset )

3
4 if phase == ’train ’:

5 train_loss_history . append ( epoch_loss )

6 train_acc_history . append ( epoch_acc )

7 else:

8 val_loss_history . append ( epoch_loss )

9 val_acc_history . append ( epoch_acc )

10
11 # Save the best model

12 if epoch_acc > best_val_acc :

13 best_val_acc = epoch_acc

14 torch .save( model . state_dict () , best_model_path )

15 print (" Saved the best model with validation accuracy : {:.4f}". format ( best_val_acc ))

16

Figure 4.32: Calculating and recording metrics for each epoch phase.

4.4.2 Pretrained & ML Models

We used the pre-trained EfficientNet-B0 model as an example, but the same process will
be applied to all models resulting from the previous stage. This process involved extracting
features from the images and modifying the final layer to match the number of classes (2/40
depending on the problematic). We then used the outputs from the penultimate layer as

Univ-Biskra/Computer Science: 2024 76



Implementation and results

feature vectors for training the SVM model.

4.4.2.1 Feature Extraction

First, we load the pretrained EfficientNet-B0 model and prepare it for feature extrac-
tion. The model’s last layer is adjusted to match the number of classes in our dataset.

1 # Model Setup

2 device = torch . device ("cuda :0" if torch .cuda. is_available () else "cpu")

3 model = EfficientNet . from_pretrained (’efficientnet -b0 ’)

4 num_ftrs = model ._fc. in_features

5 model ._fc = nn. Linear (num_ftrs , 40) # Adjust the last layer for 40 classes

6 model_path = ’/ kaggle / input / models40c / efficientnet -b0_0 .9384. pth ’ # Replace with your model path

7 model . load_state_dict ( torch .load( model_path ))

8 model = model .to( device )

9 model .eval ()

10

Figure 4.33: Loading and setting up the pretrained EfficientNet-B0 model.

Next, we define a function to extract features from the penultimate layer of the model.
This function processes the inputs in batches and extracts features from the specified layer.

1 # Define a feature extraction function

2 def extract_features (model , dataloader ):

3 model .eval ()

4 features = []

5 labels = []

6
7 with torch . no_grad ():

8 for inputs , targets in dataloader :

9 inputs = inputs .to( device )

10 targets = targets .to( device )

11
12 # Extract features from the penultimate layer

13 x = model . extract_features ( inputs )

14 x = nn. functional . adaptive_avg_pool2d (x, 1). squeeze ( -1). squeeze ( -1)

15 features . extend (x.cpu (). numpy ())

16 labels . extend ( targets .cpu (). numpy ())

17 print (f" Processed {len( features )} samples ")

18
19 return np. array ( features ), np. array ( labels )

20
21 # Extract features from training and test sets

22 print (" Extracting features from training set ...")

23 train_features , train_labels = extract_features (model , train_loader )

24 print (" Extracting features from test set ...")

25 test_features , test_labels = extract_features (model , test_loader )

26

Figure 4.34: Extracting features from training and test sets.

Univ-Biskra/Computer Science: 2024 77



Implementation and results

4.4.2.2 Training SVM Classifier

To improve the performance of the classifier, we first standardize the extracted features. We
then define a parameter grid for the SVM and search for the best hyperparameters through
cross-validation.

1 # Standardize features

2 scaler = StandardScaler ()

3 train_features = scaler . fit_transform ( train_features )

4 test_features = scaler . transform ( test_features )

5
6 # Parameter grid for SVM

7 param_grid = {

8 ’C’: [0.1 , 1, 10, 100 , 1000] ,

9 ’kernel ’: [’linear ’, ’rbf ’, ’poly ’],

10 ’degree ’: [2, 3, 4],

11 ’gamma ’: [’scale ’, ’auto ’]

12 }

13
14 # Training and evaluating multiple SVM classifiers

15 best_accuracy = 0

16 best_params = None

17 best_model = None

18
19 for C in param_grid [’C’]:

20 for kernel in param_grid [’kernel ’]:

21 for degree in param_grid [’degree ’]:

22 for gamma in param_grid [’gamma ’]:

23 # Skip degrees for non - polynomial kernels

24 if kernel != ’poly ’ and degree != param_grid [’degree ’][0]:

25 continue

26
27 print (f" Training SVM with C={C}, kernel ={ kernel }, degree ={ degree }, gamma ={ gamma }...")

28 svm_classifier = svm.SVC(C=C, kernel =kernel , degree =degree , gamma = gamma )

29 svm_classifier .fit( train_features , train_labels )

30
31 print (f" Predicting on test set with SVM (C={C}, kernel ={ kernel }, degree ={ degree }, gamma ={ gamma }) ...")

32 predictions = svm_classifier . predict ( test_features )

33 accuracy = accuracy_score ( test_labels , predictions )

34 print (f" Accuracy : { accuracy }")

35
36 if accuracy > best_accuracy :

37 best_accuracy = accuracy

38 best_params = {’C’: C, ’kernel ’: kernel , ’degree ’: degree , ’gamma ’: gamma }

39 best_model = svm_classifier

40

Figure 4.35: Training and evaluating multiple SVM classifiers.

After identifying the best SVM model, we save it for future use.

Univ-Biskra/Computer Science: 2024 78



Implementation and results

1 # Save the best SVM model

2 joblib .dump( best_model , ’best_svm_model .pkl ’)

3 print ("Best SVM model saved to ’best_svm_model .pkl ’")

4
5 # Evaluation of the best model

6 print (f"Best Model Parameters : C={ best_params [’C ’]}, kernel ={ best_params [’ kernel ’]}, degree ={ best_params [’ degree ’]}, gamma

={ best_params [’ gamma ’]}")

7 print (f"Best Model Accuracy : { best_accuracy }")

8

Figure 4.36: Saving the best SVM model.

4.4.3 ViT Model

This section describes the steps taken to fine-tune a pretrained Vision Transformer
(ViT) model for a custom classification task.

4.4.3.1 Import Libraries and Setup Device

First, the necessary libraries for deep learning, data manipulation, and performance
metrics are imported. The computing device is also set up.

1 import os

2 import matplotlib . pyplot as plt

3 import torch

4 import torchvision

5 from torch import nn

6 from torchvision import datasets , transforms

7 from torch . utils .data import DataLoader

8 import numpy as np

9 import seaborn as sns

10 from sklearn . metrics import classification_report , confusion_matrix , precision_score , recall_score

11 from tqdm.auto import tqdm

12 from torchinfo import summary

13
14 device = "cuda" if torch .cuda. is_available () else "cpu"

15

Figure 4.37: Importing Libraries and Setting up the Device

4.4.3.2 Load Pretrained ViT Model and Freeze Base Parameters

The pretrained ViT model with its default weights is loaded and transferred to the
selected device. The base model parameters are then frozen to prevent them from being
updated during training.

Univ-Biskra/Computer Science: 2024 79



Implementation and results

1 pretrained_vit_weights = torchvision . models . ViT_B_16_Weights . DEFAULT

2 pretrained_vit = torchvision . models . vit_b_16 ( weights = pretrained_vit_weights ).to( device )

3
4 for parameter in pretrained_vit . parameters ():

5 parameter . requires_grad = False

6

Figure 4.38: Loading Pretrained ViT Model and Freezing Base Parameters

4.4.3.3 Modify the Classifier Head

The classifier head of the ViT model is modified to match the number of classes in the
custom dataset (class_names).

1 class_names = [f’EMDS7 -G{i:03} ’ for i in range (1, 42) if i != 11]

2 pretrained_vit . heads = nn. Linear ( in_features =768 , out_features =len( class_names )).to( device )

3

Figure 4.39: Modifying the Classifier Head

4.4.3.4 Display Model Summary

The model architecture, including input and output sizes, number of parameters, and
trainable parameters, is displayed using torchinfo.

1 summary ( model = pretrained_vit ,

2 input_size =(32 , 3, 224 , 224) ,

3 col_names =[" input_size ", " output_size ", " num_params ", " trainable "],

4 col_width =20 ,

5 row_settings =[" var_names "])

6

Figure 4.40: Displaying Model Summary

4.4.3.5 Setup Data Transforms and Loaders

The data directories are set, and automatic transforms are retrieved from the pretrained
ViT weights to preprocess the data consistently. The number of CPU cores available is also
set.

Univ-Biskra/Computer Science: 2024 80



Implementation and results

1 train_dir = ’/ kaggle / input / finalds40c / EMDS7_Preprocessed / train ’

2 test_dir = ’/ kaggle / input / finalds40c / EMDS7_Preprocessed /test ’

3 pretrained_vit_transforms = pretrained_vit_weights . transforms ()

4 print ( pretrained_vit_transforms )

5 NUM_WORKERS = os. cpu_count ()

6

Figure 4.41: Setting Up Data Transforms and Loaders

4.4.3.6 Create Dataloaders

PyTorch dataloaders for the training and testing datasets are created, applying the
necessary transformations and setting batch size and worker count.

1 def create_dataloaders ( train_dir : str , test_dir : str , transform : transforms .Compose , batch_size : int , num_workers : int =

NUM_WORKERS ):

2 train_data = datasets . ImageFolder (train_dir , transform = transform )

3 test_data = datasets . ImageFolder (test_dir , transform = transform )

4 class_names = train_data . classes

5 train_dataloader = DataLoader ( train_data , batch_size = batch_size , shuffle =True , num_workers = num_workers , pin_memory =True

)

6 test_dataloader = DataLoader (test_data , batch_size = batch_size , shuffle =False , num_workers = num_workers , pin_memory =True)

7 return train_dataloader , test_dataloader , class_names

8
9 train_dataloader_pretrained , test_dataloader_pretrained , class_names = create_dataloaders ( train_dir =train_dir , test_dir =

test_dir , transform = pretrained_vit_transforms , batch_size =32)

10

Figure 4.42: Creating Dataloaders

4.4.3.7 Define Training and Evaluation Functions

The training (train_step) and testing (test_step) procedures are defined. train_step

handles the forward pass, loss computation, backward pass, and parameter updates, while
test_step evaluates the model’s performance on the test set without updating parameters.

Univ-Biskra/Computer Science: 2024 81



Implementation and results

1 def train_step (model , dataloader , loss_fn , optimizer , device ):

2 model . train ()

3 train_loss , train_acc = 0, 0

4 for batch , (X, y) in enumerate ( dataloader ):

5 X, y = X.to( device ), y.to( device )

6 y_pred = model (X)

7 loss = loss_fn (y_pred , y)

8 train_loss += loss.item ()

9 optimizer . zero_grad ()

10 loss. backward ()

11 optimizer .step ()

12 y_pred_class = torch . argmax ( torch . softmax (y_pred , dim =1) , dim =1)

13 train_acc += ( y_pred_class == y).sum ().item () / len( y_pred )

14 train_loss = train_loss / len( dataloader )

15 train_acc = train_acc / len( dataloader )

16 return train_loss , train_acc

17
18 def test_step (model , dataloader , loss_fn , device ):

19 model .eval ()

20 test_loss , test_acc = 0, 0

21 with torch . inference_mode ():

22 for batch , (X, y) in enumerate ( dataloader ):

23 X, y = X.to( device ), y.to( device )

24 test_pred_logits = model (X)

25 loss = loss_fn ( test_pred_logits , y)

26 test_loss += loss.item ()

27 test_pred_labels = test_pred_logits . argmax (dim =1)

28 test_acc += (( test_pred_labels == y).sum ().item () / len( test_pred_labels ))

29 test_loss = test_loss / len( dataloader )

30 test_acc = test_acc / len( dataloader )

31 return test_loss , test_acc

32

Figure 4.43: Defining Training and Evaluation Functions

4.4.3.8 Training Loop

The training and validation process is orchestrated over a specified number of epochs,
saving the best model based on validation accuracy. The loss and accuracy for both training
and validation sets are stored and printed after each epoch.

