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Abstract

Greenhouse pest management is crucial for agricultural productivity, but tra-
ditional methods can be environmentally harmful and labor-intensive. This
thesis presents a novel, integrated approach leveraging artificial intelligence
(AlI) and Internet of Things (IoT) technology to automate the identification
and elimination of pests in greenhouse settings. A smart camera system
enables real-time pest identification. Images captured by the camera are
transmitted to a web server for real-time analysis using an AI model. The
server then sends the detection results and corresponding instructions to a
web application for visualization and analysis, as well as to a robotic re-
sponse mechanism for targeted pest elimination. The developed prototype
demonstrates the feasibility and efficacy of this autonomous system, offering
a significant advancement towards sustainable and efficient greenhouse pest
management. Future research will focus on system refinement and expanded
pest detection capabilities.

Keywords: Artificial Intelligence (Al), Internet Of Things (IOT), Sustain-
able Agriculture, Pest Control
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General Introduction

General Context

The convergence of Artificial Intelligence (AI) and the Internet of Things
(IoT) is revolutionizing the agricultural sector, promising to address long-
standing challenges in crop management and boost productivity. This tech-
nological synergy, often referred to as "Smart Farming" or "Precision Agricul-
ture," leverages a network of sensors, devices, and intelligent algorithms to
collect, analyze, and act upon data from the field in real-time.

A prime example of this AI-IoT collaboration is in the realm of pest de-
tection and management. Traditional pest control methods, often reactive
and imprecise, have resulted in significant crop losses and excessive pesticide
use. However, the integration of Al with IoT is transforming this landscape.

Modern pest monitoring systems deploy an array of IoT sensors, includ-
ing cameras and environmental monitors, throughout the fields. The data
captured by these sensors is transmitted via communication networks to a
centralized Al platform. Here, sophisticated algorithms, often based on ma-
chine learning or deep learning techniques, analyze the data to rapidly iden-
tify and classify pest infestations. This early detection allows for timely and
targeted interventions, minimizing crop damage and reducing the need for
blanket pesticide applications.

The advantages of this AI-IoT approach are manifold. Continuous mon-
itoring ensures early pest detection, enabling proactive measures. Al-driven
analysis provides accuracy and speed in pest identification, far exceeding hu-
man capabilities. Furthermore, by automating the response through robotic
systems or precision spraying, farmers can significantly reduce labor costs
and pesticide usage, leading to more sustainable and environmentally friendly
practices.

However, the successful implementation of such systems requires care-
ful consideration of various factors. These include the selection and place-
ment of sensors, data transmission protocols, the computational infrastruc-
ture for Al model training and inference, and the seamless integration of
diverse components into a unified system.

The data collected by Al-IoT systems can be further utilized for various
agricultural applications, such as soil analysis, irrigation optimization, and
yield prediction, promoting a more data-driven and sustainable approach to
farming.

By harnessing the power of Al and IoT, farmers are empowered to make
informed decisions based on real-time, data-driven insights, ushering in a

new era of precision agriculture that promises to transform the way we grow
food.
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Problem Statement

The development of an intelligent plant monitoring system, combining
deep learning-based pest detection, imaging, targeted pest control mecha-
nisms, and user-friendly desktop applications, holds immense potential for
revolutionizing agricultural practices. By integrating cutting-edge technolo-
gies, this innovative solution aims to enhance crop protection by providing
real-time pest identification, accurate infestation assessments, precise tar-
geted spraying, and comprehensive monitoring tools. However, several chal-
lenges need to be addressed to ensure the successful implementation and
usability of such an advanced system.

One critical challenge in pest management is accurately detecting and
identifying various pest species. Traditional methods often rely on man-
ual inspection or periodic scouting, which can be time-consuming, labor-
intensive, and prone to human error. By incorporating deep learning models
and imaging, the intelligent monitoring system can automatically detect and
classify pests with high accuracy, enabling early intervention and targeted
control measures.

Another problem to address is the efficient and targeted application of
pesticides or control agents. Indiscriminate spraying can lead to environ-
mental concerns, resistance development, and unnecessary chemical expo-
sure. The monitoring system should leverage targeted spraying mechanisms
that can precisely deliver control agents to infested areas, reducing waste and
minimizing the overall environmental impact.

Furthermore, the development of a user-friendly desktop application for
monitoring and control is crucial. This application should provide intuitive
interfaces, real-time data visualization, and comprehensive reporting tools.
Ensuring ease of use and seamless integration with existing agricultural prac-
tices will facilitate the adoption and engagement of farmers and agricultural
professionals.

Contributions

To address the challenges outlined above, we divide our contribution into
three aspects as follows:

* The first one, Integrated Imaging and Targeted Spraying System, con-
sists on developing an advanced integrated system, comprising a cam-
era unit and a targeted spraying mechanism, that can be mounted on a
mobile robotic platform or an unmanned aerial vehicle (UAV).

* The second one, Communication, Data Processing, and Desktop Ap-
plication, aims to propose a comprehensive system for processing the
acquired plant images, detecting pests, and facilitating effective mon-
itoring and control measures through a user-friendly desktop applica-
tion.
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* And the third one, Machine Learning Model, focuses on the develop-
ment of a robust machine learning model for precise pest detection and
classification. This part represents the core challenge of accurate pest
identification, which is crucial for effective monitoring and targeted
control measures.

The proposed contribution addresses critical aspects of the pest monitor-
ing and control system, including integrated image acquisition and targeted
spraying, data processing, a user-friendly desktop application, and a robust
machine learning model for pest detection and classification. By combining
these innovative solutions, this research aims to provide a comprehensive
and effective approach to enhancing agricultural practices, minimizing crop
losses, and promoting sustainable pest management strategies.
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2 Chapter 1. Traditional vs Smart Greenhouse Agriculture

1.1 Introduction

This chapter delves into the critical issues faced by greenhouse farmers,
emphasizing the persistent threat posed by pests to production and prof-
itability. It examines the impact of these challenges on crop health and eco-
nomic outcomes, highlighting the need for innovative solutions. Further-
more, the chapter explores the transformative role of Al and IoT in modern
agriculture, showcasing their potential to revolutionize greenhouse farming
practices. Finally, an overview of related works provides a comprehensive
understanding of the current state of research and development in this field.

1.2 Greenhouse Pests: A Threat to Production and
Profitability

In modern agriculture, greenhouses serve as controlled environments for
crop production, providing optimal conditions for plant growth and protec-
tion from external elements. However, despite these controlled conditions,
greenhouses are susceptible to infestations by a variety of insect pests.

1.2.1 Common Insect Pests in Greenhouse Environments

Greenhouse environments are susceptible to various insect pests that can
significantly impact crop health and yield. Key pests include:

* Leaf Miner(Tuta absoluta): Small moths that primarily infest tomato
plants, causing damage by feeding on leaves, stems, and fruits. This
leads to reduced yield and plant death in severe infestations [5].

e Aphids: Soft-bodied insects that feed on a wide range of crops, caus-
ing stunted growth, leaf distortion, and honeydew secretion, which can
lead to sooty mold growth [6].

* Whiteflies: Moth-like insects, they infest various crops, feeding on sap
and causing yellowing, wilting, and leaf distortion. Their honeydew
excretion also contributes to sooty mold growth [7].

* Thrips: Slender insects that damage plants by puncturing tissues and
sucking out cell contents, leading to scarring, distorted growth, and
potential virus transmission [8].

* Mealybugs: Waxy-coated, these insects infest a wide range of plants,
causing damage by sucking sap and excreting honeydew, which can
lead to sooty mold growth and attract ants [9].

* Gryllus(Crickets): While primarily outdoor insects, crickets can enter
greenhouses and damage crops by consuming seedlings, young plants,
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and foliage. They may also cause harm by tunneling into soil [10].

Understanding the characteristics, behavior, and damage patterns of these
pests is crucial for developing effective pest management strategies in green-
house environments.

1.2.2 Impact on Crop Health, Yield, and Economic Viability

Insect pests present in greenhouse environments can have profound ef-
fects on crop health and yield, leading to economic losses and reduced pro-
ductivity. Understanding the impact of these pests is essential for implement-
ing effective pest management strategies. Below are the key ways in which
insect pests can affect crop health and yield:

Economic Losses

Insect pests can cause significant economic losses to greenhouse farmers
through reduced crop yields, quality degradation, and increased production
costs associated with pest control measures. Yield losses may result from di-
rect feeding damage to plant tissues, which can inhibit growth, development
and the production [11].

Additionally, the cost of implementing pest management strategies, such
as purchasing and applying chemical pesticides or deploying biological con-
trol agents, can contribute to financial burdens for growers [11].

Reduced Yields

The feeding activities of insect pests can directly impact plant physiology
and metabolism, leading to reduced photosynthesis, nutrient uptake, and
water absorption.

Severe infestations may result in defoliation, wilting, and premature senes-
cence of plants, further exacerbating yield losses.

Crop plants may also allocate resources towards defense mechanisms,
such as producing secondary metabolites or structural barriers, rather than
investing in growth and reproduction [12].

Quality Degradation

Insect pests can compromise the quality and marketability of greenhouse
crops by causing physical damage, deformities, or contamination.

Feeding damage, such as leaf stippling, curling, or necrosis, can render
affected plant parts unattractive or unsuitable for sale in fresh produce mar-
kets [13].
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Transmission of Diseases

Some insect pests act as vectors for plant pathogens, including viruses,
bacteria, and fungi, which can cause diseases in greenhouse crops.

Pests that feed on plant tissues may introduce pathogens directly into the
plant’s vascular system, leading to systemic infections and disease spread
throughout the crop.

Disease transmission by insect vectors can exacerbate the impact of pest
infestations on crop health and yield, potentially resulting in crop losses due
to disease outbreaks [14].