Univ-Biskra/Computer Science: 2024 82



Implementation and results

1 def train (model , train_dataloader , test_dataloader , optimizer , loss_fn , epochs , device ):

2 results = {" train_loss ": [], " train_acc ": [], " test_loss ": [], " test_acc ": []}

3 best_accuracy = 0.0

4 best_model_path = ’best_model .pth ’

5 for epoch in tqdm( range ( epochs )):

6 train_loss , train_acc = train_step (model , train_dataloader , loss_fn , optimizer , device )

7 test_loss , test_acc = test_step (model , test_dataloader , loss_fn , device )

8 if test_acc > best_accuracy :

9 torch .save( model . state_dict () , best_model_path )

10 best_accuracy = test_acc

11 results [" train_loss "]. append ( train_loss )

12 results [" train_acc "]. append ( train_acc )

13 results [" test_loss "]. append ( test_loss )

14 results [" test_acc "]. append ( test_acc )

15 print (f" Epoch { epoch +1}/{ epochs }")

16 print (f" Train Loss: { train_loss :.4f}, Train Accuracy : { train_acc :.4f}")

17 print (f" Validation Loss: { test_loss :.4f}, Validation Accuracy : { test_acc :.4f}\n")

18 return results

19

Figure 4.44: Training Loop

4.4.3.9 Create Optimizer and Loss Function

The Adam optimizer is created to update model parameters, and CrossEntropyLoss is
used as the loss function.

1 optimizer = torch . optim .Adam( params = pretrained_vit . parameters () , lr =1e -3)

2 loss_fn = torch .nn. CrossEntropyLoss ()

3

Figure 4.45: Creating Optimizer and Loss Function

4.4.3.10 Train the Model

The training process is started using the train function defined earlier.

1 pretrained_vit_results = train ( model = pretrained_vit , train_dataloader = train_dataloader_pretrained , test_dataloader =

test_dataloader_pretrained , optimizer =optimizer , loss_fn =loss_fn , epochs =50 , device = device )

2

Figure 4.46: Training the Model

4.4.4 Evaluating the Models

Evaluation is a common stage across all types of models. In the following sections, we
will explain the evaluation process we performed, along with the code used to implement it.

Univ-Biskra/Computer Science: 2024 83



Implementation and results

Loading the Best Model

After training, we load the best model saved during the training process.

1 # Load the best model

2 best_model = EfficientNet . from_name (’efficientnet -b0 ’)

3 num_ftrs = best_model ._fc. in_features

4 best_model ._fc = nn. Linear (num_ftrs , 2)

5 best_model . load_state_dict ( torch .load( best_model_path ))

6 best_model = best_model .to( device )

7

Figure 4.47: Loading the best model from the training phase.

Plotting Metrics

Visualize the training and validation accuracy and loss over epochs.

1 # Plot training and validation accuracy and loss

2 plt. figure ( figsize =(12 , 4))

3 plt. subplot (1, 2, 1)

4 plt.plot( train_acc_history_cpu , label =’Training Accuracy ’)

5 plt.plot( val_acc_history_cpu , label =’Validation Accuracy ’)

6 plt. xlabel (’Epoch ’)

7 plt. ylabel (’Accuracy ’)

8 plt. legend ()

9 plt. subplot (1, 2, 2)

10 plt.plot( train_loss_history_cpu , label =’Training Loss ’)

11 plt.plot( val_loss_history_cpu , label =’Validation Loss ’)

12 plt. xlabel (’Epoch ’)

13 plt. ylabel (’Loss ’)

14 plt. legend ()

15 plt. savefig (’training_validation_metrics .jpg ’)

16 plt.show ()

17

Figure 4.48: Plotting training and validation accuracy and loss.

Evaluate the model on the validation set which in at the same time test set and compute
the test accuracy.

Univ-Biskra/Computer Science: 2024 84



Implementation and results

1 # Evaluate the model

2 best_model .eval ()

3 test_corrects = 0

4 all_labels = []

5 all_preds = []

6
7 for inputs , labels in dataloaders [’val ’]:

8 inputs = inputs .to( device )

9 labels = labels .to( device )

10
11 outputs = best_model ( inputs )

12 _, preds = torch .max(outputs , 1)

13 test_corrects += torch .sum( preds == labels .data)

14 all_labels . extend ( labels .cpu (). numpy ())

15 all_preds . extend ( preds .cpu (). numpy ())

16
17 test_acc = test_corrects . double () / len( dataloaders [’val ’]. dataset )

18 print (f’Test Acc: { test_acc :.4f}’)

19

Figure 4.49: Model evaluation on the validation set.

Generating the confution matrix

Compute the confusion matrix to evaluate model performance.

1 # Confusion Matrix

2 cm = confusion_matrix ( all_labels , all_preds )

3 class_names = train_dataset . classes

4

Figure 4.50: Generating the confusion matrix.

Visualizing the confusion matrix

Visualize the confusion matrix using a heatmap.

1 # Visualize the Confusion Matrix

2 plt. figure ( figsize =(8 , 6))

3 sns. heatmap (cm , annot =True , fmt=’d’, cmap=’Blues ’, xticklabels = class_names , yticklabels = class_names )

4 plt. ylabel (’Actual ’)

5 plt. xlabel (’Predicted ’)

6 plt. title (’Confusion Matrix ’)

7 plt. savefig (f’confusion_matrix_ { test_acc :.4f}. jpg ’)

8 plt.show ()

9

Figure 4.51: Visualizing the confusion matrix using a heatmap.

Univ-Biskra/Computer Science: 2024 85



Implementation and results

Printing the Classification Report

Print the classification report for detailed performance metrics.

1 # Classification Report

2 print (’Classification Report ’)

3 print ( classification_report ( all_labels , all_preds , target_names = class_names ))

4

Figure 4.52: Printing the classification report.

4.5 Results and discussion

Model accuracy rates, validation precision rates, and changes in loss functions were
analyzed and recorded at every step of the training process. In each investigation, these
modifications were looked at independently for each model, for each problematic.

4.5.1 Pretrained Models

After training the models for 100 epochs, the resulting metrics were evaluated by testing
the system’s reliability using the test dataset. The evaluation includes a confusion matrix
illustrating the model’s performance in data classification, alongside various performance
metrics such as precision, recall, and F1 score. These results are presented based on the two
problematics as shown below:

4.5.1.1 EfficientNet-B0

The EfficientNet-B0 architecture was chosen in this study for several reasons related
to its efficiency and balanced performance. EfficientNet-B0 is considered a resource-efficient
model, offering an excellent balance between accuracy and computational complexity, making
it capable of achieving high-quality results with fewer resources. This makes it an ideal choice
for handling small datasets, as it can achieve remarkable performance without intensive
computations.

The following illustrates how its application to our dataset produced the desired results:

Univ-Biskra/Computer Science: 2024 86



Implementation and results

First problematic

The confusion matrix (Figure 4.53) provides a detailed breakdown of the model’s per-
formance in classifying images into two categories: pathogenic and non-pathogenic. The
matrix shows that the model correctly classified 255 instances as non-pathogenic and 207
instances as pathogenic. However, there were some misclassifications: 6 pathogenic instances
were incorrectly classified as non-pathogenic, and 5 non-pathogenic instances were incorrectly
classified as pathogenic.

Figure 4.53: Confusion matrix showing the performance of the EfficientNet-B0 model (2
classes).

The left graph in Figure 4.54 shows the model’s accuracy for each epoch. We observe
that the accuracy increases rapidly at the beginning and then stabilizes at around 99.7%
in training and about 95% in validation. The highest accuracy reached is approximately
97.67%.

The right graph shows the model’s loss for each epoch. We observe that the loss decreases
rapidly at the beginning and stabilizes at a very low value in training (around 0.005) and is
slightly higher in validation (around 0.25), indicating that the model learns effectively but
experiences some variance between training and validation performance.

Univ-Biskra/Computer Science: 2024 87



Implementation and results

Figure 4.54: Accuracy and Loss Curves During Training and Validation Phases of
EfficientNet-B0 (2 classes).

This table ( Table 4.4) summarizes the performance metrics for the "Non_Pathogenic"
and "Pathogenic" classes in terms of precision, recall, F1-score, and support.

Class Precision Recall F1-Score Support

Non_Pathogenic 0.98 0.98 0.98 260
Pathogenic 0.97 0.97 0.97 213

Accuracy 0.98 (473)

Table 4.4: Classification Report EfficientNet-B0 (2 classes).

These results demonstrate the effectiveness and efficiency of the EfficientNet-B0 model in
data classification, confirming its merit as an excellent choice for AI applications that require
a balance between accuracy and resource utilization.

Second problematic

The confusion matrix (Figure 4.55) provides a detailed breakdown of the model’s per-
formance in classifying images into multiple categories. The matrix shows the number of
correctly classified instances and misclassifications for each category.

Univ-Biskra/Computer Science: 2024 88



Implementation and results

Figure 4.55: Confusion matrix showing the performance of the EfficientNet-B0 model (40
classes).

The table below (Table 4.5) provides more details for comprehending the confusion matrix,
showing precision, recall, f1-score, and support for each category.

Category Precision Recall F1-Score Support

EMDS7-G001 1.00 1.00 1.00 9
EMDS7-G002 0.93 1.00 0.97 14
EMDS7-G003 0.91 0.95 0.93 62
EMDS7-G004 0.95 1.00 0.97 18
EMDS7-G005 1.00 0.82 0.90 11
EMDS7-G006 1.00 1.00 1.00 4

Univ-Biskra/Computer Science: 2024 89



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G007 0.75 1.00 0.86 3
EMDS7-G008 0.78 0.70 0.74 10
EMDS7-G009 1.00 0.88 0.93 16
EMDS7-G010 1.00 1.00 1.00 5
EMDS7-G012 0.88 0.96 0.92 23
EMDS7-G013 1.00 1.00 1.00 2
EMDS7-G014 0.95 1.00 0.97 19
EMDS7-G015 0.80 1.00 0.89 4
EMDS7-G016 1.00 0.80 0.89 5
EMDS7-G017 0.93 0.93 0.93 15
EMDS7-G018 1.00 0.89 0.94 18
EMDS7-G019 0.92 1.00 0.96 12
EMDS7-G020 0.89 1.00 0.94 8
EMDS7-G021 1.00 1.00 1.00 2
EMDS7-G022 0.95 0.93 0.94 56
EMDS7-G023 1.00 0.91 0.95 11
EMDS7-G024 0.83 1.00 0.91 5
EMDS7-G025 0.93 0.88 0.90 16
EMDS7-G026 1.00 1.00 1.00 2
EMDS7-G027 1.00 1.00 1.00 4
EMDS7-G028 0.93 0.81 0.87 16
EMDS7-G029 1.00 1.00 1.00 5
EMDS7-G030 0.91 1.00 0.95 10
EMDS7-G031 1.00 1.00 1.00 7
EMDS7-G032 1.00 1.00 1.00 18
EMDS7-G033 0.86 1.00 0.92 6
EMDS7-G034 1.00 1.00 1.00 2
EMDS7-G035 0.92 0.92 0.92 12
EMDS7-G036 1.00 1.00 1.00 17
EMDS7-G037 1.00 1.00 1.00 3
EMDS7-G038 0.87 1.00 0.93 13
EMDS7-G039 1.00 0.89 0.94 18

Univ-Biskra/Computer Science: 2024 90



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G040 1.00 0.60 0.75 5
EMDS7-G041 1.00 1.00 1.00 1

accuracy - - 0.94 487

Table 4.5: Classification Report Detailing Precision, Recall, F1-Score, and Support of the
EfficientNet-B0 Model (40 classes)

The left graph in Figure 4.56 shows the model’s accuracy for each epoch. We observe
that the accuracy increases rapidly at the beginning and then stabilizes at around 99.7%
in training and about 93% in validation. The highest accuracy reached is approximately
93.84%.

The right graph shows the model’s loss for each epoch. We observe that the loss decreases
rapidly at the beginning and stabilizes at a very low value in training (around 0.005) and is
slightly higher in validation (around 0.30), indicating that the model learns effectively but
experiences some variance between training and validation performance.

Figure 4.56: Accuracy and Loss Curves During Training and Validation Phases of the
EfficientNet-B0 Model (40 classes).

4.5.1.2 ResNet-50

ResNet-50 is another deep learning model that is in use. This architecture was chosen
because ResNet-50 offers a novel solution to the vanishing gradients problem. ResNet-50
avoids these layers by stacking several identity mappings, which are convolutional layers that
do nothing at first, and reuses activations from the layer before it.

Univ-Biskra/Computer Science: 2024 91



Implementation and results

The results of ResNet-50 are clearly shown below:

First problematic

The confusion matrix (Figure 4.57) is very close to that of EfficientNet-B0 (Figure 4.53).
The difference is that the current model correctly classified 208 cases as pathogenic compared
to 207 in EfficientNet-B0, and correctly classified 254 cases as non-pathogenic compared to
255 in EfficientNet-B0. While the number of misclassifications of non-pathogenic cases as a
Pathogenic remained the same (5 cases), as did the number of misclassifications of Pathogenic
cases as Non-Pathogenic (6 cases).

Figure 4.57: Confusion matrix showing the performance of the ResNet-50 model (2 classes).

The Figure 4.58 shows the training and validation accuracy and loss curves for the
model over 100 epochs. The training accuracy (blue line in the left plot) quickly reaches
around 100% and remains stable, while the validation accuracy (orange line) reaches around
96-97% with minor fluctuations. Regarding loss, the training loss (blue line in the right plot)
quickly drops to very low levels close to zero and remains stable, whereas the validation loss
(orange line) fluctuates significantly. This indicates some variability in performance on the
validation set, which may suggest issues such as overfitting or variability in the validation
data set.

Univ-Biskra/Computer Science: 2024 92



Implementation and results

Figure 4.58: Accuracy and Loss Curves During Training and Validation Phases of ResNet-50
(2 classes).

The accuracy, recall, F1-score, and support performance metrics for the "Non_Pathogenic"
and "Pathogenic" classes are compiled in this table:

Class Precision Recall F1-Score Support

Non_Pathogenic 0.98 0.98 0.98 260
Pathogenic 0.97 0.98 0.97 213

Accuracy 0.98 (473)

Table 4.6: Classification Report ResNet-50 (2 classes).

Second problematic

Figure 4.59 presents a comprehensive analysis of the model’s performance in catego-
rizing images into several groups. The number of correctly categorized and misclassified
incidents for each category is displayed in the matrix.

Univ-Biskra/Computer Science: 2024 93



Implementation and results

Figure 4.59: Confusion matrix showing the performance of the ResNet-50 model (40 classes).

More information on understanding the confusion matrix can be found in the table below
(Table 4.7), which displays the precision, recall, f1-score, and support for each category.

Category Precision Recall F1-Score Support

EMDS7-G001 1.00 1.00 1.00 9
EMDS7-G002 0.93 1.00 0.97 14
EMDS7-G003 0.95 0.94 0.94 62
EMDS7-G004 1.00 1.00 1.00 18
EMDS7-G005 1.00 0.82 0.90 11
EMDS7-G006 1.00 1.00 1.00 4
EMDS7-G007 1.00 1.00 1.00 3

Univ-Biskra/Computer Science: 2024 94



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G008 0.78 0.70 0.74 10
EMDS7-G009 0.94 1.00 0.97 16
EMDS7-G010 1.00 1.00 1.00 5
EMDS7-G012 0.87 0.87 0.87 23
EMDS7-G013 1.00 1.00 1.00 2
EMDS7-G014 1.00 1.00 1.00 19
EMDS7-G015 1.00 1.00 1.00 4
EMDS7-G016 1.00 0.80 0.89 5
EMDS7-G017 1.00 0.93 0.97 15
EMDS7-G018 1.00 0.89 0.94 18
EMDS7-G019 0.92 0.92 0.92 12
EMDS7-G020 1.00 1.00 1.00 8
EMDS7-G021 1.00 1.00 1.00 2
EMDS7-G022 0.93 0.93 0.93 56
EMDS7-G023 1.00 0.91 0.95 11
EMDS7-G024 1.00 1.00 1.00 5
EMDS7-G025 1.00 1.00 1.00 16
EMDS7-G026 1.00 1.00 1.00 2
EMDS7-G027 1.00 1.00 1.00 4
EMDS7-G028 0.94 0.94 0.94 16
EMDS7-G029 0.83 1.00 0.91 5
EMDS7-G030 0.83 1.00 0.91 10
EMDS7-G031 1.00 1.00 1.00 7
EMDS7-G032 1.00 1.00 1.00 18
EMDS7-G033 0.86 1.00 0.92 6
EMDS7-G034 1.00 1.00 1.00 2
EMDS7-G035 0.92 1.00 0.96 12
EMDS7-G036 0.94 0.94 0.94 17
EMDS7-G037 1.00 1.00 1.00 3
EMDS7-G038 0.81 1.00 0.90 13
EMDS7-G039 1.00 0.89 0.94 18
EMDS7-G040 0.83 1.00 0.91 5

Univ-Biskra/Computer Science: 2024 95



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G041 1.00 1.00 1.00 1

accuracy - - 0.95 487

Table 4.7: Classification Report Detailing Precision, Recall, F1-Score, and Support of the
EfficientNet-B0 Model (40 classes)

The Figure 4.60 shows the training and validation accuracy and loss curves for
the model over 100 epochs. The training accuracy (blue line in the left plot) quickly reaches
around 100% and remains stable, while the validation accuracy (orange line) stabilizes around
94.6% with minor fluctuations. Regarding loss, the training loss (blue line in the right plot)
quickly drops to very low levels close to zero and remains stable, whereas the validation loss
(orange line) fluctuates significantly between 0.2 and 0.3.

Figure 4.60: Accuracy and Loss Curves During Training and Validation Phases of the ResNet-
50 Model (40 classes).

4.5.1.3 VGG19

Because of its deep and reliable architecture for extracting features from images, the
VGG19 model was selected. The reason behind VGG19’s reputation at handling fine details
in photos is because it makes use of small (3x3) convolutional layers, which enable it to
extract intricate patterns from the data. VGG19 is a great option for challenging classifica-
tion problems since it has demonstrated its high efficacy in multiple contests and real-world
computer vision applications. The following clearly displays the VGG19 results:

Univ-Biskra/Computer Science: 2024 96



Implementation and results

First problematic

The confusion matrix (Figure 4.61) illustrates the performance of the VGG19 model.
This model shows a strong performance, similar to the other models discussed. In this
case, the VGG19 model correctly classified 256 cases as non-pathogenic and 206 cases as
pathogenic. The number of misclassifications of non-pathogenic cases as pathogenic was 4,
while the number of misclassifications of pathogenic cases as non-pathogenic was 7.

Figure 4.61: Confusion matrix showing the performance of the VGG19 model (2 classes).

The Figure 4.62 shows the training and validation accuracy and loss curves for the
model over 100 epochs. The training accuracy (blue line in the left plot) quickly reaches
around 100% and remains stable, while the validation accuracy (orange line) reaches around
96-97% with minor fluctuations. Regarding loss, the training loss (blue line in the right plot)
quickly drops to very low levels close to zero and remains stable, whereas the validation loss
(orange line) fluctuates significantly. This indicates some variability in performance on the
validation set, which may suggest issues such as overfitting or variability in the validation
data set.

Univ-Biskra/Computer Science: 2024 97



Implementation and results

Figure 4.62: Accuracy and Loss Curves During Training and Validation Phases of VGG19
(2 classes).

The accuracy, recall, F1-score, and support performance metrics for the "Non_Pathogenic"
and "Pathogenic" classes are compiled in this table:

Class Precision Recall F1-Score Support

Non_Pathogenic 0.97 0.98 0.98 260
Pathogenic 0.98 0.96 0.97 213

Accuracy 0.97 (473)

Table 4.8: Classification Report VGG19 (2 classes).

Second problematic

Figure 4.63 presents a comprehensive analysis of the VGG19 model’s performance in
categorizing images into several groups. The number of correctly categorized and misclassified
incidents for each category is displayed in the matrix.

Univ-Biskra/Computer Science: 2024 98



Implementation and results

Figure 4.63: Confusion matrix showing the performance of the VGG19 model (40 classes).

More information on understanding the confusion matrix can be found in the table below
(Table 4.9), which displays the precision, recall, f1-score, and support for each category.

Category Precision Recall F1-Score Support

EMDS7-G001 0.90 1.00 0.95 9
EMDS7-G002 0.93 1.00 0.97 14
EMDS7-G003 0.90 0.92 0.91 62
EMDS7-G004 1.00 1.00 1.00 18
EMDS7-G005 1.00 0.91 0.95 11
EMDS7-G006 1.00 1.00 1.00 4
EMDS7-G007 1.00 1.00 1.00 3

Univ-Biskra/Computer Science: 2024 99



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G008 0.71 0.50 0.59 10
EMDS7-G009 0.94 0.94 0.94 16
EMDS7-G010 1.00 1.00 1.00 5
EMDS7-G012 0.90 0.83 0.86 23
EMDS7-G013 1.00 1.00 1.00 2
EMDS7-G014 1.00 1.00 1.00 19
EMDS7-G015 1.00 1.00 1.00 4
EMDS7-G016 1.00 0.80 0.89 5
EMDS7-G017 0.88 1.00 0.94 15
EMDS7-G018 1.00 0.94 0.97 18
EMDS7-G019 1.00 0.92 0.96 12
EMDS7-G020 0.89 1.00 0.94 8
EMDS7-G021 1.00 1.00 1.00 2
EMDS7-G022 0.93 0.93 0.93 56
EMDS7-G023 1.00 0.91 0.95 11
EMDS7-G024 1.00 1.00 1.00 5
EMDS7-G025 0.81 0.81 0.81 16
EMDS7-G026 1.00 1.00 1.00 2
EMDS7-G027 1.00 1.00 1.00 4
EMDS7-G028 0.89 1.00 0.94 16
EMDS7-G029 1.00 1.00 1.00 5
EMDS7-G030 0.91 1.00 0.95 10
EMDS7-G031 1.00 1.00 1.00 7
EMDS7-G032 1.00 1.00 1.00 18
EMDS7-G033 0.86 1.00 0.92 6
EMDS7-G034 1.00 1.00 1.00 2
EMDS7-G035 0.92 0.92 0.92 12
EMDS7-G036 1.00 1.00 1.00 17
EMDS7-G037 1.00 1.00 1.00 3
EMDS7-G038 0.93 1.00 0.96 13
EMDS7-G039 0.89 0.94 0.92 18
EMDS7-G040 1.00 0.60 0.75 5

Univ-Biskra/Computer Science: 2024 100



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G041 1.00 1.00 1.00 1

accuracy - - 0.94 487

Table 4.9: Classification Report Detailing Precision, Recall, F1-Score, and Support of the
VGG19 Model (40 classes)

Figure 4.64 displays the accuracy of the model for each epoch on the left graph. Our
findings show that accuracy rises quickly in the beginning before stabilizing at 99.7% in
training and roughly 93% in validation. Roughly 93.63% accuracy is the maximum that was
attained.