1.3 Challenges Faced by Greenhouse Farmers

Greenhouse farming, while offering numerous advantages such as ex-
tended growing seasons, controlled environments, and higher crop yields,
is not without its challenges. These challenges can significantly impact pro-
ductivity, profitability, and sustainability. Among the most pressing issues
faced by greenhouse farmers is pest and disease management, which encom-
passes two critical hurdles:

1.3.1 Pest Identification

Early and accurate pest identification is crucial for effective management,
but it can be a complex and time-consuming process. Traditional methods
often rely on visual inspection of plants and sending samples to laborato-
ries for analysis, which can lead to delays in diagnosis and allow infestations
to spread. Early detection of pests and diseases is crucial for effective man-
agement in greenhouse crops, but current diagnostic methods are often slow
and labor-intensive. The development of rapid and accurate diagnostic tools,
such as molecular techniques or biosensors, is an active area of research that
aims to address this challenge [15].

1.3.2 Pest Elimination

Even with accurate identification, eliminating pests in a greenhouse en-
vironment presents its own set of challenges. Many farmers resort to broad-
spectrum chemical pesticides, which can have negative impacts on benefi-
cial insects, human health, and the environment. The intensive use of pesti-
cides in greenhouses can lead to the development of pesticide resistance in
pest populations, as well as negative effects on non-target organisms and hu-
man health. The development and implementation of integrated pest man-
agement (IPM) strategies, which combine biological, cultural, and chemical
control methods, are essential for sustainable pest management in green-
houses [16].
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By addressing these challenges in pest and disease management, green-
house farmers can work towards more productive, profitable, and environ-
mentally sustainable operations. Continued research and innovation in pest
diagnostics and control methods are crucial for the future of greenhouse
farming.

1.4 Alin Agriculture

Artificial Intelligence (Al) has emerged as a transformative force in agri-
culture, revolutionizing various aspects of farming practices. From precision
farming to crop monitoring and yield prediction, Al technologies have sig-
nificantly enhanced efficiency, productivity, and sustainability in the agricul-
tural sector. In the context of biological control in greenhouses, Al techniques
play a pivotal role in optimizing pest management strategies, minimizing en-
vironmental impact, and ensuring crop health and quality.

1.4.1 Applications of Al in agriculture

In recent years, the agricultural sector has increasingly turned to Artificial
Intelligence (AI) to address various challenges hindering maximum yield.
These challenges include inadequate soil treatment, disease and pest out-
breaks, the need for handling large volumes of data, low productivity, and a
gap in knowledge between farmers and technological advancements. Al of-
fers promising solutions due to its adaptability, high performance, precision,
and cost-effectiveness [17].

This overview will delve into Al applications in soil management, crop
management, weed management, and disease management within agricul-
ture. It will also explore the strengths and limitations of these applications,
highlighting the role of expert systems in enhancing productivity .

Crop Yield Improvement: Al can help increase crop yield by up to 30%
through precision farming techniques that optimize sowing, fertigation, and
pest control. Al-powered systems can analyze weather patterns, soil condi-
tions, and other factors to determine the optimal sowing date and depth for
specific crops. They can also monitor crop growth and provide recommenda-
tions for fertilization and irrigation to maximize yield. Additionally, Al can
help detect and manage pests and diseases, further improving crop health
and yield [18].

Soil Analysis: Al can analyze soil samples to determine the optimal mix
of nutrients for specific crops. By analyzing the chemical and physical prop-
erties of soil, Al-powered systems can provide recommendations for fertil-
izers, lime, and other soil amendments. This can help farmers improve soil
health, reduce input costs, and increase crop yields [18].
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Image-based Insight Generation: Al can analyze images from drones
and other sources to monitor crop health, detect diseases, and identify the
readiness of crops for harvest. By analyzing high-resolution images of crops,
Al-powered systems can detect signs of stress, disease, or nutrient deficien-
cies. They can also identify the ripeness of fruits and vegetables, allowing
farmers to optimize harvest times and reduce waste. [18]

Resource Optimization: Al can optimize the use of water, fertilizer, and
pesticides to reduce waste and improve crop yields. By analyzing weather
patterns, soil conditions, and other factors, Al-powered systems can provide
recommendations for irrigation, fertilization, and pest control. This can help
farmers reduce input costs, conserve resources, and improve crop health [18].

Crop Health Monitoring: Al can monitor crop health throughout the
growing season and provide real-time alerts for any abnormalities. By an-
alyzing data from sensors, drones, and other sources, Al-powered systems
can detect signs of stress, disease, or nutrient deficiencies. They can also pro-
vide recommendations for corrective actions, such as adjusting irrigation or
fertilization schedules [18].

Automation in Irrigation: Al can automate irrigation systems to conserve
water and increase crop yields. By analyzing weather patterns, soil condi-
tions, and other factors, Al-powered systems can optimize irrigation sched-
ules and reduce water waste. They can also detect leaks and other issues in
irrigation systems, allowing farmers to address them promptly [18].

Plant Stress Recognition: Al can recognize plant stress levels in various
growth stages and provide recommendations for improving crop health. By
analyzing data from sensors and other sources, Al-powered systems can de-
tect signs of stress, such as changes in temperature, humidity, or light levels.
They can also provide recommendations for addressing stress, such as ad-
justing irrigation [18].

1.5 IOT in Agriculture

The Internet of Things (IoT) is a transformative technology that is reshap-
ing the agricultural sector. By seamlessly integrating physical devices with
digital technologies, IoT is providing efficient and reliable solutions for mod-
ernizing farming practices. With IoT-based solutions, farms and greenhouses
can now be automatically monitored and maintained with minimal human
involvement. From precision farming to crop monitoring and yield predic-
tion, IoT technologies are enhancing efficiency, productivity, and sustainabil-
ity in the agricultural sector [19] .
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1.5.1 10T Architecture

Several technological layers make up the Internet of Things architecture,
as listed below:

Smart device/Perception layer: This is the foundational layer of the
IoT architecture, tasked with monitoring changes in the physical state
of connected objects. Sensors are the primary components of this layer,
responsible for detecting and collecting data such as temperature, air
quality, speed, humidity, pressure, flow, movement, voltage, and more.
The collected data is then transferred to the cloud layer for storage and
further processing.

Communication/Transport Layer: Responsible for facilitating commu-
nication between different layers of the IoT architecture, the communi-
cation layer ensures seamless data transfer. Data collected by sensors
is transmitted to the cloud or the service and application layer through
routers, switches, and gateways. Various protocols are used to connect
different IoT devices and enable the transmission of data to higher lay-
ers.

Cloud/Processing Layer: Often referred to as the IoT system processing
unit, the cloud layer receives data from sensors and devices. This layer
is responsible for data processing, analysis, and storage. Typically, a
data center serves as a central server to manage the data generated by
the network edge.

Management Layer: Operating and monitoring all other layers, the
management layer utilizes cloud management tools for effective im-
plementation and management of the IoT architecture.

Services and Applications Layer: The topmost layer of the IoT archi-
tecture, this layer offers a wide range of services and applications in-
cluding security, data collection, data analysis, and visualization. The
services and applications provided are determined by specific use sce-
narios and the functionality desired by end-users [20].

1.5.2 IoT Characteristics

The Internet of Things (IoT) is a sophisticated network that brings to-
gether various real-world domains, each with its own unique characteristics.
Here are the main ones:

Distribution: IoT systems involve deploying numerous devices across
various geographical locations.

Computation Capability: IoT devices vary in computational power,
ranging from small embedded sensors to powerful high-end servers.
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¢ Large Quantities of Devices and Data: The rate of data produced by
smart devices is exponentially rising due to widespread deployments
and expansion of IoT applications.

e Heterogeneity: IoT systems consist of multiple types of devices with
different hardware and software, following different standards and pro-
tocols.

* Dynamicity: IoT environments are very dynamic, with devices being
added, terminated, connected, or disconnected from networks at any
time.

* Mobility : Some devices, such as smartphones, have a high degree of
mobility, implying that they can be under different domains of admin-
istration throughout their life cycle.

» Ubiquity of Services: IoT offers an unprecedented massive scale of ser-
vice provisions which can be accessible across the globe. Many of them
offer similar functionalities with different requirements and Quality of
Service [21].

1.5.3 Agricultural IoT Structure

IoT-based smart farming consists of four major components:

* Physical Structure: The physical structure forms the backbone of IoT-
based smart farming, ensuring precision agriculture by preventing un-
wanted occurrences. It controls sensors, actuators, and devices, ensur-
ing seamless operation and management of the farm.

* Data Acquisition: Data acquisition is divided into two main compo-
nents: IoT data acquisition and standard data acquisition. IoT data
acquisition employs protocols like MQTT, Websocket, AMQP, CoAP,
DDS, and HTTP. Standard data acquisition utilizes protocols such as
ZigBee, WIFI, LoraWan, SigFox, and ISOBUS. These protocols facilitate
the seamless gathering of data from various sensors and devices de-
ployed across the farm.

* Data Processing: Data processing plays a crucial role in IoT-based smart
farming. It involves various features such as image or video process-
ing, data loading, decision support systems, and data mining. These
processes enable the extraction of meaningful insights from the vast
amount of data collected from the farm’s sensors and devices.

e Data Analytics: Data analytics focuses on monitoring and controlling
various aspects of smart farming. Monitoring includes applications like
Livestock Monitoring, Field Monitoring, and Greenhouse Monitoring.
Livestock Monitoring involves tracking parameters like temperature,
heart rate, and digestion using sensors. Field Monitoring reports con-
ditions such as soil richness, temperature, humidity, gas, pressure, and
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crop diseases. Greenhouse Monitoring automates climate parameter
measurements according to plant requirements, minimizing manual in-
tervention and optimizing crop growth [19].

1.5.4 Agricultural IoT Technologies

Numerous technologies are employed in IoT agricultural solutions, tech-
nologies that have significantly modernized IoT agricultural services such
as:

* Cloud And Edge Computing: The integration of IoT and cloud com-
puting in agriculture ensures widespread access to shared resources.
Cloud computing plays a crucial role in meeting diverse agricultural
needs and executing operations efficiently. Cloud-based software ar-
chitecture has been proposed to enhance the accuracy of processing and
retrieving agricultural information and tasks. In IoT, edge computing is
seen as a solution for facilitating data processing at the source, such as
sensors and actuators. Edge computing, also known as fog computing,
serves as the backbone of cloud computing, deployed according to the
features and requirements of smart farming [22].