The model’s loss for each epoch is displayed on the right graph. We see that the loss
starts off very low and stabilizes at a very low value in training (about 0.003). In validation,
the loss is slightly greater (around 0.60), suggesting that the model learns well but exhibits
some variation in performance between training and validation.

Figure 4.64: Accuracy and Loss Curves During Training and Validation Phases of the VGG19
Model (40 classes).

4.5.2 Pretrained Models & ML Models

This section will present the results of our code implementation shown in details in 4.4.2,
we carried out a number of studies into both problematic categories. The comprehensive
results are displayed as follows:

Univ-Biskra/Computer Science: 2024 101



Implementation and results

4.5.2.1 EfficientNet-B0 + SVM

First, we started by implementing the code using the pre-trained EfficientNet-B0 model to
extract features, and then we used the SVM model to classify these features. The results of
this process are shown below:

First problematic

The results we obtained after using SVM did not change anything, as the best result
was the same as the one before using SVM. Even the confusion matrix (see Figure 4.65 ) and
classification report (see Table 4.10) were exactly the same.

The best hyperparameters are: C=0.1, kernel=linear, degree=2, gamma=scale.

Figure 4.65: Confusion Matrix for EfficientNet-B0 + SVM (2 classes)

Precision Recall F1-Score Support

Non_Pathogenic 0.98 0.98 0.98 260
Pathogenic 0.98 0.97 0.97 213

Accuracy 0.98 (473)

Table 4.10: Classification Report for EfficientNet-B0 + SVM (2 classes).

Univ-Biskra/Computer Science: 2024 102



Implementation and results

Second problematic

There is a slight improvement in accuracy after using the SVM algorithm. This improve-
ment may be difficult to notice through accuracy alone, but it will be slightly noticeable in
the confusion matrix (see Figure 4.66) and the classification report results (see Table 4.11).
The settings that yielded the best results were as follows: C=0.1, kernel=rbf, degree=2,
gamma=scale.

Figure 4.66: Confusion Matrix for EfficientNet-B0 + SVM (40 classes).

Category Precision Recall F1-Score Support

EMDS7-G001 0.90 1.00 0.95 9
EMDS7-G002 0.93 1.00 0.97 14
EMDS7-G003 0.84 0.98 0.90 62
EMDS7-G004 0.95 1.00 0.97 18
EMDS7-G005 1.00 0.82 0.90 11
EMDS7-G006 1.00 1.00 1.00 4
EMDS7-G007 0.75 1.00 0.86 3
EMDS7-G008 0.75 0.60 0.67 10

Univ-Biskra/Computer Science: 2024 103



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G009 1.00 0.94 0.97 16
EMDS7-G010 1.00 1.00 1.00 5
EMDS7-G012 0.91 0.91 0.91 23
EMDS7-G013 1.00 1.00 1.00 2
EMDS7-G014 1.00 0.95 0.97 19
EMDS7-G015 1.00 1.00 1.00 4
EMDS7-G016 1.00 0.80 0.89 5
EMDS7-G017 0.93 0.93 0.93 15
EMDS7-G018 1.00 0.94 0.97 18
EMDS7-G019 1.00 1.00 1.00 12
EMDS7-G020 0.89 1.00 0.94 8
EMDS7-G021 1.00 1.00 1.00 2
EMDS7-G022 0.94 0.91 0.93 56
EMDS7-G023 1.00 0.91 0.95 11
EMDS7-G024 1.00 1.00 1.00 5
EMDS7-G025 0.93 0.88 0.90 16
EMDS7-G026 1.00 1.00 1.00 2
EMDS7-G027 1.00 1.00 1.00 4
EMDS7-G028 0.93 0.88 0.90 16
EMDS7-G029 1.00 1.00 1.00 5
EMDS7-G030 0.91 1.00 0.95 10
EMDS7-G031 1.00 1.00 1.00 7
EMDS7-G032 1.00 1.00 1.00 18
EMDS7-G033 0.86 1.00 0.92 6
EMDS7-G034 1.00 1.00 1.00 2
EMDS7-G035 1.00 0.75 0.86 12
EMDS7-G036 1.00 1.00 1.00 17
EMDS7-G037 1.00 1.00 1.00 3
EMDS7-G038 0.87 1.00 0.93 13
EMDS7-G039 1.00 0.89 0.94 18
EMDS7-G040 1.00 0.60 0.75 5
EMDS7-G041 1.00 1.00 1.00 1

Univ-Biskra/Computer Science: 2024 104



Implementation and results

Category Precision Recall F1-Score Support

accuracy - - 0.94 487

Table 4.11: Classification Report for EfficientNet-B0 + SVM (40 classes).

4.5.2.2 Resnet50 + SVM

In this section, we present the performance results of our classification model, which
combines the features extraction using ResNet50 with an SVM classifier. The following
evaluation results illustrate the effectiveness of the ResNet50 + SVM combination.

First problematic

The results of the confusion matrix (Figure 4.67) and classification report (Table 4.12)
for the best SVM model, with parameters C=0.1, kernel=linear, degree=2, and gamma=scale,
are also consistent with the performance observed using ResNet50 before the application of
SVM.

Figure 4.67: Confusion Matrix for ResNet50 + SVM (2 classes).

Univ-Biskra/Computer Science: 2024 105



Implementation and results

Class Precision Recall F1-Score Support
Non_Pathogenic 0.98 0.98 0.98 260
Pathogenic 0.97 0.98 0.97 213
Accuracy 0.98 (473)

Table 4.12: Classification Report for ResNet50 + SVM (2 classes).

Second problematic

The following evaluation results illustrate the effectiveness of the ResNet50 + SVM
combination. These results are consistent with the performance observed using ResNet50
before the application of SVM, indicating that the SVM had no positive or negative impact
on these results.

However, we will show the confution matrix (see Figure 4.68) and Classification Report
(see Table 4.13) again with the Parameters: C=0.1, kernel=linear, degree=2, gamma=scale
that gave the results that are considered the best.

Figure 4.68: Confusion Matrix for ResNet50 + SVM (40 classes).

Category Precision Recall F1-Score Support

EMDS7-G001 1.00 1.00 1.00 9
EMDS7-G002 0.93 1.00 0.97 14
EMDS7-G003 0.92 0.94 0.93 62
EMDS7-G004 1.00 1.00 1.00 18
EMDS7-G005 1.00 0.82 0.90 11
EMDS7-G006 1.00 1.00 1.00 4

Univ-Biskra/Computer Science: 2024 106



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G007 1.00 1.00 1.00 3
EMDS7-G008 0.78 0.70 0.74 10
EMDS7-G009 0.94 1.00 0.97 16
EMDS7-G010 1.00 1.00 1.00 5
EMDS7-G012 0.87 0.87 0.87 23
EMDS7-G013 1.00 1.00 1.00 2
EMDS7-G014 1.00 1.00 1.00 19
EMDS7-G015 1.00 1.00 1.00 4
EMDS7-G016 1.00 0.80 0.89 5
EMDS7-G017 1.00 0.93 0.97 15
EMDS7-G018 1.00 0.89 0.94 18
EMDS7-G019 0.92 0.92 0.92 12
EMDS7-G020 1.00 1.00 1.00 8
EMDS7-G021 1.00 1.00 1.00 2
EMDS7-G022 0.93 0.93 0.93 56
EMDS7-G023 1.00 0.91 0.95 11
EMDS7-G024 1.00 1.00 1.00 5
EMDS7-G025 1.00 1.00 1.00 16
EMDS7-G026 1.00 1.00 1.00 2
EMDS7-G027 1.00 1.00 1.00 4
EMDS7-G028 0.94 0.94 0.94 16
EMDS7-G029 0.83 1.00 0.91 5
EMDS7-G030 0.83 1.00 0.91 10
EMDS7-G031 1.00 1.00 1.00 7
EMDS7-G032 1.00 1.00 1.00 18
EMDS7-G033 0.86 1.00 0.92 6
EMDS7-G034 1.00 1.00 1.00 2
EMDS7-G035 0.92 0.92 0.92 12
EMDS7-G036 0.94 0.88 0.91 17
EMDS7-G037 1.00 1.00 1.00 3
EMDS7-G038 0.87 1.00 0.93 13
EMDS7-G039 1.00 0.89 0.94 18

Univ-Biskra/Computer Science: 2024 107



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G040 0.71 1.00 0.83 5
EMDS7-G041 1.00 1.00 1.00 1
Accuracy 0.94 (487)

Table 4.13: Classification Report for for ResNet50 + SVM (40 classes).

4.5.2.3 VGG19 + SVM

In the end, we applied the same procedure to the resulted model VGG19 and obtained
the following results:

First problematic

There is a slight decline in the results after using SVM with this parameters: C=1,
kernel=rbf, degree=2, gamma=scale, but this decline does not make a noticeable difference
in the confusion matrix (see Figure 4.69) compared to the results of VGG19 before using
SVM. However, the classification report (see Table 4.14) remains unchanged.

Figure 4.69: Confusion Matrix for VGG19 + SVM (2 classes).

Univ-Biskra/Computer Science: 2024 108



Implementation and results

Precision Recall F1-Score Support

Non_Pathogenic 0.97 0.98 0.98 260
Pathogenic 0.98 0.97 0.97 213

Accuracy 0.97 (473)

Table 4.14: Classification Report for VGG19 + SVM (2 classes).

Second problematic

When compared to applying the model without SVM, the results in this instance are
inferior because to the degradation in performance caused by the usage of SVM. The classi-
fication report (see Table 4.15) and the confusion matrix (see Figure 4.70) are shown next.
The accuracy decreased to 88% from 94%, and this is the best model that could be found.
The settings are degree=2, gamma=scale, kernel=rbf, and C=1.

Figure 4.70: Confusion Matrix for VGG19 + SVM (40 classes).

Univ-Biskra/Computer Science: 2024 109



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G001 0.90 1.00 0.95 9
EMDS7-G002 0.93 1.00 0.97 14
EMDS7-G003 0.85 0.84 0.85 62
EMDS7-G004 0.95 1.00 0.97 18
EMDS7-G005 1.00 0.73 0.84 11
EMDS7-G006 1.00 1.00 1.00 4
EMDS7-G007 1.00 1.00 1.00 3
EMDS7-G008 0.75 0.60 0.67 10
EMDS7-G009 1.00 0.94 0.97 16
EMDS7-G010 1.00 1.00 1.00 5
EMDS7-G012 0.76 0.70 0.73 23
EMDS7-G013 0.00 0.00 0.00 2
EMDS7-G014 1.00 1.00 1.00 19
EMDS7-G015 1.00 1.00 1.00 4
EMDS7-G016 0.75 0.60 0.67 5
EMDS7-G017 0.83 1.00 0.91 15
EMDS7-G018 1.00 0.89 0.94 18
EMDS7-G019 1.00 1.00 1.00 12
EMDS7-G020 0.89 1.00 0.94 8
EMDS7-G021 1.00 1.00 1.00 2
EMDS7-G022 0.78 0.93 0.85 56
EMDS7-G023 1.00 0.91 0.95 11
EMDS7-G024 1.00 1.00 1.00 5
EMDS7-G025 0.80 0.75 0.77 16
EMDS7-G026 1.00 1.00 1.00 2
EMDS7-G027 0.75 0.75 0.75 4
EMDS7-G028 0.88 0.94 0.91 16
EMDS7-G029 1.00 1.00 1.00 5
EMDS7-G030 0.90 0.90 0.90 10
EMDS7-G031 1.00 1.00 1.00 7
EMDS7-G032 1.00 0.89 0.94 18
EMDS7-G033 0.80 0.67 0.73 6

Univ-Biskra/Computer Science: 2024 110



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G034 1.00 1.00 1.00 2
EMDS7-G035 0.85 0.92 0.88 12
EMDS7-G036 1.00 0.88 0.94 17
EMDS7-G037 1.00 0.67 0.80 3
EMDS7-G038 0.81 1.00 0.90 13
EMDS7-G039 0.73 0.89 0.80 18
EMDS7-G040 1.00 0.20 0.33 5
EMDS7-G041 0.00 0.00 0.00 1

Accuracy 0.88 (487)

Table 4.15: Classification Report for VGG19 + SVM (40 classes).

4.5.3 ViT Model

Before presenting the results, it is important to note that the results we obtained
were not what we expected. we anticipated better outcomes from using the ViT (Vision
Transformer) model; however, unfortunately, the current results did not meet the expected
goals. Below, we will present and analyze these results in detail.

First problematic

The confusion matrix in Figure 4.71 provides a detailed analysis of the model’s perfor-
mance in classifying images into two classes. It shows the number of instances for each class
that were correctly and incorrectly classified.

Univ-Biskra/Computer Science: 2024 111



Implementation and results

Figure 4.71: Confusion matrix showing the performance of the VIT model (2 classes).

Table 4.16 displays the precision, recall, f1-score, and support for each class.

Precision Recall F1-Score Support

Non_Pathogenic 0.95 0.91 0.93 260
Pathogenic 0.90 0.94 0.92 213

accuracy - - 0.92 473

Table 4.16: Classification Report Detailing Precision, Recall, F1-Score, and Support of the
VIT model (2 classes)

Training and Validation Metrics Figure 4.72 displays the accuracy and loss of the model
for each epoch during training and validation phases.

Univ-Biskra/Computer Science: 2024 112



Implementation and results

Figure 4.72: Accuracy and Loss Curves During Training and Validation Phases of the VIT
model (2 classes).

The left graph in Figure 4.72 shows that accuracy increases rapidly in the beginning before
stabilizing at nearly 94% in training and roughly 90-92% in validation. The right graph shows
that the loss starts off high and stabilizes at a very low value in training, while the validation
loss is slightly greater, indicating good learning with some variation in performance between
training and validation.

Second problematic

The confusion matrix shown in Figure 4.73 provides a thorough study of the model’s
performance in classifying images into multiple classes by showing the number of incidents
for each class that were properly and incorrectly classified.

Univ-Biskra/Computer Science: 2024 113



Implementation and results

Figure 4.73: Confusion matrix showing the performance of the VIT model (40 classes).

More information on understanding the confusion matrix can be found in the table below
(Table 4.17), which displays the precision, recall, f1-score, and support for each class.

Category Precision Recall F1-Score Support

EMDS7-G001 1.00 0.89 0.94 9
EMDS7-G002 0.93 1.00 0.97 14
EMDS7-G003 0.84 0.77 0.81 62
EMDS7-G004 0.95 1.00 0.97 18
EMDS7-G005 0.90 0.82 0.86 11

Univ-Biskra/Computer Science: 2024 114



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G006 1.00 1.00 1.00 4
EMDS7-G007 1.00 1.00 1.00 3
EMDS7-G008 0.71 0.50 0.59 10
EMDS7-G009 0.83 0.94 0.88 16
EMDS7-G010 1.00 1.00 1.00 5
EMDS7-G012 0.68 0.74 0.71 23
EMDS7-G013 1.00 0.50 0.67 2
EMDS7-G014 0.94 0.84 0.89 19
EMDS7-G015 0.50 0.75 0.60 4
EMDS7-G016 0.75 0.60 0.67 5
EMDS7-G017 0.93 0.87 0.90 15
EMDS7-G018 1.00 0.83 0.91 18
EMDS7-G019 1.00 0.75 0.86 12
EMDS7-G020 0.67 1.00 0.80 8
EMDS7-G021 1.00 1.00 1.00 2
EMDS7-G022 0.93 0.91 0.92 56
EMDS7-G023 1.00 0.82 0.90 11
EMDS7-G024 0.71 1.00 0.83 5
EMDS7-G025 0.70 0.88 0.78 16
EMDS7-G026 1.00 1.00 1.00 2
EMDS7-G027 1.00 1.00 1.00 4
EMDS7-G028 0.81 0.81 0.81 16
EMDS7-G029 0.62 1.00 0.77 5
EMDS7-G030 0.82 0.90 0.86 10
EMDS7-G031 1.00 1.00 1.00 7
EMDS7-G032 0.94 0.94 0.94 18
EMDS7-G033 0.86 1.00 0.92 6
EMDS7-G034 1.00 1.00 1.00 2
EMDS7-G035 0.77 0.83 0.80 12
EMDS7-G036 1.00 0.94 0.97 17
EMDS7-G037 1.00 1.00 1.00 3
EMDS7-G038 0.77 0.77 0.77 13

Univ-Biskra/Computer Science: 2024 115



Implementation and results

Category Precision Recall F1-Score Support

EMDS7-G039 0.67 0.78 0.72 18
EMDS7-G040 1.00 0.60 0.75 5
EMDS7-G041 1.00 1.00 1.00 1

accuracy - - 0.86 487

Table 4.17: Classification Report Detailing Precision, Recall, F1-Score, and Support of the
VIT model (40 classes)

Figure 4.74 displays the accuracy of the model for each epoch on the left graph. Our
findings show that accuracy rises quickly in the beginning before stabilizing at nearly 100%
in training and roughly 80-85% in validation.

The model’s loss for each epoch is displayed on the right graph. We see that the loss starts
off very low and stabilizes at a very low value in training. In validation, the loss is slightly
greater, suggesting that the model learns well but exhibits some variation in performance
between training and validation.

Figure 4.74: Accuracy and Loss Curves During Training and Validation Phases of the VIT
model (40 classes).

4.5.4 discussion

The table 4.18 presents a comparison of various models on two different problematics
based on three performance measures: precision, recall, and accuracy. Below is the discussion
for each problematic:

Univ-Biskra/Computer Science: 2024 116



Implementation and results

Mesure Problematic
Problematic 1 Problematic 2

Precision Recall Accuracy Precision Recall Accuracy

Pretrained
model

Efficientnetb0 0.98 0.98 0.98 0.96 0.95 0.94

Resnet50 0.98 0.98 0.98 0.96 0.96 0.95

VGG19 0.98 0.98 0.98 0.96 0.95 0.94

Pretrained
+

svm

Efficientnetb0 0.98 0.98 0.98 0.96 0.94 0.94

Resnet50 0.98 0.98 0.98 0.95 0.96 0.94

VGG19 0.97 0.97 0.97 0.87 0.84 0.88

VIT VITB16 0.88 0.86 0.85 0.92 0.93 0.92

Table 4.18: Comparison of models on two problematics

Problematic 1: The best is the pre-trained models alone (Efficientnetb0, Resnet50, and
VGG19) also the Efficientnetb0, and Resnet50 with SVM as they achieved equal and high
performance.

Problemmatic 2: The best is the pre-trained Resnet50 alone, which achieved high, con-
sistent performance with minimal variances compared to other models.

4.5.5 Model deployment

Multiple tools and strategies are available for implementing an automatic learning
model. Our choice of the open-source Python package Gradio framework is based on its
ability to quickly create user-customizable and intuitive interface components for our model.
Additionally, Gradio provides the ability to create shareable links with a 72-hour validity
period.

The code sets up a web interface using Gradio to classify images with a pre-trained Effi-
cientNet model. It imports necessary libraries, defines image transformation steps (resize and
normalize), and loads the EfficientNet model modified for binary classification ("Pathogenic"
and "Non_Pathogenic"). The model weights are loaded, and the model is set to evaluation
mode. The ‘classify_image‘ function preprocesses input images, performs inference with the
model, and returns class probabilities. A Gradio interface is created to upload images, clas-
sify them, and display the results. Finally, ‘demo.launch(share=True)‘ starts the interface
for public use. And here is the code:

Univ-Biskra/Computer Science: 2024 117



Implementation and results

1 import gradio as gr

2 import torch

3 import torchvision . transforms as transforms

4 from PIL import Image

5 from efficientnet_pytorch import EfficientNet

6 import torch .nn as nn

7
8 # Define the transformation : resize to 224 x224 and normalize

9 image_size = (224 , 224)

10 data_transforms = transforms . Compose ([

11 transforms . Resize ( image_size ),

12 transforms . ToTensor () ,

13 transforms . Normalize ([0.485 , 0.456 , 0.406] , [0.229 , 0.224 , 0.225])

14 ])

15
16 # Load the trained model

17 device = torch . device ("cpu")

18 model = EfficientNet . from_name (’efficientnet -b0 ’)

19 num_ftrs = model ._fc. in_features

20 model ._fc = nn. Linear (num_ftrs , 2)

21 model . load_state_dict ( torch .load(’C:/ Users / kaouthar / Desktop / FINAL /2 CLASS / efficientnetb0 / efficientnet -b0_0 .9767. pth ’,

map_location = device ))

22 model = model .to( device )

23 model .eval ()

24
25 # Image preprocessing and classification function

26 def classify_image ( image ):

27 image = data_transforms ( image ). unsqueeze (0).to( device )

28 outputs = model ( image )

29 percentages = torch .nn. functional . softmax (outputs , dim =1) [0] # Calculate percentages

30 class_names = [" Pathogenic ", " Non_Pathogenic "]

31 result = { class_names [i]: round ( percentages [i]. item () , 2) for i in range (len( class_names ))}

32
33 return result

34
35 # Gradio interface

36 demo = gr. Interface (

37 fn= classify_image ,

38 inputs =gr. Image (type="pil"),

39 outputs =gr. Label ( num_top_classes =2) ,

40 title =" Image Classifier ",

41 description =" Upload an image to classify it."

42 )

43
44 demo. launch ( share =True)

45

Figure 4.75: Image Classification using EfficientNet and Gradio Interface

After running the code, you will get two URLs: Local URL, and public URL.
Additionally, you will get a message stating that the public share link expires in 72 hours.

If you want free permanent hosting and GPU upgrades, you can run the command gradio
deploy from the Terminal to deploy your project to Hugging Face Spaces.

When the user clicks on the public URL, the app’s web interface opens, allowing him to
select the classification type (see Figure 4.76) he needs and upload an image to get results
(see Figure 4.77 & 4.78).