¢ Big Data And Machine Learning: Big data, comprising vast amounts of
essential data generated by agricultural sensors, enables efficient crop
monitoring at various stages. A systematic review of big data analysis
in agriculture has been conducted. Neural networks are popular for
providing optimal solutions at high speeds. Advanced neural network
principles and technology are used for intrusion detection. Moreover,
neural networks offer a detection module and data training. Deep neu-
ral networks have been utilized to develop an IoT-based hydroponic
system [23].

¢ Communication Networks And Protocols: IoT agricultural networks
incorporate different long-range and short-range communication tech-
nologies. These technologies aid in designing crop or field monitor-
ing sensors and devices. Communication protocols are essential for ex-
changing agricultural data and information across the network, form-
ing the backbone of IoT agricultural systems and applications [24].

* Robotics: Several Agribots have been developed for smart farming, re-
ducing the need for manual labor by increasing work speed through
advanced techniques. These robots perform basic functions such as
weeding, spraying, and sowing. IoT is used to control these robots,
enhancing crop productivity and resource utilization. A multi-sensor
robotics approach has been proposed for characterizing and mapping
the ground [25].
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1.5.5 Agricultural IoT Application Domains

The Internet of Things (IoT) is revolutionizing agriculture by providing
farmers with innovative tools and solutions to enhance productivity, opti-
mize resource management, and mitigate risks. In the context of pest control
and precision pesticide application, the following IoT applications are partic-
ularly relevant:

* Crop Monitoring and Pest Detection: Precision farming helps farmers
improve productivity by automating and optimizing various tasks. It
involves using IoT sensors to measure soil quality, weather conditions,
and moisture levels, and to plan harvesting techniques effectively [26].

* Precision Pesticide Application: IoT-enabled devices can analyze data
from various sources to determine the optimal timing and dosage for
pesticide application. This precision approach reduces pesticide wastage,
minimizes environmental impact, and ensures effective pest control
[27].

* Robotics And Drone Technology: Agricultural drones and robots equipped
with sensors and imaging capabilities can be used to survey large fields,
identify areas with pest problems, and apply pesticides with precision.
They can also be used to monitor crop health and growth, providing
valuable data for decision-making [25].

e Data Analytics and Decision Support: IoT platforms can collect and
analyze data from various sensors and devices to provide farmers with
insights into crop health, pest pressure, and environmental conditions.
This data can be used to develop predictive models and decision-support
tools that help farmers make informed decisions about pest manage-
ment strategies [28].

* Remote Farm Management: IoT-enabled devices and platforms allow
farmers to remotely monitor and control various aspects of their op-
erations, including irrigation systems, pesticide applications, and crop
monitoring systems. This remote access improves efficiency, reduces
labor costs, and allows farmers to respond quickly to changing condi-
tions [29].

By integrating these IoT applications into their operations, farmers can
achieve more effective and sustainable pest control practices, reduce pesti-
cide use, and improve crop yields.

1.6 Related Works

Several research studies and projects have focused on leveraging advanced
technologies for pest detection and management in agricultural settings, in-
cluding greenhouses. Here are some notable related works in the field
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1.6.1 RobHortic: A Field Robot to Detect Pests and Diseases
in Horticultural Crops by Proximal Sensing

Cubero et al, (2020) introduce RobHortic. RobHortic is a remotely-controlled
tield robot designed for the detection of pests and diseases in horticultural
crops through proximal sensing. Developed primarily for use in carrot fields,
the robot employs advanced imaging technologies to identify asymptomatic
plants infected with ‘Candidatus Liberibacter solanacearum” (CaLsol). Rob-
Hortic’s construction features a frame with four wheels capable of absorbing
terrain irregularities, with adjustable width between 100 and 200 cm to fit dif-
ferent crop row widths. The frame includes a closed structure that houses the
cameras, sensors, and an industrial computer, along with four 100 W halo-
gen spotlights and a tarp to counteract natural light variability. Two 24 V
250 W DC motors drive the robot, powered by a 24 V 10 Ah lithium battery
recharged by a 2000 W inverter generator, and it is controlled via a wireless
radio-controller that monitors parameters such as speed, distance traveled,
and battery level [1].

The robot’s sensors and imaging systems include a multispectral camera,
three DSLR cameras (including modified versions for near-infrared imag-
ing), a hyperspectral imaging system that acquires images in 133 bands be-
tween 410 and 1130 nm, along with a GNSS for geolocating images. Rob-
Hortic captures images approximately every 80 cm while moving at a speed
of 1 m/s, with the GNSS recording location data at 25 Hz for precise ge-
olocation. Custom software synchronizes image acquisition with the robot’s
movement, storing the images along with GNSS data for analysis. Using
Partial Least Squares-Discriminant Analysis (PLS-DA), RobHortic achieved
detection rates of 66.4% in the lab and 59.8% in the field, with other methods
like Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM)
also tested [1].

Field tests demonstrated the robot’s ability to capture necessary data across
multiple campaigns, although vegetation index maps created from multi-
spectral images were not effective for detecting CaLsol. Despite this, Rob-
Hortic’s total material cost of under €5000 makes it an affordable solution for
crop inspection, with a design adaptable to different crops and conditions
and the ability to add or change sensors as needed [1].
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Halogen
lamps

Hyperspectral camera

FIGURE 1.1: A remotely-driven RobHortic operating in a carrot
field. (a) the external appearance of the robot. (b): inside from
the plant point of view [1]

1.6.2 Identification of fruit tree pests with deep learning on
embedded drone to achieve accurate pesticide spraying

Chen et al. (2021) introduce an innovative approach to pest management
in longan orchards, utilizing a dual-drone system and edge computing for
real-time pest detection and precise pesticide application. The system em-
ploys a reconnaissance drone equipped with an embedded NVIDIA Jetson
TX2 module to capture images of Tessaratoma papillosa, a significant pest in
longan cultivation. The Tiny-YOLOv3 model, running on the TX2, processes
these images in real-time, identifying the pest’s life stage and location. This
information is then used to plan an optimized flight path for a separate agri-
cultural drone responsible for pesticide spraying [2].

The system’s effectiveness is demonstrated through field experiments in
sloped longan orchards, where it achieves a pest control rate of over 95%.
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Notably, the approach reduces pesticide use by 70% and water consump-
tion by 12.5% compared to traditional manual spraying methods. Addition-
ally, the automated system significantly decreases labor requirements, mak-
ing it a promising solution for addressing labor shortages in agriculture. The
study’s findings highlight the potential of integrating drone technology, edge
computing, and deep learning for sustainable and efficient pest management
practices [2].

Pest’s
Generation

Pest’s
Position

Agricultural drone

1

Positions . .
m—) S;raying pesticides

Spraying ||
Sequence :
I

Spraying

FIGURE 1.2: The system architecture flow chart [2]

1.6.3 Automatic pest identification system in the greenhouse
based on deep learning and machine vision

The research focused on enhancing the YOLOv5 model to improve pest
detection accuracy specifically in greenhouse environments. Greenhouses
present unique challenges for pest detection due to the controlled yet varied
conditions. The researchers aimed to refine the YOLOvV5 model to address
these challenges effectively.

The enhanced model demonstrated significant improvements in detect-
ing various pests, including leaf miners, fruit flies, aphids, and houseflies.
The detection accuracies achieved were remarkable, with 99% for leaf min-
ers and fruit flies, 98% for aphids and houseflies, and 97% for whiteflies. De-
spite these high accuracy rates, the study also identified several limitations.
The model struggled with detecting light-colored tobacco whiteflies and tiny
thrips, which are particularly challenging due to their size and color. Addi-
tionally, there were instances of misidentification between houseflies and leaf
miners, likely due to their similar coloration and shape. These findings high-
light the need for further refinement of the model to address these specific
detection challenges and ensure more reliable pest identification in green-
house settings [3].
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FIGURE 1.3: Automatic pest identification and monitoring sys-
tem with LED trap lamp, sticky paper and image acquisition
system [3]

1.7 Conclusion

In conclusion, moving from traditional to smart greenhouses has shown
great promise in solving many problems that farmers face. With Al and IoT
technologies, farmers can better manage pests, monitor crop health, increase
yields, and improve their overall profitability. These advancements make
greenhouse farming more efficient and sustainable.

Next, we'll explore how Artificial Intelligence, specifically Object Detec-
tion, can help even more. This technology can accurately and quickly identify
pests, diseases, and the condition of crops, making greenhouse management
even more precise and effective.
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2.1 Introduction

As the agricultural sector strives for sustainability and efficiency, ensuring
effective pest and disease management within greenhouses is critical. This
chapter delves into the transformative potential of artificial intelligence (AI),
particularly machine learning (ML) and deep learning (DL) techniques, to
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revolutionize greenhouse crop protection strategies. By providing both the-
oretical and practical insights, this chapter aims to equip readers with the
knowledge necessary to implement Al-driven solutions, ultimately fostering
a more intelligent and responsive approach to greenhouse management.

2.1.1 Machine learning

Machine learning, a subset of artificial intelligence, involves training com-
puter algorithms to learn from data without explicit programming. This ca-
pability enables computers to make predictions or take actions based on pat-
terns in the data, with applications spanning various industries, including
healthcare. In healthcare, machine learning algorithms are trained on exten-
sive datasets comprising patient data, medical images, or electronic health
records. These algorithms identify patterns and predict outcomes, thereby
enhancing diagnosis accuracy, personalizing treatment plans, and forecast-
ing patient outcomes. For instance, they’ve been instrumental in identify-
ing patients at high risk for heart disease and predicting hospital readmis-
sions [30].

The relationship between artificial intelligence (AI), machine learning (ML),
and deep learning (DL) is illustrated in the figure below.