Univ-Biskra/Computer Science: 2024 118



Implementation and results

Figure 4.76: select the classification type

Figure 4.77: Application example First problematic.

Univ-Biskra/Computer Science: 2024 119



Implementation and results

Figure 4.78: Application example Second problematic.

4.6 Conclusion

In this chapter, we presented a detailed system for using electron microscope images
to detect and classify microorganisms in water. We covered the methodologies for data
collection, processing, model training, and performance evaluation, demonstrating how these
elements contribute to developing an effective real-time water quality assessment tool. The
results show that pre-trained models such as EfficientNetB0 and ResNet50 achieve high
performance in classifying microorganisms, offering improved accuracy and speed compared
to traditional methods.

The deployment process, implemented using the Gradio framework, demonstrates how
end-users can easily access the model through a dedicated web interface. This technologi-
cal advancement represents a significant step towards improving public health outcomes by
providing rapid and accurate detection of harmful microorganisms in water sources.

Univ-Biskra/Computer Science: 2024 120



General conclusion

Detecting and classifying microorganisms in water is crucial to ensure water quality
and human health. This study aims to develop and test effective models using deep learning
techniques to identify and classify microorganisms in water.

Both studies focused on using a variety of deep learning models such as ResNet50, VGG19,
EfficientNet-B0, and Vision Transformer (ViT), in addition to enhancing these models us-
ing SVM classifiers. The results showed that the pretrained models (ResNet50, VGG19,
and EfficientNet-B0) performed excellently in the first classification problem (classifying mi-
croorganisms as pathogenic or non-pathogenic), achieving an accuracy of 98%. In the second
classification problem (classifying microorganisms into 40 different categories), the pretrained
ResNet50 showed the best performance, achieving the highest accuracy and stability. The
pretrained EfficientNet-B0 model also demonstrated good performance in both problems,
making it a favorable choice due to its efficiency and smaller size.

Regarding the Vision Transformer (ViT) model, it showed good performance but was
less stable and accurate compared to traditional models like ResNet50 and EfficientNet-B0,
limiting its effectiveness in some classification scenarios.

Although the results were encouraging, there are many challenges that need to be ad-
dressed in the future. Expanding the dataset to ensure that the models can recognize a wider
range of microorganisms is essential. Improving preprocessing techniques can also enhance
model performance. Additionally, using advanced detection techniques such as YOLO can
improve the accuracy of pinpointing microorganism locations in images. This study repre-
sents a significant step towards improving tools for detecting microorganisms in water using
deep learning techniques, paving the way for further research to enhance the accuracy and
efficiency of these models in the future.

In the future, we will not rely on microscopes; instead, we will capture images directly
from mobile phones using microscopic slides.

121



Bibliography

[1] Milan K. Jermar. Water Resources and Water Management. Elsevier Science Pub. Co,
Distributors for the United States and Canada, 1987.

[2] T. Oki. Global hydrological cycles and world water resources. Science, 313(5790):1068–
1072, 2006.

[3] W. J. Shuttleworth. Evaporation. NORA (NERC Acoustics), 1979.

[4] G. K. Vallis. The trouble with water: Condensation, circulation and climate. The
European Physical Journal Plus, 135(6), 2020.

[5] C. De Jong. The contribution of condensation to the water cycle under high-mountain
conditions. Hydrological Processes, 19(12):2419–2435, 2005.

[6] Thomas Pagano and Soroosh Sorooshian. Hydrologic cycle. Encyclopedia of Global
Environmental Change, 1:450–464, 2002. PDF.

[7] Pierre Bourgouin. A method to determine precipitation types. Weather and Forecasting,
pages 583–592, 2000.

[8] Ahmad Wedyan, Jacqueline Whalley, and Ajit Narayanan. Hydrological cycle algo-
rithm for continuous optimization problems. Journal of Optimization, 2017:Article ID
3828420, 2017.

[9] NotesYCHS. The hydrological cycle. https://notesychs.weebly.com/

the-hydrological-cycle.html, Accessed May 12, 2024.

[10] A. A. Murad, H. Al Nuaimi, and M. Al Hammadi. Comprehensive assessment of water
resources in the united arab emirates (uae). Water Resources Management, 21(9):1449–
1463, 2006.

122

https://notesychs.weebly.com/the-hydrological-cycle.html
https://notesychs.weebly.com/the-hydrological-cycle.html


General conclusion

[11] Jean Margat and Thierry Ruf. Are Groundwater Resources Eternal? 90 Keys to Un-
derstanding Groundwater. Editions Quae, 2014.

[12] S. Mandel and Z. L. Shiftan. Groundwater Resources: Investigation and Development.
Academic Press, New York London Toronto Sydney San Francisco, 1981.

[13] National Geographic Education. Surface water. https://education.

nationalgeographic.org/resource/surface-water/, Accessed April 12, 2024.

[14] Bjorn Stevens and Sandrine Bony. Water in the atmosphere. Physics Today, 66(6):30,
2013. Published Online: May 31, 2013; Published Print: June 1, 2013.

[15] Z Kılıç. The importance of water and conscious use of water. International Journal of
Hydrology, 2020.

[16] Mohammad Zakir Hossain. Water: The most precious resource of our life. College of
Economics and Political Science, Sultan Qaboos University, Oman, 2:1436–1445, 2015.

[17] Iván Francisco García-Tejero, Víctor Hugo Durán-Zuazo, José Luis Muriel-Fernández,
and Carmen Rocío Rodríguez-Pleguezuelo. Water and Sustainable Agriculture. Springer
Netherlands, 1st edition, 2011.

[18] Ülo Mander, Jean Tournebize, Kuno Kasak, and William J Mitsch. Climate regula-
tion by free water surface constructed wetlands for wastewater treatment and created
riverine wetlands. Ecological Engineering, 72:103–115, 2014.

[19] Igor A. Shiklomanov. World water resources: A new appraisal and assessment for
the 21st century. State Hydrological Institute, St Petersburg, Russia, page 18, 2000. A
summary of the monograph prepared in the framework of the International Hydrological
Programme.

[20] Molly Sargen. Biological roles of water: Why is water necessary for life? https:

//notesychs.weebly.com/the-hydrological-cycle.html, June 2023. Figures by
Daniel Utter.

[21] Andrew Pohorille and Lawrence R. Pratt. Is water the universal solvent for life? Origins
of Life and Evolution of Biospheres, 2012.

[22] L. Torres-Ronda and X. Schelling i del Alcázar. The properties of water and their
applications for training. Journal of Human Kinetics, 44(1):237–248, 2014.

Univ-Biskra/Computer Science: 2024 123

https://education.nationalgeographic.org/resource/surface-water/
https://education.nationalgeographic.org/resource/surface-water/
https://notesychs.weebly.com/the-hydrological-cycle.html
https://notesychs.weebly.com/the-hydrological-cycle.html


General conclusion

[23] F. Oztas and E. Bozkurt. Biology teacher candidates’ misconceptions about surface
tension, adhesion and cohesion. Energy Education Science and Technology Part B,
2011.

[24] FN Chaudhry and MF Malik. Factors affecting water pollution: A review. Journal of
Ecosystem & Ecography, 7:1, 2017.

[25] SHH Al-Taai. Water pollution: Its causes and effects. IOP Conference Series: Earth
and Environmental . . . , 2021, 2021.

[26] Chao Wang and Chenxu Yu. Detection of chemical pollutants in water using gold
nanoparticles as sensors: a review. Reviews in Analytical Chemistry, 32(1):1–14, 2013.

[27] Emin Toroglu and Sevil Toroglu. Microbial pollution of water in golbasi lake in adiya-
man, turkey. J. Environ. Biol., 30(1):33–38, 2009.

[28] Hessamaddin Sohrabi, Afsaneh Hemmati, Mir Reza Majidi, Shirin Eyvazi, Ali
Jahanban-Esfahlan, Behzad Baradaran, Roshanak Adlpour-Azar, Ahad Mokhtarzadeh,
and Miguel de la Guardia. Recent advances on portable sensing and biosensing assays
applied for detection of main chemical and biological pollutant agents in water samples:
A critical review. TrAC Trends in Analytical Chemistry, 143:116344, 2021.

[29] João P. S. Cabral. Water microbiology. bacterial pathogens and water. Int. J. Environ.
Res. Public Health, 7(10):3657–3703, 2010.

[30] Mani Maheshwari and Bindu Kiranmayi. Vibrio cholerae - a review. Veterinary World,
September 2011.

[31] M. E. Ohl and S. I. Miller. Salmonella: A model for bacterial pathogenesis. Annual
Review of Medicine, 52(1):259–274, February 2001.

[32] Shu-Kee Eng, Priyia Pusparajah, Nurul-Syakima Ab Mutalib, Hooi-Leng Ser, Kok-Gan
Chan, and Learn-Han Lee. Salmonella: A review on pathogenesis, epidemiology and
antibiotic resistance. Frontiers in Life Science, 8(3):284–293, 2015.

[33] A. F. Maheux, L. Bissonnette, M. Boissinot, J.-L. T. Bernier, V. Huppé, F. J. Picard,
and M. G. Bergeron. Rapid concentration and molecular enrichment approach for
sensitive detection of escherichia coli and shigella species in potable water samples.
Applied and Environmental Microbiology, 77(17):6199–6207, 2011.

Univ-Biskra/Computer Science: 2024 124



General conclusion

[34] Theng-Theng Fong and Erin K. Lipp. Enteric viruses of humans and animals in aquatic
environments: Health risks, detection, and potential water quality assessment tools.
Microbiology and Molecular Biology Reviews, 69(2):357–371, 2005.

[35] S. C. Jiang. Human adenoviruses in water: Occurrence and health implications: A
critical review. Environmental Science & Technology, 40(23):7132–7140, 2006.

[36] G. R. Takuissua, S. Kenmoeb, J. T. Ebogo-Beloboc, C. Kengne-Ndéd, D. S. Mba-
gae, A. Bowo-Ngandjie, J. L. Ondigui Ndziee, R. Kenfack-Momof, S. Tchatchouangg,
J. Kenfack-Zanguimf, R. Lontuo Fogangh, E. Zeuko’o Menkemi, G. I. Kame-Ngassec,
J. N. Magoudjou-Pekamf, E. Suffredinij, C. Venerik, P. Mancinik, G. Bonanno Ferrarok,
M. Iaconellik, M. Veranil, I. Federigil, A. Carduccil, and G. La Rosaka. Exploring ade-
novirus in water environments: a systematic review and meta-analysis. International
Journal of Environmental Health Research, 34(6):2504–2516, 2024.

[37] J. M. E. Venter, J. van Heerden, J. C. Vivier, W. O. K. Grabow, and M. B. Taylor.
Hepatitis a virus in surface water in south africa: what are the risks? Journal of Water
and Health, 5(2):229, 2007.

[38] Yongheng Yang and Mansel W. Griffiths. Comparative persistence of subgroups
of f-specific rna phages in river water. Applied and Environmental Microbiology,
79(15):4564–4567, 2013.

[39] R.A. Kristanti, T. Hadibarata, M. Syafrudin, et al. Microbiological contaminants in
drinking water: Current status and challenges. Water, Air, & Soil Pollution, 233(299),
2022.

[40] Walter Q. Betancourt and Joan B. Rose. Drinking water treatment processes for re-
moval of cryptosporidium and giardia. Veterinary Parasitology, 126(1-2):219–234, 2004.

[41] M. W. LeChevallier, W. D. Norton, and R. G. Lee. Giardia and cryptosporidium spp. in
filtered drinking water supplies. Applied and Environmental Microbiology, 57(9):2617–
2621, 1991.

[42] Ana Luz Galván, Angela Magnet, Fernando Izquierdo, Soledad Fenoy, Cristina Rueda,
Carmen Fernández Vadillo, Nuno Henriques-Gil, and Carmen del Aguila. Molecular
characterization of human-pathogenic microsporidia and cyclospora cayetanensis iso-
lated from various water sources in spain: a year-long longitudinal study. Applied and
Environmental Microbiology, 79(2):449–459, 2013.

Univ-Biskra/Computer Science: 2024 125



General conclusion

[43] Risky Ayu Kristanti, Tony Hadibarata, Muhammad Syafrudin, Murat Yılmaz, and
Shakila Abdullah. Microbiological contaminants in drinking water: Current status and
challenges. Water Air Soil Pollution, 233, 2022.

[44] M. E. Scott. Ascaris lumbricoides: A review of its epidemiology and relationship to
other infections. Annales Nestlé (English Ed.), 66(1):7–22, 2008.

[45] A. A. El-Badry, D. A. Hamdy, and W. M. Abd El Wahab. Strongyloides stercoralis
larvae found for the first time in tap water using a novel culture method. Parasitology
Research, 2018.

[46] L. S. Stephenson, C. V. Holland, and E. S. Cooper. The public health significance of
trichuris trichiura. Parasitology, 121(S1):S73, 2000.

[47] R. G. Sinclair, E. L. Jones, and C. P. Gerba. Viruses in recreational water-borne disease
outbreaks: a review. Journal of Applied Microbiology, 107(6):1769–1780, 2009.

[48] M. C. Eisenberg, S. L. Robertson, and J. H. Tien. Identifiability and estimation of mul-
tiple transmission pathways in cholera and waterborne disease. Journal of Theoretical
Biology, 324:84–102, 2013.

[49] B. Beach, J. Ferrie, M. Saavedra, and W. Troesken. Typhoid fever, water quality, and
human capital formation. The Journal of Economic History, 76, 2016.

[50] C. N. Thompson, P. Thanh Duy, and S. Baker. The rising dominance of shigella sonnei:
An intercontinental shift in the etiology of bacillary dysentery. PLOS Neglected Tropical
Diseases, 9, 2015.

[51] A. M. Nasser. Prevalence and fate of hepatitis a virus in water. Critical Reviews in
Environmental Science and Technology, 24(4):281–323, 1994.

[52] Kenneth F. Maxcy. Hypothetical relationship of water supplies to poliomyelitis. Amer-
ican Journal of Public Health, 33(1):42–45, 1943.

[53] Mahendra Pal. Amoebiasis: an important foodborne disease of global public health
concern. Opinion Article, 2, 2020. Received: January 24, 2020; Published: February
14, 2020.

[54] Joan B. Rose, Charles N. Haas, and Stig Regli. Risk assessment and control of water-
borne giardiasis. American Journal of Public Health, 81(6), 1991.

Univ-Biskra/Computer Science: 2024 126



General conclusion

[55] Angesom Hadush and Mahendra Pal. Ascariasis: Public health importance and its
status in ethiopia. Air & Water Borne Diseases, 5(1), 2016.

[56] Priya Rani, Shallu Kotwal, Jatinder Manhas, and Vinod Sharma. Machine learning
and deep learning based computational approaches in automatic microorganisms image
recognition: Methodologies, challenges, and developments. Archives of Computational
Methods in Engineering, 29:1801–1837, 2022.

[57] Gopinath Rebala, Ajay Ravi, and Sanjay Churiwala. Machine learning definition and
basics. In An Introduction to Machine Learning, pages 1–17. SpringerLink, 2019.

[58] Issam El Naqa and Martin J. Murphy. Machine learning in radiation oncology. In
Machine Learning in Radiation Oncology, pages 3–11. SpringerLink, 2024.

[59] Y C A Padmanabha Reddy, P Viswanath, and B Eswara Reddy. Semi-supervised
learning: a brief review. International Journal of Engineering & Technology, 7(1.8):81–
85, 2018. Website: www.sciencepubco.com/index.php/IJET.

[60] Aized Amin Soofi and Arshad Awan. Classification techniques in machine learning:
Applications and issues. Journal of Basic & Applied Sciences, 13:459–465, 2017.

[61] Dastan Hussen Maulud and Adnan Mohsin Abdulazeez. A review on linear regression
comprehensive in machine learning. Journal of Applied Science and Technology Trends,
01(02):140–147, 2020.

[62] Mir Henglin, Gillian Stein, Pavel V. Hushcha, Jasper Snoek, Alexander B. Wiltschko,
and Susan Cheng. Machine learning approaches in cardiovascular imaging. Circulation:
Cardiovascular Imaging, 10(10):e005614, 2017. Originally published on 27 Sep 2017.

[63] Artúr István Károly, Róbert Fullér, and Péter Galambos. Unsupervised clustering for
deep learning: A tutorial survey. Antal Bejczy Center for Intelligent Robotics, 1(2),
2018.

[64] Krzysztof J. Cios, Witold Pedrycz, Roman W. Swiniarski, and Lukasz A. Kurgan. Data
Mining - A Knowledge Discovery Approach. Springer, 2007.

[65] Kumar Aswani Ch. Analysis of unsupervised dimensionality reduction techniques.
Computer Science and Information Systems, 6(2):217–227, 2009.

Univ-Biskra/Computer Science: 2024 127

www.sciencepubco.com/index.php/IJET


General conclusion

[66] Johan Mazel. Unsupervised network anomaly detection. Networking and Internet
Architecture [cs.NI], 2011. ffNNT: ff. fftel-00667654f.

[67] Markus Goldstein and Seiichi Uchida. Behavior analysis using unsupervised anomaly
detection. The 10th Joint Workshop on Machine ..., 2014.

[68] Xiaojin Zhu and Andrew B. Goldberg. Overview of semi-supervised learning. In Intro-
duction to Semi-Supervised Learning, Synthesis Lectures on Artificial Intelligence and
Machine Learning, pages 9–19. Springer, 2009.

[69] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, Cambridge, Massachusetts, 1998. PDF.

[70] LinkedIn. Image from linkedin. https://media.

licdn.com/dms/image/D5612AQHjM8zM31Zq9A/article-inline_

image-shrink_1500_2232/0/1680157867002?e=1720051200&v=beta&t=

HM-tAyjlUSrmCzpNLRNMYBX4m3WesbXPc-y0PIqlffE, Accessed May 12, 2024.

[71] Laith Alzubaidi, Jinshuai Bai, Aiman Al-Sabaawi, Jose Santamaría, A. S. Albahri,
Bashar Sami Nayyef Al-dabbagh, Mohammed A. Fadhel, Mohamed Manoufali, Jinglan
Zhang, Ali H. Al-Timemy, Ye Duan, Amjed Abdullah, Laith Farhan, Yi Lu, Ashish
Gupta, Felix Albu, Amin Abbosh, and Yuantong Gu. A survey on deep learning tools
dealing with data scarcity: definitions, challenges, solutions, tips, and applications.
Journal of Big Data, 10(1):46, 2023.

[72] Md. Anwar Hossain and Md. Shahriar Alam Sajib. Classification of image using con-
volutional neural network (cnn). Global Journal of Computer Science and Technology:
D Neural & Artificial Intelligence, 19(2), 2019.

[73] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458, 2015. 10 pages, 5 figures.

[74] MK Gurucharan. Basic cnn architecture: Explaining 5 layers of convolutional neural
network. https://www.upgrad.com/blog/basic-cnn-architecture/, Jul 2022. Blog post,
last updated 27th July, 2022.

[75] Shadman Sakib, Nazib Ahmed, Ahmed Jawad Kabir, and Hridon Ahmed. An overview
of convolutional neural network: Its architecture and applications. Preprints, February
2019. NOT PEER-REVIEWED.

Univ-Biskra/Computer Science: 2024 128

https://media.licdn.com/dms/image/D5612AQHjM8zM31Zq9A/article-inline_image-shrink_1500_2232/0/1680157867002?e=1720051200&v=beta&t=HM-tAyjlUSrmCzpNLRNMYBX4m3WesbXPc-y0PIqlffE
https://media.licdn.com/dms/image/D5612AQHjM8zM31Zq9A/article-inline_image-shrink_1500_2232/0/1680157867002?e=1720051200&v=beta&t=HM-tAyjlUSrmCzpNLRNMYBX4m3WesbXPc-y0PIqlffE
https://media.licdn.com/dms/image/D5612AQHjM8zM31Zq9A/article-inline_image-shrink_1500_2232/0/1680157867002?e=1720051200&v=beta&t=HM-tAyjlUSrmCzpNLRNMYBX4m3WesbXPc-y0PIqlffE
https://media.licdn.com/dms/image/D5612AQHjM8zM31Zq9A/article-inline_image-shrink_1500_2232/0/1680157867002?e=1720051200&v=beta&t=HM-tAyjlUSrmCzpNLRNMYBX4m3WesbXPc-y0PIqlffE


General conclusion

[76] M. Coşkun, Ö. Yıldırım, A. Uçar, and Y. Demır. An overview of popular deep learning
methods. European Journal of Technique (EJT), 7(2):165–176, 2017.

[77] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee.
Recent advances in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2018.
Submitted on 29 Dec 2017 (v1), last revised 22 Feb 2018 (this version, v3).

[78] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to
construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026, 2013. Sub-
mitted on 20 Dec 2013 (v1), last revised 24 Apr 2014 (this version, v5).

[79] Trupti Katte. Recurrent neural network and its various architecture types. Interna-
tional Journal of Research and Scientific Innovation (IJRSI), V:124, March 2018.

[80] S.P. Porkodi, V. Sarada, and V. et al. Maik. Generic image application using gans
(generative adversarial networks): A review. Evolving Systems, 14:903–917, 2023.

[81] A. Dash, J. Ye, and G. Wang. A review of generative adversarial networks (gans) and
its applications in a wide variety of disciplines: From medical to remote sensing. IEEE
Access, 12:18330–18357, 2024.

[82] Yang Wang. A mathematical introduction to generative adversarial nets (gan). https:

//doi.org/10.48550/arXiv.2009.00169, 2020.

[83] Yuemin Bian, Junmei Wang, Jaden Jungho Jun, and Xiang-Qun Xie. Deep convolu-
tional generative adversarial network (dcgan) models for screening and design of small
molecules targeting cannabinoid receptors. Molecular Pharmaceutics, 16(11):4451–
4460, 2019.

[84] L. Gao, D. Chen, Z. Zhao, J. Shao, and H.T. Shen. Lightweight dynamic conditional
gan with pyramid attention for text-to-image synthesis. Pattern Recognition, 107384,
2020.

[85] Casey Chu, Andrey Zhmoginov, and Mark Sandler. Cyclegan, a master of steganog-
raphy. arXiv preprint arXiv:1712.02950, 2017. NIPS 2017, workshop on Machine
Deception.

[86] Behnaz Gheflati and Hassan Rivaz. Vision transformer for classification of breast ul-
trasound images. arXiv preprint arXiv:2107.11892, October 2021.

Univ-Biskra/Computer Science: 2024 129

https://doi.org/10.48550/arXiv.2009.00169
https://doi.org/10.48550/arXiv.2009.00169


General conclusion

[87] Hansa Hettiarachchi. Unveiling vision transformers: Rev-
olutionizing computer vision beyond convolution. Medium,
August 2023. https://medium.com/@hansahettiarachchi/

unveiling-vision-transformers-revolutionizing-computer-vision-beyond-convolution-c410110ef061.