-~ Artificial Intelligence

The theory and development of computer systems qble""x_.
to perform tasks normally requiring human intelligence

Machine Learnin g

Gives computers "the ability to learn
without being explicitly programmed"

Deep Learning

Machine learning algorithms
with brain-like logical
structure of algorithms

called artificial neural
networks

FIGURE 2.1: The relationship between(AI),(ML),and(DL)!

ISource: https:/ /levity.ai/blog/ difference-machine-learning-deep-learning
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Types of Machine learning algorithms

There are three main types of machine learning:

* Supervised Learning: Supervised learning involves training a model
on a "Labelled Dataset," which comprises both input and output pa-
rameters. In this type of learning, algorithms learn to establish correla-
tions between inputs and corresponding outputs. Supervised learning
encompasses both training and validation datasets, where each data
point is labeled with the correct output [31].

For example you're tasked with developing an image classifier to dis-
tinguish between elephants, cows, and camels. By feeding the algo-
rithm labeled datasets containing images of these animals, the machine
learns to differentiate between them. When presented with new im-
ages of elephants, cows, or camels, the trained algorithm applies its
learned patterns to predict the correct classification. This exemplifies
supervised learning, particularly in the context of image classification.

Supervised Learning

Labeled Data

Supervisor

m’.‘nl .‘n Training data set

.!"?' Elephant N

Cow Camel

—

Algorithm

FIGURE 2.2: Supervised learning?

* Unsupervised Learning: Unsupervised learning is a machine learn-
ing approach where algorithms uncover patterns and relationships in
unlabeled data. Unlike supervised learning, it doesn’t rely on labeled
target outputs. Instead, the primary objective of unsupervised learning
is to unveil hidden patterns, similarities, or clusters within the data.
These insights can be utilized for various purposes, including data ex-
ploration, visualization, dimensionality reduction, and more [31].

2Source: https:/ /www.geeksforgeeks.org/ types-of-machine-learning
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For example Let’s consider a scenario where a zookeeper collects data
on the daily activities of various animals in their care, including ele-
phants, cows, and camels. Using unsupervised learning techniques like
clustering, the algorithm can identify patterns in the animals” behav-
iors without needing predefined labels. By clustering similar behav-
ioral patterns, the zookeeper gains insights into the natural tendencies
of each animal species without explicitly labeling the data. These in-
sights can then inform decisions related to animal care, habitat design,
and visitor experiences at the zoo .

Unsupervised Learning

[ Interpretation ] Algorithm Processing
28— O— @ «
\@
q?r 2 .a + Unknown Output

+ No Training Data Set

FIGURE 2.3: Unsupervised learning®

* Semi-Supervised Learning: Semi-supervised learning lies between su-
pervised and unsupervised learning, utilizing both labeled and unla-
beled data. It’s particularly valuable when acquiring labeled data is
costly or time-consuming. This approach is chosen when labeled data
is scarce or requires specialized resources for training [32].

It’s used when dealing with partially labeled datasets, where a small
portion is labeled and the majority is unlabeled. Unsupervised tech-
niques can be employed to predict labels, which are then used to train
supervised models. This technique finds significant application in sce-
narios like image datasets where not all images are labeled [32].

For example we’re developing a model to classify images of elephants,
cows, and camels. Gathering labeled data for every image can be time-
consuming and costly. Semi-supervised learning comes into play by
utilizing both labeled and unlabeled images.

For instance, the model can be trained on a mix of labeled images of
elephants, cows, and camels, along with a larger set of unlabeled im-
ages. Using unsupervised techniques, the model can identify patterns
in the unlabeled images and refine its understanding of distinguishing
features for each animal category. This combined approach leads to
improved classification accuracy, without the need for labeling every
single image.

3Source: https:/ /www.geeksforgeeks.org/ types-of-machine-learning
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FIGURE 2.4: Semi supervised learnimg4

* Reinforcement Machine Learning: Reinforcement learning is a method
where an algorithm interacts with its environment, taking actions and
discovering errors to improve its performance. Trial, error, and delayed
feedback are fundamental characteristics of this approach. The model
learns by receiving reward feedback, adjusting its behavior or patterns
accordingly [33].

This technique is exemplified in applications like Google’s Self-Driving
car and AlphaGo, where the algorithm competes with humans or itself
to enhance performance. With each interaction, the model learns and
integrates new data into its knowledge base, thus improving its training
and experience over time [33].

AN
7

Reward (‘) N Agent

A (=

Action

Environment

FIGURE 2.5: Reinforcement Machine Learning5

4Source: https:/ /www.geeksforgeeks.org/ types-of-machine-learning
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2.1.2 Deep learning

Introduction

Deep learning, a subset of machine learning, is renowned for its ability to
train neural networks. It stands out as a powerful technique in classification,
finding applications across various disciplines utilizing machine learning.

In deep learning, neural network architectures comprise numerous hidden
layers, hence the term "deep," indicating the depth of layers, typically ex-
ceeding two hidden layers. These networks are adept at processing and
analyzing complex data types such as images, sounds, and text. The mul-
tiple layers within these neural networks enable them to progressively learn
abstract features from the data, thereby enhancing their capability to make
accurate predictions or classifications. [34]

Artificial Neural Networks

Artificial neural networks are inspired by the structure and function of
biological neurons. They consist of interconnected nodes, or neurons, orga-
nized in layers. In a typical neural network, the input layer, the first layer,
receives input from external sources and passes it to the hidden layer, the
second layer. Each neuron in the hidden layer receives input from neurons
in the previous layer, computes a weighted sum, and transfers it to neurons
in the next layer.

These connections between neurons are weighted, meaning that the influ-
ence of inputs from the preceding layer is adjusted by assigning each input
a unique weight. During the training process, these weights are iteratively
adjusted to optimize the performance of the model. This allows the neural
network to learn and adapt to the data it is trained on, ultimately improving
its ability to make accurate predictions or classifications [35].

5Source: https:/ /www.geeksforgeeks.org/ types-of-machine-learning
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Hidden Layers

Input Layer Output Layer

FIGURE 2.6: Fully Connected Artificial Neural Network ©

Difference between Machine Learning (ML) and Deep Learning (DL)

2.2

In machine learning, statistical algorithms are utilized to uncover hid-
den patterns and relationships within datasets, while deep learning em-
ploys artificial neural network architecture for the same purpose [35].

Machine learning is effective with smaller datasets, whereas deep learn-
ing typically requires larger volumes of data for optimal performance.

Machine learning is suited for low-label tasks, while deep learning ex-
cels in handling complex tasks like image processing and natural lan-
guage processing.

Training a machine learning model usually takes less time compared to
deep learning, which often requires more time due to the complexity of
the neural network architecture.

In machine learning, models are created using manually extracted rel-
evant features from data, whereas deep learning automatically extracts
relevant features through an end-to-end learning process.

Introduction to YOLOvVS

The YOLOVS architecture operates by dividing the input image into a

grid

and simultaneously predicting bounding boxes and class probabilities

®Source: https:/ /www.geeksforgeeks.org/neural-networks-using-the-r-nnet-package /
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for objects within each grid cell. This grid-based approach enables YOLOV8
to detect multiple objects in a single pass through the network, making it ex-
ceptionally fast and efficient [4].

Key features of YOLOVS include:

2.3

Backbone Network: YOLOVS typically employs a feature extraction
backbone network, to extract hierarchical features from the input im-

age [4].

Detection Head: Following feature extraction, YOLOvS utilizes a detec-
tion head comprising convolutional layers to predict bounding boxes
and class probabilities for objects within each grid cell [4].

Anchor Boxes: YOLOVS utilizes anchor boxes, predefined bounding
box shapes with varying aspect ratios, to facilitate accurate localization
of objects of different sizes [4].

Multi-Scale Prediction: YOLOv8 employs multi-scale prediction to de-
tect objects at different resolutions within the input image, enhancing
its ability to capture objects of varying sizes [4].

Non-Maximum Suppression (NMS): is a pivotal technique utilized by
YOLO to refine object detection predictions. After generating bound-
ing box predictions, YOLO applies NMS to eliminate redundant de-
tections and retain only the most confident predictions. This process
involves identifying overlapping boxes, comparing confidence scores,
and retaining the highest-scoring boxes while discarding lower-scoring

ones [4].

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

FIGURE 2.7: object Detection [4]

Object Detection Algorithm

Object detection is a critical task in computer vision that involves identify-
ing and localizing objects within an image or video. Various algorithms have
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been developed to tackle this problem, each with its strengths and weak-
nesses. In this section, we will overview some of the most prominent object
detection algorithms and discuss why we chose YOLOvV8 (You Only Look
Once version 8)

Below is a comparison of several key object detection algorithm

2.3.1 Faster R-CNN

Faster R-CNN (Region-Based Convolutional Neural Networks) integrates
a Region Proposal Network (RPN) and Fast R-CNN into a single, unified
model. The RPN generates region proposals, which are then refined by the
Fast R-CNN. This architecture offers high accuracy, providing precise ob-
ject detection by separating the proposal generation and classification stages.
Additionally, it exhibits flexibility by being able to detect objects of varying
sizes and aspect ratios due to the RPN. However, it is more computationally
intensive and harder to implement.
Faster R-CNN is typically used in scenarios where detection accuracy is crit-
ical, such as detailed image analysis, security systems, and medical imag-
ing [36].

2.3.2 SSD (Single Shot MultiBox Detector)

The architecture of SSD (Single Shot MultiBox Detector) eliminates the
region proposal stage and directly predicts bounding boxes and class prob-
abilities from feature maps at multiple scales. This approach offers several
advantages: it is faster than R-CNN-based models due to its single-shot na-
ture, and it is simpler to train and implement. However, the SSD has its
disadvantages, as it is generally less accurate than Faster R-CNN, particu-
larly for small objects.

SSD is suitable for real-time applications like surveillance and traffic moni-
toring [37].

2.3.3 YOLO

The architecture of YOLO frames object detection as a single regression
problem, dividing the image into a grid and predicting bounding boxes and
probabilities for each cell. This design has several advantages: it is extremely
fast and capable of real-time detection, and its single-stage architecture makes
it computationally efficient. However, early versions of YOLO had issues
with small object detection and localization accuracy .but now With the newest
version, YOLO has significantly improved its capabilities in small object de-
tection and localization accuracy, addressing previous limitations. This en-
hancement further solidifies its position as a leading solution for real-time
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object detection tasks across various applications, including autonomous driv-
ing, video surveillance, and sports analytics [38].

2.3.4 RetinaNet

The architecture of RetinaNet introduces the Focal Loss to address class
imbalance and uses a feature pyramid network (FPN) and anchors at mul-
tiple scales for object detection. This design has several advantages: it is
effective for detecting small and infrequent objects due to the Focal Loss, and
it strikes a good balance between speed and accuracy. However, RetinaNet
is more computationally demanding compared to simpler models like SSD.
It is suitable for applications requiring high precision, such as retail analytics
and medical imaging [39].

2.3.5 EfficientDet

The architecture of EfficientDet is built on the EfficientNet backbone and
utilizes a weighted bi-directional feature pyramid network (BiFPN) for im-
proved multiscale feature fusion. This model offers several advantages: it is
optimized for both accuracy and resource usage, and it can be easily scaled
for different accuracy and speed requirements. However, EfficientDet may
not achieve the highest accuracy compared to more complex models.

It is particularly suitable for mobile and embedded applications due to its
efficiency [40].
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2.3.6 Comparison Table between Object Detection Algorithm

Algorithm Architecture Speed Accuracy | Complexity | Best Use Cases
d;‘ggj:i%ih Generally Detailed image.
Faster R-CNN RPN and Moderate higher High analysis,
Fast R-CNN accuracy security systems
Sinele-sta Real-time
SSD gie-stage High Moderate Low surveillance,
detector . o
traffic monitoring
Decent,
Sinele-stage especially Autonomous
YOLO & & Very High for Moderate driving,
detector . . ;
real-time video surveillance
applications
. one-stage . . Retail analytics,
RetinaNet . Moderate High High S .
detectior medical imaging
Mobile
EfficientDet Two-stage High Mode.rate Moderate applications,
detector to High
embedded systems

TABLE 2.1: Comparison Table between Object Detection Algo-
rithm

2.3.7 Why YOLOVS is Superior

While Fast RCNN is known for its superior accuracy in object detection
tasks, YOLOVS offers a significant advantage in terms of speed. This makes
YOLOV8 more suitable for real-time detection applications, such as our pest
management system, where quick and accurate identification of pests is es-
sential to take immediate action. The balance between speed and accuracy
provided by YOLOVS8 ensures that we can maintain high detection perfor-
mance while meeting the real-time operational requirements of our project.

YOLOVS,is from the latest version of YOLO, incorporates several advance-
ments:

* Speed: Maintains the fast detection capabilities of previous YOLO ver-

sions, crucial for real-time applications.

® Accuracy: Enhanced architecture and training techniques improve ac-
curacy, making it competitive with more complex models.

¢ Efficiency: Optimized for various hardware, from high-end servers to
mobile devices.
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* Versatility: Flexible and adaptable to different detection tasks, from
large-scale environments to embedded systems.

e Community Support: A large, active community ensures continuous
improvement and extensive support.

24 YOLOvS

YOLO, or You Only Look Once, has emerged as a leading solution for ob-
ject detection tasks, celebrated for its remarkable speed and accuracy. Orig-
inally developed to detect and locate objects in images and videos, YOLO's
primary focus lies in recognizing and categorizing objects based on their vi-
sual characteristics. This versatility extends beyond traditional applications,
as YOLO has found utility in diverse domains.

In our project focusing on the detection of pest insects within greenhouse
environments, we capitalize on YOLO’s prowess in object detection to ad-
dress the challenges of pest management. Similar to medical imaging, the
identification and localization of pests in greenhouse imagery are pivotal for
effective pest control strategies. By leveraging YOLO's ability to discern and
classify objects in real-time, we aim to empower our system with the capa-
bility to swiftly identify and respond to pest infestations, safeguarding crop
health and optimizing agricultural productivity.

here is deferent yolo version see Figure:

55 55
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YOLOV5-7.0 YOLOV5-7.0
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Parameters (M) Latency A100 TensorRT FP16 (ms/img)

FIGURE 2.8: YOLO versions [4]

2.5 Conclusion

The integration of machine learning and deep learning, particularly through
YOLOvVS, demonstrates immense promise for the biological control of green-
house pests and diseases. By automating and enhancing the accuracy of pest
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and disease detection, growers are empowered to make informed, timely de-
cisions, leading to optimized crop protection strategies. The insights gained
in this chapter lay the foundation for further research and development, en-
couraging the continued exploration of Al’s potential to transform not only
greenhouses but the broader agricultural landscape. Moving forward, collab-
oration between agricultural experts and Al specialists will be key to ensur-
ing that these technologies are effectively harnessed to address the challenges
of sustainable food production.
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3.1 Introduction

This chapter covers the overall design and implementation of our project,
which focuses on using Al to detect pest insects in greenhouses. We start
with the general design and diagrams to give a clear overview of the system.
Next, we dive into the detailed design, explaining each component in depth.
We then describe the dataset we used, how we prepared it, and the steps for
data augmentation. Following this, we discuss how the dataset was split for
training and testing. Finally, we explain how we utilized the YOLOv8 model
for pest insect detection and the overall composition of the system.
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3.2 General Design

The objective of our research endeavors to develop an Al-driven solution
aimed at pest management within greenhouse environments using a robotic
system equipped with a camera and spray mechanism. Our methodology
entails several key steps, elucidated below:

* Model Creation: We begin by crafting by crafting a robust deep learn-
ing model tailored for pest detection within greenhouse settings. This
involves selecting pertinent datasets containing images of various pest
insects and undertaking preprocessing tasks to enhance data quality
and relevance.

* Training and Testing: With the model architecture in place, we pro-
ceed to train it using the curated dataset, ensuring optimal performance
in accurately identifying and classifying pest insects. Rigorous testing
procedures are employed to validate the model’s efficacy and robust-
ness.

* Deployment in Cloud: Following successful model training and vali-
dation, we deploy our Al-powered solution in the cloud infrastructure.
This facilitates seamless integration with our web application, enabling
real-time interaction with users.

* Web Application Development: Concurrently, we develop a user-friendly
web application designed to interface with our intelligent model. Through
this application, users can see live streaming footage captured by the
robotic system’s camera for pest detection analysis. Additionally, we
provide users with real-time notifications detailing the detected pest
insects, along with relevant instructions on how to proceed, including
recommendations for utilizing biological control products effectively.
This comprehensive approach ensures that users have access to action-
able insights, empowering them to make informed decisions in manag-
ing pest infestations within their greenhouse environments.

* Real-time Detection and Response: Upon receiving live streaming data
from the robotic system, our deployed model swiftly analyzes the footage
to detect the presence of pest insects. In the event of a positive detec-
tion, the system triggers an automated order to commence spraying
with a designated biological control product.
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FIGURE 3.1: General design of our System

Illustrative Figure provides a visual depiction of our integrated frame-
work, offering users a comprehensive understanding of our innovative ap-
proach to greenhouse pest management. Through the seamless integration
of Al technology, robotic automation, and biological control strategies, we
aim to revolutionize pest management practices, fostering sustainable agri-
culture and environmental stewardship.

3.2.1 Use Case Diagram

User_Interface
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_'E’_ — T
I ——— o Bugbot
Greenhouse Farmer 7 Initiate Bugbot -_ | e — —
e S ~|T 7 Capture Plant Images
Server R

I . = ¢ Activate Spraying Systerﬁ""j_.
¢ Host Yolovd Model ————— Detect Pests in Images 3 R _ el

- ‘Send Images to Server )

FIGURE 3.2: Use Case Diagram

This diagram is essential for understanding the system’s scope and the
roles of different actors, such as the user and the system itself. It depicts the
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main use cases, including initiating monitoring, capturing images, process-
ing images, detecting pests, activating the sprayer, and viewing results. By
illustrating these interactions, the use case diagram helps clarify the system’s
requirements and the user’s interaction with the system.

3.2.2 Activity Diagram

*

| Farmer Starts Bugbot |

| |

| Bugbot Captures Plant Images |

A
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| Bugbot Updates Wideo Feed and Data ]

v

| Farmer views Wideo and Data :I

®

FIGURE 3.3: Activity Diagram

This diagram is crucial for understanding the workflow and the logical
sequence of operations performed by the system. It showcases the steps in-
volved in capturing images, processing those images, detecting pests, and
activating the sprayer system. By illustrating these activities, the activity di-
agram helps clarify the process flow and decision points within the system,
ensuring a comprehensive understanding of how the system operates.

3.2.3 Sequence Diagram

To further illustrate the interactions and workflows within our pest de-
tection and management system, we present the sequence diagram. This
diagram provides a detailed view of the communication between different
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components and the sequence of operations involved in detecting pests and
triggering the appropriate responses.

The sequence diagram showcases the step-by-step process from captur-
ing images through the ESP32 camera to processing these images, detecting
pests using the YOLOvV8 model, and ultimately activating the sprayer sys-
tem to apply the biological control product. This visual representation helps
to clarify the dynamic behavior of the system, ensuring a clear understand-
ing of how each component collaborates to achieve the overall functionality.

| Farmer | | Bugbot| ‘ Server |

: Capture Plant Images

e
-

Process Images

<1

Send Images

Y

Host Yolowg Model

Detect Pests in Images

, _, Send Detection Results

-~

Interpret Results
alt / [Pests Detected]
Activate Spraying System

<1

\_ Update Video Feed and Data

| Farmer | | Bugl;bot| ‘ Server |

FIGURE 3.4: Sequence Diagram

3.3 Detailed Design

To construct our deep learning model for detecting and classifying pest
insects, our system will adhere to a structured approach as outlined in the
accompanying figure.
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FIGURE 3.5: Detailed System Design

Initially, we commence by acquiring a comprehensive dataset compris-
ing images of various pest insects. Subsequently, the dataset undergoes pre-
processing to enhance its quality and suitability for model training. This
includes tasks such as normalization, augmentation, and noise reduction to
optimize the dataset for effective learning.