[88] D. Yao and Y. Shao. A data efficient transformer based on swin transformer. Vis
Comput, 40:2589–2598, 2024.

[89] Hee E Kim, Alejandro Cosa-Linan, Nandhini Santhanam, Mahboubeh Jannesari,
Mate E Maros, and Thomas Ganslandt. Transfer learning for medical image classi-
fication: a literature review. BMC Medical Imaging, 22(1):69, 2022.

[90] M. Hussain, J.J. Bird, and D.R. Faria. A study on cnn transfer learning for image clas-
sification. In A. Lotfi, H. Bouchachia, A. Gegov, C. Langensiepen, and M. McGinnity,
editors, Advances in Computational Intelligence Systems, volume 840 of Advances in
Intelligent Systems and Computing. Springer, Cham, 2019.

[91] Umair Muneer Butt, Sukumar Letchmunan, Fadratul Hafinaz Hassan, Sultan Zia, and
Anees Baqir. Detecting video surveillance using vgg19 convolutional neural networks.
International Journal of Advanced Computer Science and Applications, 11(2), 2020.

[92] Anuradha Khattar and Syed Quadri. Generalization of convolutional network to do-
main adaptation network for classification of disaster images on twitter. Multimedia
Tools and Applications, 81, September 2022.

[93] Dyah Ajeng Pramudhita, Fatima Azzahra, Ikrar Khaera Arfat, Rita Magdalena, and
Sofia Saidah. Strawberry plant diseases classification using cnn based on mobilenetv3-
large and efficientnet-b0 architecture. Jurnal Ilmiah Teknik Elektro Komputer dan
Informatika, 9(3):522–534, 2023.

[94] Aihua Zhou, Yujun Ma, Wanting Ji, Ming Zong, Pei Yang, Min Wu, and Mingzhe Liu.
Multi-head attention-based two-stream efficientnet for action recognition. Multimedia
Systems, 29:1–12, 06 2022.

[95] Ishrat Zahan Mukti and Dipayan Biswas. Transfer learning based plant diseases de-
tection using resnet50. In 2019 4th International Conference on Electrical Information
and Communication Technology (EICT), pages 1–6, 2019.

Univ-Biskra/Computer Science: 2024 130

https://medium.com/@hansahettiarachchi/unveiling-vision-transformers-revolutionizing-computer-vision-beyond-convolution-c410110ef061
https://medium.com/@hansahettiarachchi/unveiling-vision-transformers-revolutionizing-computer-vision-beyond-convolution-c410110ef061


General conclusion

[96] Yu-Keun Han, Sung-Woon Jung, Hyuk-Ju Kwon, and Sung-Hak Lee. Rainwater-
removal image conversion learning with training pair augmentation. Entropy, 25:118,
2023. (This article belongs to the Special Issue Information Network Mining and Ap-
plications).

[97] V7 Labs. Generative adversarial networks: A complete guide. https://www.v7labs.

com/blog/generative-adversarial-networks-guide.

[98] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021.

[99] Adam Mikolajczyk and Michał Grochowski. Data augmentation for improving deep
learning in image classification problem. In 2018 International Interdisciplinary PhD
Workshop (IIPhDW), pages 117–122. IEEE, 2018.

[100] Khaled Alomar, Halil Aysel, and Xiaohao Cai. Data augmentation in classification and
segmentation: A survey and new strategies. Journal of Imaging, 9:46, 02 2023.

[101] Nahla M Ibrahim, Ahmed Abou ElFarag, and Rania Kadry. Gaussian blur through
parallel computing. In IMPROVE, pages 175–179, 2021.

[102] Muhammad Fauzan Rahman, Febryanti Sthevanie, and Kurniawan Nur Ramadhani.
Face recognition in low lighting conditions using fisherface method and clahe techniques.
In 2020 8th International Conference on Information and Communication Technology
(ICoICT), pages 1–6, 2020.

[103] Hong Yang and Travis Desell. Robust augmentation for multivariate time series clas-
sification. arXiv preprint arXiv:2201.11739, 2022.

[104] Vikramaditya Jakkula. Tutorial on support vector machine (svm). School of EECS,
Washington State University, 37(2.5):3, 2006.

[105] David Weedmark. A 4-step guide to machine learning model deployment. https:

//domino.ai/blog/machine-learning-model-deployment, 2021. Accessed: 2024-
06-19.

Univ-Biskra/Computer Science: 2024 131

https://www.v7labs.com/blog/generative-adversarial-networks-guide
https://www.v7labs.com/blog/generative-adversarial-networks-guide
https://domino.ai/blog/machine-learning-model-deployment
https://domino.ai/blog/machine-learning-model-deployment


General conclusion

[106] Guido van Rossum. Python: A programming language for readability and simplicity.
https://www.python.org/doc/essays/blurb/, 1996. Accessed: 2024-06-01.

[107] Kaggle. https://www.kaggle.com/. Accessed: June 19 2024.

[108] Kaggle on crunchbase. https://www.crunchbase.com/organization/kaggle#

/entity. Accessed: June 2024.

[109] OpenCV Team. Opencv about page. https://opencv.org/about/. Accessed: June
19 2024.

[110] The PyTorch Foundation. Pytorch foundation. https://pytorch.org/foundation,
Accessed: 2024-06-19.

[111] Matplotlib Development Team. Matplotlib: Visualization with python. https://

matplotlib.org/, 2024. Accessed: June 19, 2024.

[112] Gradio. https://www.gradio.app/. Accessed: 2024-06-19.

[113] NVIDIA. Nvidia. https://www.nvidia.com/en-us/, Accessed: 2024-06-19.

[114] NVIDIA. Nvidia geforce. https://www.nvidia.com/en-me/geforce/, Accessed:
2024-06-19.

[115] NVIDIA. What is cuda. https://blogs.nvidia.com/blog/what-is-cuda-2/, 2021.
Accessed: 2024-06-04.

[116] NVIDIA. Cuda documentation. https://docs.nvidia.com/cuda/doc/index.html,
2023. Accessed: 2024-06-04.

[117] NVIDIA. Cuda toolkit. https://developer.nvidia.com/cuda-toolkit, 2023. Ac-
cessed: 2024-06-04.

[118] NVIDIA. Cuda zone. https://developer.nvidia.com/cuda-zone, 2023. Accessed:
2024-06-04.

[119] NVIDIA. Nvidia cudnn documentation hub. https://developer.nvidia.com/cudnn,
2024. Accessed: 2024-06-04.

[120] NumPy Contributors. Numpy project. https://numpy.org/, Accessed: 2024-06-04.

Univ-Biskra/Computer Science: 2024 132

https://www.python.org/doc/essays/blurb/
https://www.kaggle.com/
https://www.crunchbase.com/organization/kaggle#/entity
https://www.crunchbase.com/organization/kaggle#/entity
https://opencv.org/about/
https://pytorch.org/foundation
https://matplotlib.org/
https://matplotlib.org/
https://www.gradio.app/
https://www.nvidia.com/en-us/
https://www.nvidia.com/en-me/geforce/
https://blogs.nvidia.com/blog/what-is-cuda-2/
https://docs.nvidia.com/cuda/doc/index.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn
https://numpy.org/


Bibliography

[121] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[122] Hechen Yang, Chen Li, Xin Zhao, Bencheng Cai, Jiawei Zhang, Pingli Ma, Peng Zhao,
Ao Chen, Tao Jiang, Hongzan Sun, Yueyang Teng, Shouliang Qi, Xinyu Huang, and
Marcin Grzegorzek. Emds-7: Environmental microorganism image dataset seventh
version for multiple object detection evaluation. Frontiers in Microbiology, 14:1084312,
2023.

Univ-Biskra/Computer Science: 2024


	Abstract
	List of Figures
	List of Tables
	General introduction
	General overview of water
	Introduction
	Water cycle 
	Evaporation
	Condensation
	Precipitation 
	Runoff

	Water resources 
	Groundwater
	Surface water
	Atmospheric water

	Water value 
	Human survival
	Agricultural
	Climate regulation
	Industrial

	Water properties
	Universal solvent
	Density & buoyancy
	Cohesion and adhesion

	Water pollution 
	 Chemical pollution
	 Physical pollution
	 Microbial pollution

	Biological Pollutants
	Pathogenic bacteria
	Vibrio cholerae 
	Salmonella
	Shigella

	Viruses
	Adenoviruses (AdVs) 
	Hepatitis A virus (HAV)
	F-specific (F+) RNA phages

	Parasites
	Giardia
	Cryptosporidium
	Cyclospora

	Parasitic worms
	Ascaris lumbricoides
	Strongyloides stercoralis
	Trichuris trichiura


	Water-borne diseases 
	Cholera disease
	Typhoid fever disease
	Shigellosis disease
	Hepatitis A virus (HAV) disease
	Poliomyelitis disease
	Amoebiasis disease
	Giardiasis
	Ascariasis disease

	Conclusion

	Deep learning on microorganisms detection
	Introduction
	Machine learning
	Machine learning models
	Supervised learning
	Classification
	Regression

	Unsupervised learning
	Clustring
	Association rule mining
	Dimensionality Reduction
	Anomaly detection

	Semi-supervised learning
	Reinforcement 

	Deep learning
	Convolutional neural networks (CNN)
	 Overall architecture
	Evolution of Convolutional Neural Networks (CNNs)

	Recurrent neural networks (RNNs)
	RNN architecture types

	Generative adversarial networks (GANs)
	Network architecture and learning
	 Types of GANs

	Vision transformer (ViT)
	Vision transformer’s operation

	Transfer learning (TL) 
	Pre-trained models categories


	Conclusion

	System Design 
	Introduction
	Global architecture
	Detailed architecture
	Data gathering
	Pre-processing
	Splitting
	Train
	Augmentation
	Used Models

	Test
	Evaluation metrics
	Model deployment

	Conclusion

	Implementation and results 
	Introduction
	Implementation tools and languages
	Python
	Kaggle
	opencv
	Pytorch
	Matplotlib
	Gradio
	NVIDIA
	CUDA
	CuDNN
	NumPy
	Scikit-learn

	Realization
	Dataset description
	First problematic
	Second problematic

	Preprocessing steps & Split Dataset
	Data loading 
	Resizing the Images 
	Normalization 
	Split Dataset 

	Data Augmentation
	Horizontal Flip
	Vertical Flip
	Rotation
	Gaussian Blur
	CLAHE
	Cutout


	Modelisation
	Pretrained Models 
	Model Setup
	Training

	Pretrained & ML Models
	Feature Extraction
	Training SVM Classifier

	ViT Model
	Import Libraries and Setup Device
	Load Pretrained ViT Model and Freeze Base Parameters
	Modify the Classifier Head
	Display Model Summary
	Setup Data Transforms and Loaders
	Create Dataloaders
	Define Training and Evaluation Functions
	Training Loop
	Create Optimizer and Loss Function
	Train the Model

	Evaluating the Models

	Results and discussion
	Pretrained Models
	EfficientNet-B0
	ResNet-50
	VGG19

	Pretrained Models & ML Models
	EfficientNet-B0 + SVM
	Resnet50 + SVM
	VGG19 + SVM

	ViT Model
	discussion
	Model deployment

	Conclusion

	General conclusion
	Bibliography