Following preprocessing, the dataset is partitioned into distinct subsets
for training, validation, and testing purposes. This ensures robust model
performance evaluation and validation against unseen data.

The core of our system lies in the utilization of the YOLOVS architecture,
a powerful deep learning model specifically designed for object detection
tasks. The YOLOv8 model is fed with the partitioned dataset, undergoing
iterative training epochs to learn and extract meaningful features from the
input images.

Through this iterative training process, the YOLOv8 model gradually im-
proves its ability to discern and classify different types of pest insects with
high accuracy and reliability.

Upon completion of training, we obtain a fully trained YOLOvV8 model ca-
pable of classifying new pest insect images with remarkable precision. This
model serves as a potent tool for pest detection and classification, empow-
ering users with actionable insights for effective pest management within
greenhouse environments.

3.4 Dataset

To compile our dataset for pest insect detection and classification, we
employed a meticulous process encompassing data collection, labeling, aug-
mentation, and train/test split. Here’s an overview of our methodology:
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Data Collection: We meticulously curated our dataset by gathering a di-
verse array of images showcasing pest insects commonly found in green-
house environments. These images were sourced from various platforms
including Kaggle, Roboflow, and online repositories. Through this process,
we compiled a comprehensive dataset that includes a wide range of pest in-
sects along with detailed annotations

Labeling with Roboflow: To annotate our dataset with bounding boxes
delineating the regions of interest (pest insects), we utilized Roboflow, an ef-
ticient labeling tool. Through Roboflow’s intuitive interface, each image was
meticulously annotated by marking the bounding box around the detected
pest insect(s). This process ensured accurate labeling, essential for model
training.

UNUSED CLASSES

FIGURE 3.6: labeling images with roboflow

Augmentation: To increase the diversity and variability of the dataset,
data augmentation techniques were applied. These techniques included ran-
dom rotations, flips (both vertical and horizontal), and adjustments to bright-
ness. Augmentation helps in preventing overfitting and improves the model’s
ability to generalize to unseen data.

Train/Test Split: The dataset was divided into three subsets: 80% for
training, 10% for validation, and 10% for testing.

Data Conversion: The annotations generated during labeling were con-
verted into YOLOVS8 format, a popular framework for object detection tasks.
Each image’s bounding box annotations were encoded into corresponding
.txt files, with each file containing the coordinates and class labels of the de-
tected pest insects. This standardized format facilitates seamless integration
with the model training pipeline.
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By meticulously curating our dataset, annotating with precision, aug-
menting for diversity, and adhering to a structured train/test split, we en-
sured the robustness and effectiveness of our deep learning model for pest
insect detection and classification within greenhouse environments.

3.5 Preprocessing

Before providing the data to the CNN model for training, we need to pass
through the preprocessing phase. This is a crucial step where we make mod-
ifications to the data, such as resizing, applying filters, and removing noise,
to ensure it is in the optimal format for training the model. In our project, we
specifically used techniques like auto-adjust contrast, static crop, and resiz-
ing images to 640x640 pixels.

Preprocessing involves several essential steps to ensure that the data is
in the optimal format for training the YOLOv8 model. This section will de-
tail these steps, including data cleaning, augmentation, normalization, and
formatting.

3.5.1 Adjust Contrast

Auto-adjust contrast is used to enhance the visibility of features in the
images by adjusting the contrast levels. This helps in highlighting the details
that are crucial for accurate pest detection.

3.5.2 Static Crop

Static cropping is used to focus on the central part of the image, which
is often the region of interest. This reduces the amount of irrelevant back-
ground and ensures the model focuses on the relevant areas.

3.5.3 Resizing

The original dataset images were (1024,1024,3) We resize images to (640x640x3).
The first number indicate the width of image and the second indicate Hight
and the last number indicate image channels RGB (Red, Green, Blue)

Why resizing images ?
Resizing the images to a uniform size ensures consistency in the input data,
which is crucial for efficient training and inference. The size 640x640 pixels
was chosen to balance detail preservation and computational efficiency.
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3.6 Data Augmentation

Image augmentations are modifications applied to images to increase the
number of images by applying different transformations for example rotat-
ing, scaling, flipping, brightness, cropping or adding some noise, to create
new samples that are similar to the original images. Data augmentation
also helpful in improves model generalization, reduces overfitting, addresses
class imbalance, and helps in scenarios with limited data availability.

In this work we increase the number of images by different transforma-
tions like rotation, scaling, flipping, shear, brightness adjustment, and color
jittering, introduce variations to the images while preserving their semantic
content.

* Rotation: Images were rotated between -15° and +15°.

¢ Shear: Shear transformations included +14° horizontally and +9° verti-
cally.

¢ Brightness: The brightness of images was adjusted between -16% and
+16%.

* Flip: Images were flipped both horizontally and vertically.
¢ Hue: Adjustments were made between -15° and +15°.
¢ Blur: Blurring was applied with a maximum radius of 2.1 pixels.

* Noise: Up to 1.21% of pixels were altered to add noise.

Initially, we had about 7000 images. After applying data augmentation,
the dataset expanded to over 20000 images.

These augmentations introduce significant variations to the dataset while
maintaining the integrity of the semantic content of the images, thus enabling
the model to generalize better to unseen data.

3.7 Splitting Dataset

Following annotation and augmentation, the dataset was divided into
three subsets: 80% for training, 10% for validation, and 10% for testing. This
stratified split ensures that each subset contains a representative distribution
of images across different pest insect classes, thus facilitating comprehensive
model training and evaluation.
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3.8 Utilization of YOLOVS in Pest Insect Detection

In our pest insect detection system, we leverage the robust capabilities of
YOLOVS to detect and classify pest insects within greenhouse environments.
The YOLOVS architecture, with its real-time processing capabilities and high
accuracy, is ideally suited for our application, where timely and accurate de-
tection of pest insects is paramount.

To incorporate YOLOVS into our system, we first preprocessed our an-
notated dataset to ensure compatibility with the YOLOvS8 framework. This
involved converting annotations into the YOLOvS8 format, where each image
is accompanied by a corresponding .txt file containing bounding box coordi-
nates and class labels for detected pest insects.

Subsequently, we fine-tuned the pre-trained YOLOv8 model on our an-
notated dataset using transfer learning techniques. Transfer learning allows
us to leverage the knowledge gained from training on a large dataset and
adapt it to our specific task of pest insect detection. This process significantly
accelerates model convergence and improves detection performance.

Once trained, our YOLOv8-based pest insect detection model is capable
of processing live streaming footage from the robotic system’s camera in real-
time, accurately detecting and classifying pest insects within greenhouse en-
vironments.

By harnessing the power of YOLOVS, we equip our system with state-of-
the-art object detection capabilities, enabling efficient and precise pest man-
agement within greenhouse settings.

3.9 BugBot Composition

This section outlines the implementation of the pest detection bot’s hard-
ware. The following materials are required:

Components Description

1. ESP32-CAM Module: A microcontroller board with integrated cam-
era functionality is ideal for capturing images for pest detection. It in-
cludes Wi-Fi capabilities for data transmission and onboard flash mem-
ory. This module serves as the primary sensory and communication
hub of the autonomous pest detection robot, capturing images of the
greenhouse environment. The captured images are transmitted via Wi-
Fi to a remote server for analysis, and the module receives instructions
from the server based on the analysis results, controlling the relay and
activating the water pump when necessary.
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FIGURE 3.7: ESP32-CAM!

2. Breadboard: A solderless prototyping board, the breadboard facilitates
the initial stages of circuit design and experimentation. Its matrix of in-
terconnected sockets allows for easy component insertion and removal,
promoting rapid prototyping and testing without the need for solder-

mg.
DIP Support
+ +
Terminal Strips [e e o o o] [e e & o o} Terminal Strips
L . L e e o o 0
e o e o o L e o o 0o 0
ee| oeeeeoe e e o e
e o e o o L e o 0 o 0
L e o o L e o o o 0
e e| e e e o o L) L
e o o L e o o 0 o — Bus Strlps
e o e o o L e o o 0 0 e o
ee| 1 eeeee eeeee oo
e o e o o L e o
e o e o o e o 0 o 0 e o
ee|/ eeeee eeeee oo

e @ o o o
e o e o o o o e e o o o e o
e o e e o o o e o o o o e o
L ) e o o o o e e o o o L
L ) e e o o o e o o o o e o
e o e e o o o e e o o o e o
e e o o o e e @ o o
L e o o o o e o o o o e o
L e e o o o e e o o o e o
L) e e o o o e e o o o e o
. DO DO e
L) e e o o o e e o o o e o
e e @ o o e e o o o
o e eeeee ecesee .o
e o e e 0 o o e e o o o e o
e o e e o o o e e o o o e o
D) ee e e e LRI oo
+ - + -

FIGURE 3.8: Breadboard?

Thttps:/ /lastminuteengineers.com/ getting-started-with-esp32-cam/
Zhttps:/ /diyodemag.com/education/fundamentals_breadboarding_basics
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3. Breadboard Power Supply Module (MB-102):
During the development and testing phases, this module provides a
versatile power source for the breadboard setup. It offers multiple out-
put voltages and can be powered via USB, wall adapter, or battery, en-
hancing the flexibility of the prototyping environment.

FIGURE 3.9: MB102 Power Supply®

4. Jumper Wires: These insulated wires, typically short in length and ter-
minated with pin connectors, are instrumental in establishing electrical
connections between various components. Their flexibility enables the
creation of both temporary and permanent circuits, facilitating the de-
velopment and assembly process.

3https:/ /www.amazon.com/ Interface-Breadboard-Supply-Regulator-
Channel/dp/B07T8PL41N
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FIGURE 3.10: Jumper Wires*

5. Relay: An electromagnetic switch, the relay acts as an intermediary be-
tween the low-voltage signals from the ESP32-CAM module and the
higher power requirements of the water pump. Upon receiving a con-
trol signal from the ESP32-CAM (indicating the presence of pests), the
relay closes its internal circuit, enabling the activation of the water pump.

Relay
NO GND
VCC
COM SIG
NC

Relay switch indicator

FIGURE 3.11: 5V Relay®

*https:/ /www.amazon.com/dp/BOBDFML3XD?th=1
Shttps:/ /www.aranacorp.com/en/using-a-relay-module-with-arduino/
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6. Water Pump: This pump functions as the robot’s effector mechanism.
Upon receiving an activation signal from the relay, the pump initiates
the dispensation of pesticides, as determined by the pest control strat-
egy. The pump’s specifications, such as flow rate and pressure, are se-
lected based on the greenhouse dimensions and the specific pest miti-
gation requirements.

FIGURE 3.12: Water Purnp6

3.10 Conclusion

In summary, this chapter provided a comprehensive look at the design
and implementation of our Al-based pest insect detection system. We cov-
ered everything from the initial design and dataset preparation to the use of
data augmentation and the YOLOv8 model. Each step was crucial in build-
ing an effective and accurate detection system. This detailed explanation sets
the foundation for understanding how our approach works and its potential
impact on improving greenhouse pest management.

®https:/ /www.amazon.de/-/en/HALJIA-Horizontal-Submersible-Brushless-1-2-1-
6L/dp/BO7TTXTSLS
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41 Introduction

In this chapter, we delve into the realization of our innovative pest detec-
tion and management system tailored for greenhouse environments. Build-
ing upon the foundation laid in previous chapters, we transition from con-
ceptualization to implementation, detailing the practical aspects of our solu-
tion’s development and deployment.
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4.2 Frameworks , Tools and Libraries

Firstly, the project is developed using a system powered by an AMD
Ryzen 5 4600H CPU running at 3.00GHz, equipped with 16 GB of memory,
and featuring an NVIDIA GeForce GTX 1650Ti with 4GB of dedicated GPU
memory. The development environment is based on Windows 11/10.

The primary tools and programming languages utilized for the imple-
mentation of our system are the following:

* Python: Guido van Rossum introduced the high-level programming
language Python in 1991 Python now is used extensively in various
domains like web development, data analysis, machine learning, au-
tomation and scripting 1.

FIGURE 4.1: Python logo !

* JavaScript: JavaScript is a versatile programming language commonly
used for web development. Initially designed to add interactivity to
web pages, it has evolved into a powerful language for building dy-
namic, interactive web applications and server-side development through

frameworks like Node.js 2.

FIGURE 4.2: JavaScript logo?

* C++: C++ serves as a versatile programming language utilized within
the Arduino IDE, offering a powerful platform for developing software

https:/ /www.python.org/doc/essays/blurb/
https:/ /www.geeksforgeeks.org/introduction-to-javascript/
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for Arduino microcontrollers. While retaining its object-oriented na-
ture, C++ in the Arduino environment emphasizes creating and manip-
ulating objects that represent various hardware components and func-
tions. For instance, a user may define objects such as sensors, actuators,
or communication modules, each possessing distinct attributes and be-
haviors. This object-oriented approach facilitates the creation of com-
plex projects by encapsulating functionality within modular, reusable
components 3.

FIGURE 4.3: C++ logo®

* Google Colab: Colab, or Google Colaboratory, is an online platform for
coding in Python without the need for local installation. It provides a

cloud-based environment with features like collaborative editing and

access to powerful hardware resources *.

80

FIGURE 4.4: Google Colab logo*

TABLE 4.1: Google Colab resources.

| | GPU | Runtime | RAM | Disk Capacity |
| Google Colab | A100 | 4h | 64GB | 80GB |

* Kaggle: Kaggle is a platform for data science competitions and collab-
oration where users can access and use real world datasets °.

Shttps:/ /www.arduino.cc/reference/en/
*https:/ / colab.research.google.com /notebooks/intro.ipynb. /
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kaggle

FIGURE 4.5: Kaggle logo®

* OpenCv: OpenCV or Open Source Computer Vision Library is a widely
used open-source library for computer vision and image processing
tasks. It offers a range of functions and algorithms for tasks like im-
age manipulation, object detection and video analysis .

GO

OpenCV

FIGURE 4.6: OpenCv logo®

* VS Code: Visual Studio Code combines the simplicity of a source code
editor with powerful developer tooling, like IntelliSense code comple-
tion and debugging.

First and foremost, it is an editor that gets out of your way. The delight-

fully frictionless edit-build-debug cycle means less time fiddling with

your environment, and more time executing on your ideas . ”.

FIGURE 4.7: Visual Studio Code logo’

5https: / /www.kaggle.com/docs/notebooks/
®https:/ /docs.opencv.org/4.x/d1/dfb/intro.html
"https:/ /code.visualstudio.com/docs/editor/whyvscode
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¢ Arduino IDE: The Arduino Integrated Development Environment (IDE)
is a user-friendly software application that simplifies the process of
writing, compiling, and uploading code to Arduino boards and Micro-
controllers.

The IDE provides a streamlined interface with a text editor for code,
a message area for feedback, a console for serial communication, and
a toolbar with essential functions. It seamlessly connects to hardware,

enabling you to program and interact with your projects. ®.

OO

FIGURE 4.8: Arduino IDE logo®

¢ Flask: Flaskis a web framework, it's a Python module that lets you de-
velop web applications easily. It's has a small and easy-to-extend core:
it's a microframework that doesn’t include an ORM (Object Relational

Manager) or such features °.

Flask

FIGURE 4.9: Flask logo’

8https:/ /docs.arduino.cc/learn/starting-guide / the-arduino-software-ide/
https:/ /flask.palletsprojects.com /
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* Roboflow: Roboflow is the universal conversion tool for computer
vision datasets. We import any annotation format and export to any
other, meaning you can spend more time experimenting and less time

wrestling with one-off conversion scripts for your object detection datasets
10

@ roboflow

FIGURE 4.10: Roboflow logo!”

4.3 Dataset Preparation and Preprocessing

4.3.1 Install YOLOvVS

YOLOVS can be installed in two ways from the source and via pip. This
is because it is the first iteration of YOLO to have an official package.

1
> !pip install ultralytics

LISTING 4.1: download the datasets

4.3.2 Download Dataset to Google Colab

First, we used the dataset API to download the Roboflow datasets to our
Google Colab

1 !pip install roboflow

3 from roboflow import Roboflow

i rf = Roboflow (api_key =" ks*skkskkxkkxkkkkkk*xkkk*x")

5 project = rf.workspace("agriculter").project("agriculer")
¢ version = project.version (3)

7 dataset = version.download("yolov8")

LISTING 4.2: download the datasets

Ohttps:/ /roboflow.com/formats
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4.3.3 Custom Training

After pasting the dataset download snippet into your YOLOv8 Colab
notebook, we are ready to begin the training process.

!yolo task=detect mode=train model=yolov8s.pt data=/content/
datasets/agriculter/data.yaml epochs=100 imgsz=640 plots=
True

LISTING 4.3: Custom Training our model

4.4 Results

Here are the results of training a player detection model with YOLOVS:

4.4.1 Model Accuracy Measured on Validation Set

The accuracy of the model on the validation set indicates how well the
model generalizes to unseen data. It is calculated as the ratio of correctly
predicted instances to the total instances in the validation set

@ AP50(B) (@ mAP50-95(8) (@ precision(®) (@) recall(s)

OV N O VRO R PP PR R R PR PP PR PRSI TRV CRLF PSR P

FIGURE 4.11: The Metrics

4.4.2 Confusion Matrix

The confusion matrix provides a summary of the prediction results, indi-
cating true positives, false positives, true negatives, and false negatives for
each class of pest insects.
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Confusion Matrix
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FIGURE 4.12: The confusion matrix returned after training

4.4.3 Class loss

Class loss measures the model’s performance in classifying each instance
into the correct category. Lower class loss values indicate better performance.
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FIGURE 4.13: Class loss

4.5 Realization

4.5.1 Flask Web Application Framework

In our project, Flask serves as the backbone of our web application, facil-
itating communication between the ESP32-CAM detection sensor and other
components of the system. It handles incoming image data from the sensor,
processes it, and forwards it to the deep learning model for pest detection.
Additionally, Flask provides a user-friendly interface for real-time monitor-
ing and analysis of pest detection results.
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By leveraging Flask’s simplicity and flexibility, we streamline the devel-
opment and deployment of our pest detection system, enabling efficient com-
munication and interaction between its various components.

4.5.2 Detection Sensor (ESP32-CAM)

The ESP32-CAM serves as the detection sensor in our system, tasked with
capturing live streaming footage and detecting pest insects within green-
house environments. Equipped with a camera module and Wi-Fi connec-
tivity, the ESP32-CAM captures real-time images, which are then processed
for pest detection.

The ESP32-CAM communicates with a Flask server, a lightweight web
application framework written in Python. The Flask server facilitates seam-
less integration between the ESP32-CAM and our deep learning model for
pest insect detection. It serves as the intermediary between the sensor and
the detection model, handling incoming image data from the ESP32-CAM
and forwarding it to the model for analysis.

Upon receiving live streaming footage from the ESP32-CAM, the Flask
server processes the images and feeds them into the trained YOLOv8 model
for pest detection. The detection results are then relayed back to the server,
which can be accessed by users through a web interface for real-time moni-
toring and analysis.

4.5.3 Reaction Mechanism

In response to the detection of pest insects, our system triggers a reaction
mechanism involving a spray system to mitigate the infestation. The spray
system is equipped with a biological control product designed to target and
eliminate the detected pest insects while minimizing environmental impact.

Upon receiving confirmation of pest detection from the YOLOv8 model
via the Flask server, the reaction mechanism is activated. The system sends
a signal to the spray system, initiating the release of the biological control
product within the greenhouse.

The spray system is strategically positioned to deliver targeted applica-
tion of the biological control product, ensuring efficient pest management
while minimizing collateral damage to non-target organisms.

By integrating detection sensor technology with a responsive reaction
mechanism, our system enables proactive and precise pest management within
greenhouse environments. This holistic approach facilitates timely detection
and intervention, safeguarding crop health and optimizing agricultural pro-
ductivity.
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4.5.4 BugBot Prototype

This section details the assembly and initial configuration of the BugBot
prototype, as outlined in Chapter 3/Sec. 3.9. The necessary electronic com-
ponents were procured and interconnected on a breadboard as per the pro-
vided schematic. The MB-102 power supply module was utilized to power
the breadboard and, consequently, all connected components. Jumper wires
were employed to establish electrical connections between the various com-
ponents on the breadboard. Notably, the ESP32-CAM module was connected
to the breadboard both for power and to transmit signals to the relay’s control
pin. Similarly, the water pump was connected to the breadboard for power

and to the relay’s output, enabling activation upon receiving a signal from
the ESP32-CAM module.

1
Water Pump
FIGURE 4.14: Interconnecting Prototype Components

Upon completion of the hardware assembly, in accordance with the pro-
vided instructions, the subsequent step involved programming and configur-
ing the BugBot’s operational environment. The Arduino IDE was employed
as the development platform, and the programming process, which encom-
passed setting up the Wi-Fi connection, camera initialization, and communi-
cation with the remote server, is elaborated upon in the following section.

#include "WifiCam.hpp"
#include <WiFi.h>

3 #include <WebServer.h>

4

6
8
9

10

#include <esp32cam.h>

const char*x WIFI_SSID
const char*x WIFI_PASS

"Wifi_Name";
"Wifi_Password";

WebServer server (80);
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static auto loRes = esp32cam::Resolution::find (320, 240);
static auto midRes = esp32cam::Resolution::find (480, 320);
static auto hiRes = esp32cam::Resolution::find (800, 600) ;

const int relayPin = 2;

LISTING 4.4: Part 1: Declarations and Variables

Part 1. This section includes the necessary header files for Wi-Fi con-
nectivity, web server functionality, camera operation, and custom configura-
tions. It also declares variables to store Wi-Fi credentials, camera resolutions,
and the pin for controlling the relay.

void servelJpg() A{
// ... (code for capturing and serving JPEG images)

}

void handleJpgLo () {
// ... (code for handling low-resolution image requests)

}

void handleJpgMid () A{
// ... (code for handling mid-resolution image requests)

}

void handleJpgHi () {
// ... (code for handling high-resolution image requests)

}
LISTING 4.5: Part 2: Image Capture and Serving Functions

Part 2. These functions facilitate image capture from the ESP32-CAM
module and their transmission as JPEG files via the web server. The func-
tions handleJpgLo(), handle]JpgMid(), and handleJpgHi() allow for capturing
images at different resolutions to optimize bandwidth usage based on the re-
quirements.

void controlRelay(bool on) {
digitalWrite(relayPin, on ? LOW : HIGH);

3 }

void handlePump () {
controlRelay (true);
delay (5000) ;
controlRelay(false) ;
server .send (200, "text/plain", "Pump activated for 5 seconds

")

LISTING 4.6: Part 3: Relay and Pump Activation Function

Part 3. controlRelay(bool on) controls the state of the relay connected to
the water pump, effectively turning it on or off. handlePump() is called when
the BugBot receives a command from the server to activate the pump. It turns
the pump on for a specified duration (5 seconds in this case) and then turns
it off.
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void setup() {
// (Code for serial communication, camera configuration, Wi-
Fi setup, and web server setup)

5 }

void loop () {
server .handleClient () ;

by
LISTING 4.7: Part 4: Setup and Main Loop

Part 4. The setup() function initializes serial communication, configures
the camera settings, connects to the specified Wi-Fi network, and sets up the
web server routes to handle incoming requests. The loop() function contin-
uously runs, listening for and responding to client requests. These requests
can trigger image capture, resolution changes, or pump activation.

4.6 Application Interface

The application interface for our pest detection and management sys-
tem is designed to provide users with a seamless and intuitive experience
for monitoring and managing pest infestations within greenhouse environ-
ments. Leveraging modern web technologies, the interface offers real-time
access to pest detection results, enabling users to make informed decisions
and take timely action.

Key Features:

Live Streaming Feed: The interface displays a live streaming feed from
the ESP32-CAM detection sensor, allowing users to observe real-time im-
agery of the greenhouse environment. This feed provides continuous moni-
toring and enables users to visually inspect for signs of pest activity.

Pest Detection Results: Detected pest insects are highlighted and labeled
within the live streaming feed, providing users with immediate visibility into
pest infestations. Each detected pest insect is annotated with relevant infor-
mation.

Alert Notifications: In the event of significant pest detections or criti-
cal alerts, the interface generates real-time notifications to alert users. These
notifications may include actionable insights or recommendations for pest
management strategies.
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FIGURE 4.15: Application Interface

4.7 Comparison with Related Work Results

In this section, we compare our work with the related studies mentioned
earlier. By examining the detection models, deployment environments, tar-
geted pests, and achieved accuracies, we aim to highlight the strengths and
unique contributions of our approach. Our system, which uses the YOLOvV8
model for greenhouse pest detection, is evaluated against other innovative
projects such as AloT-based systems, dual-drone precision spraying, and im-
proved YOLOv5 models. This comparative analysis underscores the effec-
tiveness of our system and identifies areas for further improvement, con-
tributing to the advancement of smart pest management solutions in agricul-
ture.
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Project MG Environment | Target Pests Accuracy
Used
ép }Hds 99% (Gryllus,
Our T;};i uSs Thrips,Whitefly,)
. YOLOvV8 | Greenhouses p 91% (aphids)
Project Tuta_Absoluta o
o 97% (Tuta_absuluta)
Whiteflies 78%(Mealybugs)
mealybug oViealybuss
‘Candidatus o
RobHortic PLS-DA | Carrot fields Liberibacter 66.4% (l‘ab),
, | 59.8% (field)
solanacearum
Drone Based
Pest Detection
and Precision Tessaratom
Pesticide | YOLOv3 | Orchards essaratoma 1 5959%
S .. papillosa
praying in
Longan
Orchards
Improved Leaf miners,
YOLOvV5 fruit flies, 99% (leaf miners)
Model for aphids, 98% (aphids,
Pest Detection YOLOv5 | Greenhouses houseflies, houseflies)
in tobacco 97% (whiteflies)
Greenhouses whiteflies

TABLE 4.2: Comparison Table with Related Work Results

4.7.1 Discussion

Now that we have compared our work with the related studies men-
tioned earlier, it is evident that our project offers several advantages over
these existing solutions.

Strengths of Our Project

Our project demonstrates clear superiority in several key areas. While
some existing algorithms rely on trapping insects and then using image de-
tection to achieve high accuracy, our model excels at directly detecting pests
on plants in real-time. By leveraging the YOLOv8 model, we achieve higher
detection accuracy and efficiency in identifying pest insects compared to
other models like YOLOv3 and YOLOvVS. The integration of a real-time
monitoring system with automated pest control measures further sets our
project apart, providing a comprehensive and immediate response solution
for greenhouse pest management. Additionally, our user-friendly web inter-
face enhances accessibility and usability for farmers, allowing them to mon-
itor and control the system effortlessly.
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4.8 Conclusion

In this chapter, we have thoroughly examined the design, implementa-
tion, and effectiveness of our pest detection and management system for
greenhouses. By leveraging the YOLOv8 model and integrating advanced
technologies such as IoT devices and real-time monitoring, our project demon-
strates superior performance in identifying and managing pest infestations
compared to related works. The comprehensive design and seamless integra-
tion of various components ensure robust, accurate, and efficient pest control,
offering significant advantages over existing solutions. Our project’s innova-
tive approach and potential for future enhancements highlight its contribu-
tion to advancing greenhouse pest management practices.
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Conclusion and Perspectives

The agricultural industry has witnessed remarkable advancements in re-
cent years, especially in the realm of pest management within controlled en-
vironments like greenhouses. Artificial intelligence (AI) and robotics have
emerged as a promising solution for the early detection and precise elimi-
nation of pests, minimizing crop damage and reducing the need for broad-
spectrum pesticides. This thesis explored the development and implementa-
tion of an Al model and robotic platform to address these challenges.

In traditional greenhouse settings, pest control often relies on manual
scouting and scheduled pesticide applications, which can be labor-intensive,
time-consuming, and environmentally impactful. This approach may result
in delayed detection and insufficient targeting of pests, leading to unneces-
sary crop losses and increased chemical use. Therefore, a more proactive,
automated, and precise pest management system is essential for sustainable
and efficient greenhouse operations.

The proposed solution involves the deployment of an Al-powered robot
equipped with a high-resolution camera and a targeted spraying mechanism.
The Al model, trained on extensive datasets of pest images, accurately iden-
tifies and classifies various pest species within the greenhouse environment.
Upon detection, the robot applies a precise dose of pesticide to the affected
area, minimizing collateral damage to beneficial insects and the environment.

By leveraging Al and robotics, this system enables continuous monitor-
ing, early pest detection, and targeted interventions, significantly improving
pest control efficacy while reducing pesticide usage. The real-time data col-
lected by the robot can also provide valuable insights into pest population
dynamics, enabling proactive management strategies and further optimizing
greenhouse operations.

In future work, we aim to enhance the capabilities of this robotic system
significantly. We plan to implement autonomous movement, allowing the
robot to navigate the greenhouse environment without human intervention.
This will improve the system’s responsiveness and efficiency in detecting
and addressing pest outbreaks. Furthermore, we will focus on refining the
spraying mechanism to ensure even more precise and targeted pesticide ap-
plication, minimizing wastage and environmental impact. To enhance the ac-
curacy and robustness of the Al model, we will expand the training dataset
by incorporating images and data from various sources, capturing a wider
range of pest species and environmental conditions. By continuously im-
proving the hardware and software components of this system, we aim to
revolutionize pest management in greenhouses and contribute to a more sus-
tainable and productive agricultural industry.
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